Skip to main content

Phase Change Material-Based Nanophotonic Cavities for Reconfigurable Photonic Device Applications

  • Chapter
  • First Online:

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 6))

Abstract

The discovery of the interesting optical properties of phase change materials (PCM) may open the door for photonic data storage again. These materials modify their optical constants which can be rapidly activated thermally, optically, or electronically. In this chapter, we discuss the optical properties of phase change material such as Sb2S3 and Ge2Sb2Te5 for visible and near infrared (NIR) photonics applications. In particular, we demonstrate PCM-based planar nanophotonic cavities for realizing tunable color filters, tunable wide-angle perfect absorption and tunable phase singularity, and Goos-Hänchen shift.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wuttig M, Bhaskaran H, Taubner T (2017) Phase-change materials for non-volatile photonic applications. Nat Photon 11:465–476

    Article  Google Scholar 

  2. Qian W, Rogers ETF, Gholipour B, Yuan G, Teng J, Zheludev NI (2016) Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photon 10:60

    Article  ADS  Google Scholar 

  3. Zhu Z, Evans PG, Haglund RF Jr, Valentine JG (2017) Dynamically reconfigurable metadevice employing nanostructured phase-change material. Nano Lett 17:4881–4885

    Article  ADS  Google Scholar 

  4. Hosseini P, Wright CD, Bhaskaran H (2014) An optoelectronic framework enabled by low-dimensional phase change films. Nature 511:206

    Article  ADS  Google Scholar 

  5. Yoo S, Gwon T, Eom T, Kim S, Hwang CS (2016) Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film. ACS Photonics 3:1265

    Article  Google Scholar 

  6. Dong W, Qiu Y, Yang J, Simpson RE, Cao T (2016) Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. J Phys Chem C 120:12713

    Article  Google Scholar 

  7. Dong W, Qiu Y, Zhou X, Banas K, Breese MBH, Cao T, Simpson RE (2018) Tunable mid-infrred phase change metasurface. Adv Opt Mater 6:1701346

    Article  Google Scholar 

  8. Dong W, Liu H, Behera JK, Lu L, Ng RJH, Sreekanth KV, Zhou X, Yang JKW, Simpson RE (2019) Wide bandgap phase change material tuned visible photonics. Adv Funct Mater 29:1806181

    Article  Google Scholar 

  9. Arun P, Vedeshwar A (1997) Effect of heat treatment on the optical properties of amorphous Sb2S3 film: the possibility of optical storage. J Non-Cryst Solids 220:63

    Article  ADS  Google Scholar 

  10. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517

    Article  ADS  Google Scholar 

  11. Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, García Javier, de Abajo F, Nordlande P, Zhu X, Halas NJ (2014) Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett 14:299–304

    Article  ADS  Google Scholar 

  12. Kats MA, Blanchard R, Genevet P, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F (2013) Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett 38:368–370

    Article  ADS  Google Scholar 

  13. Pradhan JK, Ramakrishna SA, Rajeswaran B, Umarji AM, Achanta VG, Agarwal AK, Ghosh A (2017) High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane. Opt Exp 25:9116

    Article  ADS  Google Scholar 

  14. Su Z, Yin J, Zhao X (2015) Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption. Sci Rep 5:16698

    Article  ADS  Google Scholar 

  15. Rensberg J, Zhou Y, Richter S, Wan C, Zhang S, Schöppe P, Schmidt-Grund R, Ramanathan S, Capasso F, Kats MA, Ronning C (2017) Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers. Phys Rev Appl 8:014009

    Article  ADS  Google Scholar 

  16. Kats MA, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F (2012) Ultra-thin perfect absorber employing a tunable phase change material. Appl Phys Lett 101:221101

    Article  ADS  Google Scholar 

  17. Mkhitaryan VK, Ghosh DS, Rudé M, Canet-Ferrer J, Maniyara RA, Gopalan KK, Pruneri V (2017) Tunable complete optical absorption in multilayer structures including Ge2Sb2Te5 without lithographic patterns. Adv Opt Mater 5:1600452

    Article  Google Scholar 

  18. Sreekanth KV, Han S, Singh R (2018) Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies. Adv Mater 30:706696

    Article  Google Scholar 

  19. Goos F, Hanchen H (1947) Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann Phys 436:333–346

    Article  Google Scholar 

  20. Bliokh KY, Aiello A (2013) Goos-Hänchen and Imbert-Fedorov beam shifts: an overview. J Opt 15:014001

    Article  ADS  Google Scholar 

  21. Yang R, Zhu W, Li J (2014) Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance. Opt Exp 22:2043–2050

    Article  ADS  Google Scholar 

  22. Pfleghaar E, Marseille A, Weis A (1993) Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift. Phys Rev Lett 70:2281

    Article  ADS  Google Scholar 

  23. Berman PR (2002) Goos-Hänchen shift in negatively refractive media. Phys Rev E 66:067603

    Article  ADS  Google Scholar 

  24. Luo L, Tang T (2016) Goos-Hänchen effect in Kretschmann configuration with hyperbolic metamaterials. Superlattices Microstruct 94:85–92

    Article  ADS  Google Scholar 

  25. Liu X, Cao Z, Zhu P, Shen Q, Liu X (2006) Large positive and negative lateral optical beam shift in prism-waveguide coupling system. Phys Rev E 73:056617

    Article  ADS  Google Scholar 

  26. Schwefel HGL, Köhler W, Lu ZH, Fan J, Wang LJ (2008) Direct experimental observation of the single reflection optical Goos-Hänchen shift. Opt Lett 33:794

    Article  ADS  Google Scholar 

  27. Merano M, Aiello A, t’ Hooft GW, van Exter MP, Eliel ER, Woerdman JP (2007) Observation of Goos-Hänchen shifts in metallic reflection. Opt Exp 15:15928

    Google Scholar 

  28. Felbacq D (2003) Goos-Hänchen effect in the gaps of photonic crystals. Opt Lett 28:1633

    Article  ADS  Google Scholar 

  29. Yin X, Hesselink L (2006) Goos-Hänchen shift surface plasmon resonance sensor. Appl Phys Lett 89:261108

    Article  ADS  Google Scholar 

  30. Wan Y, Zheng Z, Kong W, Zhao X, Liu Y, Bian Y, Liu J (2012) Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave. Opt Exp 20:8998–9003

    Article  ADS  Google Scholar 

  31. Sreekanth KV, Ouyang Q, Han S, Yong KT, Singh R (2018) Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity. Appl Phys Lett 112:161109

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekanth K. V. .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

K. V., S., ElKabbash, M., Caligiuri, V., Singh, R., De Luca, A., Strangi, G. (2019). Phase Change Material-Based Nanophotonic Cavities for Reconfigurable Photonic Device Applications. In: New Directions in Thin Film Nanophotonics. Progress in Optical Science and Photonics, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-13-8891-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8891-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8890-3

  • Online ISBN: 978-981-13-8891-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics