Skip to main content

Resonant Gain Singularities in Hyperbolic Metamaterials

  • Chapter
  • First Online:
New Directions in Thin Film Nanophotonics

Abstract

The interaction between dyes and plasmonic metals has been widely studied in numerous frameworks. In the previous chapter, a new propagation regime has been introduced in which a suitably dimensioned HMM can collimate light with unprecedented resolution. It has been explained that such a regime, called Epsilon-near-zero-and-pole (ENZP), is characterized by high losses in the visible. In this chapter, it will be shown how to compensate losses in the ENZP regime by means of a particular fluorescent blend designed appositely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kochuveedu ST, Son T, Lee Y, Lee M, Kim D, Kim DH (2014) Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons. Sci Rep 4:4735

    Article  ADS  Google Scholar 

  2. ElKabbash M, Rashed AR, Sreekanth KV, De Luca A, Infusino M, Strangi G (2016) Plasmon-exciton resonant energy transfer: across scales hybrid systems. J Nanomater 20:1–21

    Article  Google Scholar 

  3. De Luca A, Dhama R, Rashed AR, Coutant C, Ravaine S, Barois P, Infusino M, Strangi G (2014) Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores. Appl Phys Lett 104:103103

    Article  ADS  Google Scholar 

  4. Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

    Article  ADS  Google Scholar 

  5. Noginov MA, Podolskiy VA, Zhu G, Mayy M, Bahoura M, Adegoke JA, Ritzo BA, Reynolds K (2008) Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt Exp 16:1385

    Article  ADS  Google Scholar 

  6. Krishna KH, Sreekanth KV, Strangi G (2016) Dye-embedded and nanopatterned hyperbolic metamaterials for spontaneous emission rate enhancement. J Opt Soc Am B 33:1038

    Article  ADS  Google Scholar 

  7. Campione S, Albani M, Capolino F (2011) Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain. Opt Mater Exp 1:1077

    Article  ADS  Google Scholar 

  8. Strangi G, De Luca A, Ravaine S, Ferrie M, Bartolino R (2011) Gain induced optical transparency in metamaterials. Appl Phys Lett 98:251912

    Article  ADS  Google Scholar 

  9. De Leon I, Berini P (2010) Amplification of long-range surface plasmons by a dipolar gain medium. Nat Photon 4:382–387

    Article  ADS  Google Scholar 

  10. Caligiuri V, Pezzi L, Veltri A, De Luca A (2017) Resonant gain singularities in 1D and 3D metal-dielectric multilayered nanostructures. ACS Nano 11:1012–1025

    Article  Google Scholar 

  11. Lawandy NM (2004) Localized surface plasmon singularities in amplifying media. Appl Phys Lett 85:5040–5042

    Article  ADS  Google Scholar 

  12. Caligiuri V, Lento R, Ricciardi L, Termine R, La Deda M, Siprova S, Golemme A, De Luca A (2018) Environmental control of the topological transition in metal/photoemissive-blend metamaterials. Adv Opt Mater 6:1–8

    Article  Google Scholar 

  13. Gherardi F, Colombo A, D’Arienzo M, Di Credico B, Goidanich S, Morazzoni F, Simonutti R, Toniolo L (2016) Efficient self-cleaning treatments for built heritage based on highly photo-active and well-dispersible TiO2 nanocrystals. Microchem J 126:54–62

    Article  Google Scholar 

  14. Kumar SK, Jouault N, Benicewicz B, Neely T (2013) Nanocomposites with polymer grafted nanoparticles. Macromolecules 46:3199–3214

    Article  ADS  Google Scholar 

  15. Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L (2018) Benzoyl halides as alternative precursors for the colloidal synthesis of lead based halide perovskite nanocrystals. J Am Chem Soc 140:2656–2664

    Article  Google Scholar 

  16. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  ADS  Google Scholar 

  17. Grim JQ, Christodoulou S, Di Stasio F, Krahne R, Cingolani R, Manna L, Moreels I (2014) Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat Nanotechnol 9:891–895

    Article  ADS  Google Scholar 

  18. Noginov MA, Li H, Barnakov YA, Dryden D, Nataraj G, Zhu G, Bonner CE, Mayy M, Jacob Z, Narimanov EE (2010) Controlling spontaneous emission with metamaterials. Opt Lett 35:1863

    Article  ADS  Google Scholar 

  19. Majumdar A, Xu X (2015) Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520:69–72

    Article  ADS  Google Scholar 

  20. Sreekanth KV, Krishna KH, De Luca A, Strangi G (2014) Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Sci Rep 4:6340

    Article  Google Scholar 

  21. Siegman EA (1986) Lasers, Mill Valley, Calif. University Science Books

    Google Scholar 

  22. Lu D, Liu Z (2012) Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3:1205

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekanth K. V. .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

K. V., S., ElKabbash, M., Caligiuri, V., Singh, R., De Luca, A., Strangi, G. (2019). Resonant Gain Singularities in Hyperbolic Metamaterials. In: New Directions in Thin Film Nanophotonics. Progress in Optical Science and Photonics, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-13-8891-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8891-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8890-3

  • Online ISBN: 978-981-13-8891-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics