Skip to main content

Extracellular ATP Signaling in Animals and Plants: Comparison and Contrast

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

Although the key role of extracellular nucleotides as signaling agents in animals and plants is not often discussed in text books, it is a major topic in the primary literature, with typically over 400 papers published on this topic every year for the past two decades. For research in animal cells, this literature became quite extensive following the discovery, over three decades ago, of multiple purinergic receptors for extracellular nucleotides such as extracellular ATP (eATP) in mammals and other vertebrates. On the other hand, research on eATP signaling in plant cells is relatively more recent and limited, but it has begun to expand significantly after the discovery of an eATP receptor in Arabidopsis in 2014. Although the structural characteristics of the purinergic receptors in animals and plants differ significantly, the signaling steps that follow the activation of these receptors are similar in plants and animals, both having an increase in [Ca2+]cyt within seconds as one of the earliest steps, and both leading to increased levels of reactive oxygen species within minutes as a critical intermediate in the signaling pathway. New downstream molecular and physiological responses to receptor activation by extracellular nucleotides are being discovered every year, and this chapter will discuss underlying similarities and distinct differences in these responses in plants and animals. In both animals and plants, the main enzyme limiting the [eATP] is a nucleoside triphosphate-diphosphohydrolase (NTPDase), more often referred to in the plant literature as apyrase. These enzymes have features that have been conserved throughout evolution, from primitive algae through to humans. This fact, plus the observation that physiologically significant levels of ATP can be found in the open ocean, suggest that eATP signaling is an ancient method of regulating cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MS, Kuo JL, Ernst PB, Derr-Castillo V, Pereira M, Gaines D, Costales M, Bigley E, Williams K (2014) Ecto-5′-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine salmonellosis. Sci Rep 4:4486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali GS, Reddy ASN (2006) ATP, phosphorylation and transcription regulate the mobility of plant splicing factors. J Cell Sci 119:3527–3538

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Hodson RE (1977) Dissolved ATP in the sea and its utilization by marine bacteria. Nature 267:696–698

    Article  CAS  PubMed  Google Scholar 

  • Bibeau JP, Kingsley JL, Furt F, Tüzel E, Vidali L (2018) F-actin mediated focusing of vesicles at the cell tip is essential for polarized growth. Plant Physiol 176:352–363

    Article  CAS  PubMed  Google Scholar 

  • Bilbao PS, Boland R, de Boland AR, Santillán G (2007) ATP modulation of mitogen activated protein kinases and intracellular Ca2+ in breast cancer (MCF-7) cells. Arch Biochem Biophys 466:15–23

    Article  CAS  Google Scholar 

  • Boudreault F, Grygorczyk R (2004) Cell swelling induced ATP release is tightly dependent on intracellular calcium elevations. J Physiol 561:499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2017) Purinergic signalling: therapeutic developments. Front Pharmacol 8:661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnstock G, Dale N (2015) Purinergic signalling during development and ageing. Purinergic Signal 11:277–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signaling system. Acta Physiol 195:415–447

    Article  CAS  Google Scholar 

  • Buzzi N, Bilbao PS, Boland R, de Boland AR (2009) Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta 1790:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Tanaka K, Nguyen CT, Stacey G (2014) Extracellular ATP is a central signaling molecule in plant stress responses. Curr Opin Plant Biol 20:82–87

    Article  CAS  PubMed  Google Scholar 

  • Ceriani F, Pozzan T, Mammano F (2016) Critical role of ATP-induced ATP release for Ca2+ signaling in nonsensory cell networks of the developing cochlea. Proc Natl Acad Sci U S A 113:E7194–E7201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YR, Datta N, Roux SJ (1987) Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J Biol Chem 262:10689–10694

    CAS  PubMed  Google Scholar 

  • Chen D, Cao Y, Li H, Kim D, Ahsan N, Thelen J, Stacey G (2017) Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat Commun 8:2265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiu T-Y, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood J, Clark G, Roux S (2012) AtAPY1 and AtAPY2 function as endomembrane nucleoside diphosphatases in Arabidopsis thaliana. Plant Cell Physiol 53:1913–1925

    Article  CAS  PubMed  Google Scholar 

  • Chiu T-Y, Lao J, Manalansan B, Loqué D, Roux SJ, Heazlewood JL (2015) Biochemical characterization of Arabidopsis APYRASE family reveals their roles in regulating endomembrane NDP/NMP homeostasis. Biochem J 472:43–54

    Article  CAS  PubMed  Google Scholar 

  • Chiu Y-H, Schappe MS, Desai BN, Bayliss DA (2017) Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 150:19–39

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343:290–294

    Article  CAS  PubMed  Google Scholar 

  • Cinar E, Zhou S, DeCourcey J, Want Y, Waugh RE, Wan J (2015) Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proc Natl Acad Sci U S A 112:11783–11788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark G, Roux SJ (2011) Apyrases, extracellular ATP and the regulation of growth. Curr Opin Plant Biol 14:700–706

    Article  CAS  PubMed  Google Scholar 

  • Clark G, Wu M, Wat N, Onyirimba J, Pham T, Herz N, Ogoti J, Gomez D, Canales AA, Aranda G, Blizard M, Nyberg T, Terry A, Torres J, Wu J, Roux SJ (2010a) Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Mol Biol 74:423–435

    Article  CAS  PubMed  Google Scholar 

  • Clark G, Torres J, Finlayson S, Guan XY, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ (2010b) Apyrase (Nucleoside Triphosphate-Diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol 152:1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark G, Fraley D, Steinebrunner I, Cervantes A, Onyirimba J, Liu A, Torres T, Tang W, Kim J, Roux SJ (2011) Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. Plant Physiol 156:1740–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark G, Morgan RO, Fernandez P, Roux SJ (2012) Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol 196:695–712

    Article  CAS  PubMed  Google Scholar 

  • Clark G, Morgan RO, Fernandez M-P, Salmi ML, Roux SJ (2014) Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. Plant Sci 225:107–116

    Article  CAS  PubMed  Google Scholar 

  • Daumann M, Fischer M, Niopek-Witz S, Girke C, Möhlmann T (2015) Apoplastic nucleoside accumulation in Arabidopsis leads to reduced photosynthetic performance and increased susceptibility against Botrytis cinerea. Front Plant Sci 6:1158

    Article  PubMed  PubMed Central  Google Scholar 

  • Day RB, McAlvin CB, Loh JT, Denny RL, Wood TC, Young ND, Stacey G (2000) Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant-Microbe Interact 13:1053–1070

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shang ZL, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shang Z, Shin R, Colaco R, Laohavisit A, Shabala S, Davies JM (2011) Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane. Plant Physiol 156:1375–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng S, Sun J, Zhao R, Ding M, Zhang Y, Sun Y, Wang W, Tan Y, Liu D, Ma X, Hou P, Wang M, Lu C, Shen X, Chen S (2015) Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants. Plant Physiol 169:530–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Vegas A, Campos CA, Contreras-Ferrat A, Casas M, Buvinic S, Jaimovich E, Espinosa A (2015) ROS production via P2Y1-PKC-NOX2 is triggered by extracellular ATP after electrical stimulation of skeletal muscle cells. PLoS One 10:e0129882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dindas J, Scherzer S, Roelfsema MRG, von Meyer K, Muller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, Hedrich R (2018) AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat Commun 9:1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, JSA E, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017

    Article  CAS  PubMed  Google Scholar 

  • Estevez-Herrera J, Dominguez N, Pardo MR, Gonzalez-Santan A, Westhead EW, Borges R, Machado JD (2016) ATP: the crucial component of secretory vesicles. Proc Natl Acad Sci U S A 113:E4098–E4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faas MM, Sáez U, de Vos P (2017) Extracellular ATP and adenosine: the Yin and Yang in immune responses? Mol Asp Med 55:9–19

    Article  CAS  Google Scholar 

  • Feng H, Guan D, Bai J, Sun K, Jia L (2015a) Extracellular ATP: a potential regulator of cell death. Mol Plant Pathol 16:633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Guan D, Sun K, Fang Y, Zhao Y, Jia Y (2015b) Extracellular ATP is involved in the salicylic acid-induced cell death in suspension-cultured tobacco cells. Plant Prod Sci 18:154–160

    Article  Google Scholar 

  • Fountain SJ, Cao LS, Young MT, North RA (2008) Permeation properties of a P2X receptor in the green algae Ostreococcus tauri. J Biol Chem 283:15122–15126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpinski S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gout E, Bligny R, Douce R (1992) Regulation of intracellular pH values in higher plant cells. J Biol Chem 267:13903–13909

    CAS  PubMed  Google Scholar 

  • Guan C-B, Xu H-T, Jin M, Yuan XB, Poo MM (2007) Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by Slit-2. Cell 129:385–395

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Luna FM, Hernandez-Dominguez EE, Valencia-Turcotte LG, Rodriguez-Sotres R (2018) Review: “pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism”. Plant Sci 267:11–19

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Kato Y, Miyaji T, Omote H, Moriyama Y, Hiasa M (2018) Vesicular nucleotide transporter mediates ATP release and migration in neutrophils. J Biol Chem 293:3770–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruta M, Sussman MR (2012) The effect of a genetically reduced plasma membrane proton motive force on vegetative growth of Arabidopsis. Plant Physiol 158:1158–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius M, Jalkanen S, Yegutkin GG (2012) Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochim Biophys Acta 1823:1967–1975

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Oñate MA, Herrera-Estrella A (2015) Damage response involves mechanisms conserved across plants animals and fungi. Curr Genet 61:359–372

    Article  PubMed  CAS  Google Scholar 

  • Hou ZR, Cao J (2016) Comparative study of the P2X gene family in animals and plants. Purinergic Signal 12:269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura H, Nhat KPH, Togawab H, Saitoc K, Iinob R, Kato-Yamadad Y, Nagaia T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49

    Article  CAS  PubMed  Google Scholar 

  • Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A, Bourque S, Nicolas-Frances V, Ma W, Berkowitz GA, Wendehenne D (2013) There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiol 163:459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeter C, Tang W, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Omote H, Miyaji T (2013) Inhibitors of ATP release inhibit vesicular nucleotide transporter. Biol Pharm Bull 36:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Katz S, Boland R, Santillán G (2008) Purinergic (ATP) signaling stimulates JNK1 but not JNK2 MAPK in osteoblast-like cells: contribution of intracellular Ca2+ release, stress activated and L-voltage-dependent calcium influx, PKC and Src kinases. Arch Biochem Biophys 477:244–252

    Article  CAS  PubMed  Google Scholar 

  • Khakh BS, Burnstock GB (2009) The double life of ATP. Sci Am 301:84–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles I (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7:21–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka-Postupolska D, Clark G, Hofmann A (2011) Structure, function and membrane interactions of plant annexins: an update. Plant Sci 181:230–241

    Article  CAS  PubMed  Google Scholar 

  • Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795

    Article  CAS  PubMed  Google Scholar 

  • Lim MH, Wu J, Yao JC, Gallardo IF, Dugger JW, Webb LJ, Huang J, Salmi ML, Song J, Clark G, Roux SJ (2014) Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. Plant Physiol 164:2054–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wu J, Clark G, Lundy S, Lim M, Arnold D, Chan J, Tang W, Muday G, Gardner G, Roux SJ (2012) Role for apyrases in polar auxin transport in Arabidopsis. Plant Physiol 160:1985–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe M, Park SJ, Nurse CA, Campanucci VA (2013) Purinergic stimulation of carotid body efferent glossopharyngeal neurons increases intracellular Ca2+ and nitric oxide production. Exp Physiol 98:1199–1212

    Article  CAS  PubMed  Google Scholar 

  • Massalski C, Bloch J, Zebisch M, Steinebrunner I (2015) The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling. PLoS One 10:e0115832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minato Y, Suzuki S, Hara T, Kofuku Y, Kasuya G, Fujiwara Y, Igarashi S, Suzuki E, Nureki O, Hattori M, Ueda T, Shimada I (2016) Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc Natl Acad Sci U S A 113:4741–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyama Y, Nomura M (2018) Clodronate: a vesicular ATP release blocker. Trends Pharma Sci 39:13–23

    Article  CAS  Google Scholar 

  • Moriyama Y, Hiasa M, Sakamoto S, Omote H, Nomura M (2017) Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. Purinergic Signal 13:387–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura F, Stritmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci U S A 93:10465–10470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peiter E (2016) The ever-closer union of signals: propagating waves of calcium and ROS are inextricably linked. Plant Physiol 172:3–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyronnet R, Tran D, Girault T, Frachisse J-M (2014) Mechanosensitive channels: feeling tension in a world under pressure. Front Plant Sci 5:1–14

    Article  Google Scholar 

  • Puchalowicz TM, Baranowska-Bosiacka I, Chlubek D, Dziedziejko V (2014) P2X and P2Y receptors-role in the pathophysiology of the nervous system. Int J Mol Sci 15:23672–23704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rieder B, Neuhaus HE (2011) Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. Plant Cell 23:1932–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P (2008) The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. Plant Physiol 147:1092–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JS, Atanasova KR, Lee J, Diamond G, Deguzman J, Hee Choi C, Yilmaz Ö (2017) Opportunistic pathogen Porphyromonas gingivalis modulates danger signal ATP-mediated antibacterial NOX2 pathways in primary epithelial cells. Front Cell Infect Microbiol 7:291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roux SJ (2014) A start point for extracellular nucleotide signaling. Mol Plant 7:937–938

    Article  CAS  PubMed  Google Scholar 

  • Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci 12:522–527

    Article  CAS  PubMed  Google Scholar 

  • Roux S, Wu J, Henaff E, Torres J, Clark G (2008) Regions of growth are regions of highest release of ATP and highest expression of ectonucleotidases AtAPY1 and AtAPY2 in Arabidopsis. Purinergic Signal 4:S112

    Google Scholar 

  • Salmi ML, Clark G, Roux S (2013) Current status and proposed roles for nitric oxide as a key mediator of the effects of extracellular nucleotides on plant growth. Front Plant Sci 4:427

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandilos JK, Chiu Y-H, Chekeni FB, Armstrong AJ AJ, Walk SF SF, Kodi S, Ravichandran KS, Douglas A, Bayliss DA (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287:11303–11131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santolini J, Andre F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide Biol Chem 63:30–38

    Article  CAS  Google Scholar 

  • Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller M, Massalski C, Kurth T, Steiebrunner I (2012) The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC Plant Biol 12:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Lohoff E, Hugo C, Rost S, Arnold S, Gruber A, Brune B, Sterzel RB (1998) Extracellular ATP causes apoptosis and necrosis of cultured mesangial cells via P2Z/P2X(7) receptors. Am J Physiol Renal Physiol 275:F962–F971

    Article  CAS  Google Scholar 

  • Schwiebert EM (1999) ABC transporter-facilitated ATP conductive transport. Am J Physiol 276:C1–C8

    Article  CAS  PubMed  Google Scholar 

  • Seybold H, Trempel F, Ranf S, Scheel D, Romeis T, Lee J (2014) Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol 204:782–790

    Article  CAS  PubMed  Google Scholar 

  • Shang Z, Laohavisit A, Davies JM (2009) Extracellular ATP activates an Arabidopsis plasma membrane Ca2+-permeable conductance. Plant Signal Behav 4:989–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibata K, Abe S, Yoneda M, Davies E (2002) Sub-cellular distribution and isotypes of a 49-kDa apyrase from Pisum sativum. Plant Physiol Biochem 40:407–415

    Article  CAS  Google Scholar 

  • Shope JC, Mott KA (2006) Membrane trafficking and osmotically induced volume changes in guard cells. Plant Physiol 57:4123–4131

    CAS  Google Scholar 

  • Sivaramakrishnan V, Fountain SJ (2015) Evidence for extracellular ATP as a stress signal in a single-celled organism. Eukaryot Cell 14:775–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Steinebrunner I, Wang S, Stout S, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis thaliana. Plant Physiol 140:1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinebrunner I, Jeter C, Song C, Roux SJ (2000) Molecular and biochemical comparison of two different apyrases from Arabidopsis thaliana. Plant Physiol Biochem 38:913–922

    Article  CAS  Google Scholar 

  • Steinebrunner I, Wu J, Sun Y, Corbett A, Roux SJ (2003) Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant Physiol 131:1638–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ (2017) P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front Pharmacol 8:291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sueldo DJ, Foresi NP, Casalongue CA, Lamattina L, Laxalt AM (2010) Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells. New Phytol 185:909–916

    Article  CAS  PubMed  Google Scholar 

  • Summers EL, Cumming MH, Oulavallickal T, Roberts NJ, Arcus VL (2017) Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism. Protein Sci 26:1627–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Zhang C-L, Deng S-R, Lu C-F, Shen X, Zhou X-Y, Zheng X-J, Hu Z-M, Chen S-L (2012) An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. Plant Cell Environ 35:893–916

    Article  PubMed  CAS  Google Scholar 

  • Surin AM, Gorbacheva LR, Savinkov IG, Sharipov RR, Khodorov BI, Pinelis VG (2014) Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochem Mosc 79:146–157

    Article  CAS  Google Scholar 

  • Tanaka K, Swanson SJ, Gilroy S, Stacey G (2010) Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. Plant Physiol 154:705–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WQ, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YL, Yin Y, Miao L, Wei B, Zhai K, Ji GJ (2015) Nitric oxide enhances extracellular ATP induced Ca2+ oscillation in He La cells. Arch Biochem Biophys 565:68–75

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Sun Y, Naus K, Lloyd A, Roux S (1999) Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol 119:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas C, Rajagopal A, Windsor B, Dudler R, Lloyd A, Roux SJ (2000) A role for ecto-phosphatase in xenobiotic resistance. Plant Cell 12:519–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong CG, Dauwalder M, Clawson GA, Hatem CL, Roux SJ (1993) The major nucleoside triphosphatase in pea (Pisum-sativum L) nuclei and in rat-liver nuclei share common epitopes also present in nuclear lamins. Plant Physiol 101:1005–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres J, Rivera A, Clark G, Roux SJ (2008) Participation of extracellular nucleotides in the wound response of Dasycladus vermicularis and Acetabularia acetabulum (Dasycladales, Chlorophyta). J Phycol 44:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Yasunaga E, Niwa M, Ohwatari Y, Nakashima A, Inagaki Y, Ichinose Y, Shiraishi T (2012) H2O2 production by copper amine oxidase, a component of the ecto-apyrase (ATPase)-containing protein complex(es) in the pea cell wall, is regulated by an elicitor and a suppressor from Mycosphaerella pinodes. J Gen Plant Pathol 78:311–315

    Article  CAS  Google Scholar 

  • Toyoda K, Kawakami E, Nagai H, Shiobara-Komatsu T, Tanaka K, Inagaki Y, Ichinose Y, Shiraishi T (2014) Expression of Medicago truncatula ecto-apyrase MtAPY1;1 in leaves of Nicotiana benthamiana restricts necrotic lesions induced by a virulent fungus. J Gen Plant Pathol 80:222–229

    Article  CAS  Google Scholar 

  • Tripathi D, Zhang T, Koo AJ, Stacey G, Tanaka K (2018) Extracellular ATP acts on jasmonate signaling to reinforce plant defense. Plant Physiol 176:511–523

    Article  CAS  PubMed  Google Scholar 

  • Tripathy M, Weeraratne G, Clark G, Roux S (2016) Apyrase inhibitors enhance the ability of diverse fungicides to inhibit the growth of different plant pathogenic fungi. Mol Plant Pathol 7:1012–1023

    Google Scholar 

  • Tsao HK, Chiu PH, Sun SH (2013) PKC-dependent ERK phosphorylation is essential for P2X(7) receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 4:e751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulker P (2018) Extracellular ATP activates eNOS and increases intracellular NO generation in red blood cells. Clin Hemorheol Microcirc 68:89–101

    Article  CAS  PubMed  Google Scholar 

  • Vandenbeuch A, Anderson CB, Parnes J, Enjyoji K, Robson SC, Finger TE, Kinnamon SC (2013) Role of the ectonucleotidase NTPDase2 in taste bud function. Proc Natl Acad Sci U S A 110:14789–14794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerappa R, Slocum R, Clark G, Roux SJ (2018) Ectopic expression of psNTP9, a pea apyrase, expands root system architecture and increases nutrient uptake and seed yield in Arabidopsis and soybean. Abstract, Plant Biol 2018

    Google Scholar 

  • Velasquez SM, Barbez E, Kleine-Vehn J, Esteves JM (2016) Auxin and cellular elongation. Plant Physiol 170:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Burnstock G (2014) Biology of purinergic signaling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. BioEssays 36:697–705

    Article  CAS  PubMed  Google Scholar 

  • Vlajkovic SM, Housley GD, Thorne PR, Gupta R, Enjyoji K, Cowan PJ, Liberman M, Robson SC (2009) Preservation of cochlear function in Cd39 deficient mice. Hear Res 253:77–82

    Article  CAS  PubMed  Google Scholar 

  • Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflugers Archiv-European J Physiol 467:95–99

    Article  CAS  Google Scholar 

  • Weerasinghe RR, Swanson SJ, Okada SF, Garrett MB, Kim SY, Stacey G, Boucher RC, Gilroy S, Jones AM (2009) Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett 583:2521–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  • Wright RHG, Lioutas A, Le Dily F, Soronellas D, Pohl A, Bonet J, Nacht AS, Samino S, Font-Mateu J, Vicent GP, Wierer M, Trabado MA, Schelhorn C, Carolis C, Macias MJ, Yanes O, Oliva B, Beato M (2016) ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 352:1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux SJ (2007) Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. Plant Physiol 144:961–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S-J, Siu K-C, Wu J-Y (2011) Involvement of anion channels in elicitor-induced ATP efflux in Salvia miltiorrhiza hairy roots. J Plant Physiol 168:128–132

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Lewis AH, Grandl J (2017) Touch, tension, and transduction – the function and regulation of piezo ion channels. Trends Biochem Sci 42:57–71

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Chen J, Wang Q, Yang YO (2014) Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. Plant Cell 26:3077–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J (2011) Functional analyses of Arabidopsis apyrases 3 through 7. In: Molecular, cell and developmental biology. The University of Texas at Austin, Austin, p 127

    Google Scholar 

  • Yang J, Wu J, Romanovicz D, Clark G, Roux SJ (2013) Co-regulation of exine wall patterning, pollen fertility and anther dehiscence by Arabidopsis apyrases 6 and 7. Plant Physiol Biochem 69:62–73

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang B, Farris B, Clark G, Roux SJ (2015) Modulation of root skewing in Arabidopsis by apyrases and extracellular ATP. Plant Cell Physiol 56:2197–2206

    Article  CAS  PubMed  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  • Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49:473–497

    Article  CAS  PubMed  Google Scholar 

  • Zebisch M, Krauss M, Schafer P, Strater N (2012) Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase). J Mol Biol 415:288–306

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang K, Gao Z-G, Paoletta S, Zhang D, Han G, Li T, Ma L, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Karitch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y(12) receptor. Nature 509:119–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao N, Wang S, Ma X, Zhu H, Sa G, Sun J, Li N, Zhao C, Zhao R, Chen S (2016) Extracellular ATP mediates cellular K+/Na+ homeostasis in two contrasting poplar species under NaCl stress. Trees 30:825–837

    Article  CAS  Google Scholar 

  • Zhu R, Dong X, Hao W, Gao W, Zhang W, Xia S, Liu T, Shang Z (2017) Heterotrimeric G protein-regulated Ca2+ influx and PIN2 asymmetric distribution are involved in Arabidopsis thaliana roots’ avoidance response to extracellular ATP. Front Plant Sci 8:1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann H (2016) Extracellular ATP and other nucleotides–ubiquitous triggers of intercellular messenger release. Purinergic Signal 12:25–57

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Zebisch M, Straeter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J. Roux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roux, S.J., Clark, G. (2019). Extracellular ATP Signaling in Animals and Plants: Comparison and Contrast. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_15

Download citation

Publish with us

Policies and ethics