Advertisement

Mesangial Cells and Renal Fibrosis

  • Jing-Hong ZhaoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

The main cellular constituents in glomerular mesangium are mesangial cells, which account for approximately 30–40% of the total cells in the glomerulus. Together with the mesangial matrix, mesangial cells form the glomerular basement membrane (GBM) in the glomerulus, whose main function is to perform the filtration. Under the pathologic conditions, mesangial cells are activated, leading to hyperproliferation and excess extracellular matrix (ECM). Moreover, mesangial cells also secrete several kinds of inflammatory cytokines, adhesion molecules, chemokines, and enzymes, all of which participate in the process of renal glomerular fibrosis. During the past years, researchers have revealed the roles of mesangial cells and the associated signal pathways involved in renal fibrosis. In this section, we will discuss how mesangial cells are activated and its contributions to renal fibrosis, as well as the molecular mechanisms and novel anti-fibrotic agents. Full understanding of the contributions of mesangial cells to renal fibrosis will benefit the clinical drug developing.

Keyword

Mesangial cell Glomerulosclerosis Renal fibrosis TGF-β 

References

  1. Alsaad KO, Herzenberg AM (2007) Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol 60:18–26PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andrews PM, Coffey AK (1983) Cytoplasmic contractile elements in glomerular cells. Fed Proc 42:3046–3052PubMedGoogle Scholar
  3. Banas B, Wörnle M, Berger T, Nelson PJ, Cohen CD, Kretzler M et al (2002) Roles of SLC/CCL21 and CCR3 in human kidney for mesangial proliferation, migration, apoptosis, and tissue homeostasis. J Immunol 168:4301–4307PubMedCrossRefGoogle Scholar
  4. Baricos WH, Cortez SL, Deboisblanc M, Xin S (1999) Transforming growth factor-β is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells. J Am Soc Nephrol 10:790–795PubMedGoogle Scholar
  5. Bidani AK, Mitchell KD, Schwartz MM, Navar LG, Lewis EJ (1990) Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model. Kidney Int 38:28–38PubMedCrossRefGoogle Scholar
  6. Browne JA, Liu X, Schnaper HW, Hayashida T (2013) Serine-204 in the linker region of Smad3 mediates the collagen-I response to TGF-β in a cell phenotype-specific manner. Exp Cell Res 319:2928–2937PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cattell V, Gaskin de Urdaneta A, Arlidge S, Collar JE, Roberts A, Smith J (1982) Uptake and clearance of ferritin by the glomerular mesangium. I. Phagocytosis by mesangial cells and blood monocytes. Lab Invest 47:296–303PubMedGoogle Scholar
  8. Chang HR, Yang SF, Li ML, Lin CC, Hsieh YS, Lian JD (2006) Relationships between circulating matrix metalloproteinase-2 and -9 and renal function in patients with chronic kidney disease. Clin Chim Acta 366:243–248PubMedCrossRefGoogle Scholar
  9. Chen S, Jim B, Ziyadeh FN (2003) Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol 23:532–543PubMedCrossRefGoogle Scholar
  10. Chuang CT, Guh JY, Lu CY, Chen HC, Chuang LY (2015) S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int J Mol Med 35:546–552PubMedCrossRefGoogle Scholar
  11. Chun P (2017) Therapeutic effects of histone deacetylase inhibitors on kidney disease. Arch Pharm Res 41:1–22Google Scholar
  12. Cooker LA, Peterson D, Rambow J, Riser ML, Riser RE, Najmabadi F et al (2007) TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis. Am J Physiol Renal Physiol 293:F157–F165PubMedCrossRefGoogle Scholar
  13. Coppo R, Amore A, Gianoglio B, Reyna A, Peruzzi L, Roccatello D et al (1993) Serum IgA and macromolecular IgA reacting with mesangial matrix components. Contrib Nephrol 104:162–171PubMedCrossRefGoogle Scholar
  14. Daehn I, Casalena G, Zhang T, Shi S, Fenninger F, Barasch N et al (2014) Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest 124:1608–1621PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dai Q, Liu J, Du YL, Hao X, Ying J, Tan Y et al (2016) Histone deacetylase inhibitors attenuate P-aIgA1-induced cell proliferation and extracellular matrix synthesis in human renal mesangial cells in vitro. Acta Pharmacol Sin 37:228–234PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG (2012) TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS ONE 7:e42316PubMedPubMedCentralCrossRefGoogle Scholar
  17. Diamond-Stanic MK, You YH, Sharma K (2012) Sugar, sex, and TGF-β in diabetic nephropathy. Semin Nephrol 32:261–268PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dorsam G, Taher MM, Valerie KC, Kuemmerle NB, Chan JC, Franson RC (2000) Diphenyleneiodium chloride blocks inflammatory cytokine-induced up-regulation of group IIA phospholipase A(2) in rat mesangial cells. J Pharmacol Exp Ther 292:271–279PubMedGoogle Scholar
  19. Eddy AA (1996) Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 7:2495–2508PubMedGoogle Scholar
  20. Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301PubMedCrossRefGoogle Scholar
  21. Eitner F, Westerhuis R, Burg M, Weinhold B, Gröne HJ, Ostendorf T et al (1997) Role of interleukin-6 in mediating mesangial cell proliferation and matrix production in vivo. Kidney Int 51:69–78PubMedCrossRefGoogle Scholar
  22. Elema JD, Hoyer JR, Vernier RL (1976) The glomerular mesangium: uptake and transport of intravenously injected colloidal carbon in rats. Kidney Int 9:395–406PubMedCrossRefGoogle Scholar
  23. Eremina V, Cui S, Gerber H, Ferrara N, Haigh J, Nagy A et al (2006) Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol 17:724–735PubMedCrossRefGoogle Scholar
  24. Fine LG, Hammerman MR, Abboud HE (1992) Evolving role of growth factors in the renal response to acute and chronic disease. J Am Soc Nephrol 2:1163–1170PubMedGoogle Scholar
  25. Floege J, van Roeyen C, Boor P, Ostendorf T (2007) The role of PDGF-D in mesangioproliferative glomerulonephritis. Contrib Nephrol 157:153–158PubMedGoogle Scholar
  26. Fogo AB (1999) Mesangial matrix modulation and glomerulosclerosis. Exp Nephrol 7:147–159PubMedCrossRefGoogle Scholar
  27. Gewin LS (2018) Renal tubule repair: is Wnt/β-catenin a friend or foe? Genes (Basel) 9:58CrossRefGoogle Scholar
  28. Ghosh-Choudhury G, Abboud HE (2004) Tyrosine phosphorylation-dependent PI 3 kinase/Akt signal transduction regulates TGFbeta-induced fibronectin expression in mesangial cells. Cell Sig 16:31–41CrossRefGoogle Scholar
  29. Gilbert RE, Huang Q, Thai K, Advani SL, Lee K, Yuen DA et al (2011) Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor. Kidney Int 79:1312–1321PubMedCrossRefGoogle Scholar
  30. Gong W, Li J, Chen Z, Huang J, Chen Q, Cai W et al (2017) Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating CKIP-1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys. Free Radic Biol Med 106:393–405PubMedCrossRefGoogle Scholar
  31. Guo W, Tian D, Jia Y, Huang W, Jiang M, Wang J et al (2018) MDM2 controls NRF2 antioxidant activity in prevention of diabetic kidney disease. Biochim Biophys Acta Mol Cell Res 1865:1034–1045PubMedCrossRefGoogle Scholar
  32. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224PubMedCrossRefGoogle Scholar
  33. Hewitson TD (2009) Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Renal Physiol 296:F1239–F1244PubMedCrossRefGoogle Scholar
  34. Hewitson TD, Becker GJ (1995) Interstitial myofibroblasts in IgA glomerulonephritis. Am J Nephrol 15:111–117PubMedCrossRefGoogle Scholar
  35. Ho C, Hsu YC, Lei CC, Mau SC, Shih YH, Lin CL (2016) Curcumin rescues diabetic renal fibrosis by targeting superoxide-mediated Wnt signaling pathways. Am J Med Sci 351:286–295PubMedCrossRefGoogle Scholar
  36. Hocevar BA, Prunier C, Howe PH (2005) Disabled-2 (Dab2) mediates transforming growth factor beta (TGFbeta)-stimulated fibronectin synthesis through TGFbeta-activated kinase 1 and activation of the JNK pathway. J Biol Chem 280:25920–25927PubMedCrossRefGoogle Scholar
  37. Hoffman BB, Sharma K, Ziyadeh FN (1998) Potential role of TGF-β in diabetic nephropathy. Miner Electrolyte Metab 24:190–196PubMedCrossRefGoogle Scholar
  38. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241:F85–F93PubMedGoogle Scholar
  39. Howe EN, Cochrane DR, Richer JK (2012) The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia 17:65–77PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hsu YC, Chang PJ, Ho C, Huang YT, Shih YH, Wang CJ et al (2016) Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling. Sci Rep 6:30575PubMedPubMedCentralCrossRefGoogle Scholar
  41. Huang K, Huang J, Xie X, Wang S, Chen C, Shen X et al (2013) Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic Biol Med 65:528–540PubMedCrossRefGoogle Scholar
  42. Hubchak SC, Sparks EE, Hayashida T, Schnaper HW (2009) Rac1 promotes TGF-beta-stimulated mesangial cell type I collagen expression through a PI3K/Akt-dependent mechanism. Am J Physiol Renal Physiol 297:F1316–F1323PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ichikawa I, Ma J, Motojima M, Matsusaka T (2005) Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr Opin Nephrol Hypertens 14:205–210PubMedCrossRefGoogle Scholar
  44. Ji X, Li C, Ou Y, Li N, Yuan K, Yang G et al (2016) Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway. Mol Cell Endocrinol 437:268–279PubMedCrossRefGoogle Scholar
  45. Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, Zhang DD (1998) The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59:850–860CrossRefGoogle Scholar
  46. Johnson RJ, Floege J, Yoshimura A, Iida H, Couser WG, Alpers CE (1992) The activated mesangial cell: a glomerular “myofibroblast”? J Am Soc Nephrol 2:S190–S197PubMedGoogle Scholar
  47. Johnston WH, Latta H (1977) Glomerular mesangial and endothelial cell swelling following temporary renal ischemia and its role in the no-reflow phenomenon. Am J Pathol 89:153–166PubMedPubMedCentralGoogle Scholar
  48. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104:3432–3437PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R (2011) A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int 80:358–368PubMedPubMedCentralCrossRefGoogle Scholar
  50. Keane WF, Raij L (1981) Determinants of glomerular mesangial localization of immune complexes. Role of endothelial fenestrae. Lab Invest 45:366–371PubMedGoogle Scholar
  51. Kim SI, Kwak JH, Zachariah M, He Y, Wang L, Choi ME (2007) TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am J Physiol Renal Physiol 292:F1471–F1478PubMedCrossRefGoogle Scholar
  52. Kishida M, Urakaze M, Takata M, Nobata Y, Yamamoto N, Temaru R et al (2005) PGE1 inhibits the expression of PAI-1 mRNA induced by TNF-alpha in human mesangial cells. Exp Clin Endocrinol Diabetes 113:365–371PubMedCrossRefGoogle Scholar
  53. Kölling M, Kaucsar T, Schauerte C, Hübner A, Dettling A, Park JK et al (2017) Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol Ther 25:165–180PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kriz W, Elger M, Lemley K, Sakai T (1990) Structure of the glomerular mesangium: a biomechanical interpretation. Kidney Int Suppl 30:S2–S9PubMedGoogle Scholar
  55. Lan A, Du J (2014) Potential role of Akt signaling in chronic kidney disease. Nephrol Dial Transplant 30:385–394PubMedCrossRefGoogle Scholar
  56. Latta H (1970) The glomerular capillary wall. J Ultrastruct Res 32:526–544PubMedCrossRefGoogle Scholar
  57. Latta H, Fligiel S (1985) Mesangial fenestrations, sieving, filtration, and flow. Lab Invest 52:591–598PubMedGoogle Scholar
  58. Latta H, Johnston WH (1978) Granular and agranular cell counts in the juxtaglomerular apparatuses of rats with unilateral renovascular hypertension. Lab Invest 39:219–224PubMedGoogle Scholar
  59. Latta H, Lee TC (1983) Effects of excessive sodium chloride on the juxtaglomerular apparatus and blood pressure of uninephrectomized rats. Lab Invest 49:99–106PubMedGoogle Scholar
  60. Latta H, Maunsbach AB (1962) Relations of the centrolobular region of the glomerulus to the juxtaglomerular apparatus 1. J Ultrastruct Res 6:562–578PubMedCrossRefGoogle Scholar
  61. Latta H, Maunsbac AB, Madden SC (1960) The centrolobular region of the renal glomerulus studied by electron microscopy 1. J Ultrastruct Res 4:455–472PubMedCrossRefGoogle Scholar
  62. Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37:139–143PubMedGoogle Scholar
  63. Lee HS, Song CY (2009) Differential role of mesangial cells and podocytes in TGF-beta-induced mesangial matrix synthesis in chronic glomerular disease. Histol Histopathol 24:901–908PubMedGoogle Scholar
  64. Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J et al (1977) Uptake and transport of imposil by the glomerular mesangium in the mouse. Lab Invest 37:526–533Google Scholar
  65. Li W, Cui M, Wei Y, Kong X, Tang L, Xu D (2012) Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell Physiol Biochem 30:749–757PubMedCrossRefGoogle Scholar
  66. Li XY, Wang SS, Han Z, Han F, Chang YP, Yang Y et al (2017) Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Mol Ther Nucleic Acids 9:48–56PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liang Y, Zhang J, Zhou Y, Xing G, Zhao G, Liu Z (2015) Proliferation and cytokine production of human mesangial cells stimulated by secretory IgA isolated from patients with IgA nephropathy. Cell Physiol Biochem 36:1793–1808PubMedCrossRefGoogle Scholar
  68. Liang JS, Song WL, Yan Wu (2016a) The study on the molecular mechanism of endothelial cells in diabetic nephropathy. Chin J Diabetes 24:362Google Scholar
  69. Liang Y, Zhao G, Tang L, Zhang J, Li T, Liu Z (2016b) MiR-100-3p and miR-877-3p regulate overproduction of IL-8 and IL-1β in mesangial cells activated by secretory IgA from IgA nephropathy patients. Exp Cell Res 347:312–321PubMedCrossRefGoogle Scholar
  70. Lin X, Zha Y, Zeng XZ, Dong R, Wang QH, Wang DT (2017) Role of the Wnt/β-catenin signaling pathway in inducing apoptosis and renal fibrosis in 5/6-nephrectomized rats. Mol Med Rep 15:3575–3582PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lindenmeyer MT, Kretzler M, Boucherot A, Berra S, Yasuda Y, Henger A et al (2007) Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J Am Soc Nephrol 18:1765–1776PubMedCrossRefGoogle Scholar
  72. Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217PubMedCrossRefGoogle Scholar
  73. Liu J, Li Y, Liu MD, Ren GW, Wang MM, Li YM, Cong B (2012) Effects of megsin gene transfection on the expressions of MCP-1 and ICAM-1 in mouse glomerular mesangial cells. Chin J Cell Mol Immunol 28:702–705Google Scholar
  74. Liu H, Zhang XP, Yi ZW (2013) Efficacy of antisense monocyte chemoattractant protein-1 (MCP-1) in a rat model of mesangial proliferative glomerulonephritis. Ren Fail 35:1418–1428PubMedCrossRefGoogle Scholar
  75. López-Hernández FJ, López-Novoa JM (2012) Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347:141–154PubMedCrossRefGoogle Scholar
  76. Ma FY, Flanc RS, Tesch GH, Bennett BL, Friedman GC, Nikolic-Paterson DJ (2009) Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Lab Invest 89:470–484PubMedCrossRefGoogle Scholar
  77. Mahimainathan L, Das F, Venkatesan B, Choudhury GG (2006) Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55:2115–2125PubMedCrossRefGoogle Scholar
  78. Makino H (1988) Three-dimensional ultrastructure of rat acellular glomerulus by scanning electron microscopy. J Electron Microsc (Tokyo) 37:294–304Google Scholar
  79. Mason RM, Wahab NA (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14:1358–1373PubMedCrossRefGoogle Scholar
  80. Massy ZA, Guijarro C, O’Donnell MP, Kim Y, Kashtan CE, Egido J et al (1999) The central role of nuclear factor-kappaB in mesangial cell activation. Kidney Int Suppl 71:S76–S79PubMedCrossRefGoogle Scholar
  81. Mathew A, Cunard R, Sharma K (2011) Antifibrotic treatment and other new strategies for improving renal outcomes. Contrib Nephrol 170:217–227PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest 74:1143–1155PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mené P, Simonson MS, Dunn MJ (1989) Physiology of the mesangial cell. Physiol Rev 69:1347–1424PubMedCrossRefGoogle Scholar
  84. Meng XM, Chung AC, Lan HY (2013) Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254CrossRefGoogle Scholar
  85. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338PubMedCrossRefGoogle Scholar
  86. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307PubMedCrossRefGoogle Scholar
  87. Michielsen P, Creemers J (1967) The structure and function of the glomerular mesangium. Ultrastruct Kidney 47:57–72CrossRefGoogle Scholar
  88. Miller PL, Rennke HG, Meyer TW (1991) Glomerular hypertrophy accelerates hypertensive glomerular injury in rats. Am J Physiol 261:459–465Google Scholar
  89. Min D, Lyons JG, Bonner J, Twigg SM, Yue DK, McLennan SV (2009) Mesangial cell-derived factors alter monocyte activation and function through inflammatory pathways: possible pathogenic role in diabetic nephropathy. Am J Physiol Renal Physiol 297:1229–1237CrossRefGoogle Scholar
  90. Mishra R, Leahy P, Simonson MS (2002) Gene expression profiling reveals role for EGF-family ligands in mesangial cell proliferation. Am J Physiol Renal Physiol 283:F1151–F1159PubMedCrossRefGoogle Scholar
  91. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 111:539–552PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mitchell D, Rodgers K, Hanly J, McMahon B, Brady HR, Martin F et al (2004) Lipoxins inhibit Akt/PKB activation and cell cycle progression in human mesangial cells. Am J Pathol 164:937–946PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nahman NS Jr, Leonhart KL, Cosio FG, Hebert CL (1992) Effects of high glucose on cellular proliferation and fibronectin production by cultured human mesangial cells. Kidney Int 41:396–402PubMedCrossRefGoogle Scholar
  94. Naito T, Masaki T, Nikolic-Paterson DJ, Tanji C, Yorioka N, Kohno N (2004) Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-beta1. Am J Physiol Renal Physiol 286:F278–F287PubMedCrossRefGoogle Scholar
  95. Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R et al (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635PubMedCrossRefGoogle Scholar
  96. Olivetti G, Anversa P, Rigamonti W, Vitali-Mazza L, Loud AV (1977) Morphometry of the renal corpuscle during normal postnatal growth and compensatory hypertrophy. A light microscope study. J Cell Biol 75:573–585PubMedCrossRefGoogle Scholar
  97. Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometry of the renal corpuscle during postnatal growth and compensatory hypertrophy. Kidney Int 17:438–454PubMedCrossRefGoogle Scholar
  98. Patel K, Harding P, Haney LB, Glass WF 2nd (2003) Regulation of the mesangial cell myofibroblast phenotype by actin polymerization. J Cell Physiol 195:435–445PubMedCrossRefGoogle Scholar
  99. Peng J, Dong Z (2012) Role changes of β-catenin in kidney injury and repair. Kidney Int 82:509–511PubMedCrossRefGoogle Scholar
  100. Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M et al (2001) Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276:19945–19953PubMedCrossRefGoogle Scholar
  101. Pillebout E, Nochy D (2010) Glomerulonephritis with IgA mesangial deposits. Nephrol Ther 6:545–557PubMedCrossRefGoogle Scholar
  102. Pugliese G, Pricci F, Pugliese F, Mene P, Lenti L, Andreani D et al (1994) Mechanisms of glucose-enhanced extracellular matrix accumulation in rat glomerular mesangial cells. Diabetes 43:478–490PubMedCrossRefGoogle Scholar
  103. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC 3rd (2008) From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57:1439–1445PubMedPubMedCentralCrossRefGoogle Scholar
  104. Radeke HH, Resch K (1992) The inflammatory function of renal glomerular mesangial cells and their interaction with the cellular immune system. Clin Investig 70:825–842PubMedCrossRefGoogle Scholar
  105. Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Invest 124:2333–2340PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rintala JM, Savikko J, Rintala SE, Palin N, Koskinen PK (2016) Epidermal growth factor receptor inhibition with erlotinib ameliorates anti-Thy 1.1-induced experimental glomerulonephritis. J Nephrol 29:359–365PubMedCrossRefGoogle Scholar
  107. Ruef C, Kashgarian M, Coleman DL (1992) Mesangial cell-matrix interactions. Effects on mesangial cell growth and cytokine secretion. Am J Pathol 141:429–439PubMedPubMedCentralGoogle Scholar
  108. Sakai T, Kriz W (1987) The structural relationship between mesangial cells and basement membrane of the renal glomerulus. Anat Embryol (Berl) 176:373–386CrossRefGoogle Scholar
  109. Samarakoon R, Dobberfuhl AD, Cooley C, Overstreet JM, Patel S, Goldschmeding R et al (2013) Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cell Sig 25:2198–2209CrossRefGoogle Scholar
  110. Santini E, Lupi R, Baldi S, Madec S, Chimenti D, Ferrannini E et al (2008) Effects of different LDL particles on inflammatory molecules in human mesangial cells. Diabetologia 51:2117–2125PubMedCrossRefGoogle Scholar
  111. Schmekel B, Svalander C, Bucht H, Westberg NG (2010) Mesangial IgA glomerulonephritis in adults. Clinical and histopathological observations. Acta Med Scand 210:363–372CrossRefGoogle Scholar
  112. Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003) TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 284:F243–F252PubMedCrossRefGoogle Scholar
  113. Sheng L, Yang M, Ding W, Zhang M, Niu J, Qiao Z et al (2016) Epidermal growth factor receptor signaling mediates aldosterone-induced pro-fibrotic responses in kidney. Exp Cell Res 346:99–110PubMedCrossRefGoogle Scholar
  114. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700PubMedCrossRefGoogle Scholar
  115. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G et al (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169PubMedPubMedCentralCrossRefGoogle Scholar
  116. Shirato I, Hosser H, Kimura K, Sakai T, Tomino Y, Kriz W (1996) The development of focal segmental glomerulosclerosis in masugi nephritis is based on progressive podocyte damage. Virchows Arch 429:255–273PubMedGoogle Scholar
  117. Shultz PJ, DiCorleto PE, Silver BJ, Abboud HE (1988) Mesangial cells express PDGF mRNAs and proliferate in response to PDGF. Am J Physiol 255:674–684CrossRefGoogle Scholar
  118. Silva FG, Eigenbrodt EH, Glass M, Taft E (1986) An ultrastructural study of the renal juxtaglomerular apparatus and extraglomerular mesangium in patients with systemic lupus erythematosus. Am J Kidney Dis 7:47–57PubMedCrossRefGoogle Scholar
  119. Simonson MS (2007) Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int 71:846–854PubMedCrossRefGoogle Scholar
  120. Throckmorton DC, Brogden AP, Min B, Rasmussen H, Kashgarian M (1995) PDGF and TGF-beta mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 48:111–117PubMedCrossRefGoogle Scholar
  121. Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M (2007) Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 56:2155–2160PubMedCrossRefGoogle Scholar
  122. Uguccioni M, D’Apuzzo M, Loetscher M, Dewald B, Baggiolini M (2010) Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1α and MIP-1β on human monocytes. Eur J Immunol 25:64–68CrossRefGoogle Scholar
  123. Uttarwar L, Peng F, Wu D, Kumar S, Gao B, Ingram AJ et al (2011) HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells. Am J Physiol Renal Physiol 300:F921–F931PubMedCrossRefGoogle Scholar
  124. Van Beneden K, Geers C, Pauwels M, Mannaerts I, Wissing KM, Van den Branden C et al (2013) Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis. Toxicol Appl Pharmacol 271:276–284PubMedCrossRefGoogle Scholar
  125. Wang M, Wang S, Yao D, Yan Q, Lu W (2016a) A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy. Mol Cell Endocrinol 426:136–145PubMedCrossRefGoogle Scholar
  126. Wang M, Yao D, Wang S, Yan Q, Lu W (2016b) Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy. Endocrine 54:1–12CrossRefGoogle Scholar
  127. Wang S, Yang Z, Xiong F, Chen C, Chao X, Huang J et al (2016c) Betulinic acid ameliorates experimental diabetic-induced renal inflammation and fibrosis via inhibiting the activation of NF-κB signaling pathway. Mol Cell Endocrinol 434:135–143PubMedCrossRefGoogle Scholar
  128. Wanner N, Bechtel-Walz W (2017) Epigenetics of kidney disease. Cell Tissue Res 369:75–92PubMedCrossRefGoogle Scholar
  129. Wendt TM, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y et al (2003) RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 162:1123–1137PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE et al (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16:2941–2952PubMedCrossRefGoogle Scholar
  131. Wiggins JE, Goyal M, Sanden SK, Wharram BL, Shedden KA, Misek DE et al (2005) Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol 16:2953–2966PubMedCrossRefGoogle Scholar
  132. Wu L, Wang Q, Guo F, Ma X, Ji H, Liu F et al (2016) MicroRNA-27a induces mesangial cell injury by targeting of PPARγ, and its in vivo knockdown prevents progression of diabetic nephropathy. Sci Rep 6:26072PubMedPubMedCentralCrossRefGoogle Scholar
  133. Xiao L, Wang M, Yang S, Liu F, Sun L (2013) A glimpse of the pathogenetic mechanisms of Wnt/β-catenin signaling in diabetic nephropathy. Biomed Res Int 2013:987064PubMedPubMedCentralGoogle Scholar
  134. Xie X, Chang X, Chen L, Huang K, Huang J, Wang S et al (2013) Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling. Mol Cell Endocrinol 381:56–65PubMedCrossRefGoogle Scholar
  135. Xiong F, Li X, Yang Z, Wang Y, Gong W, Huang J et al (2016) TGR5 suppresses high glucose-induced upregulation of fibronectin and transforming growth factor-β1 in rat glomerular mesangial cells by inhibiting RhoA/ROCK signaling. Endocrine 54:657–670PubMedCrossRefGoogle Scholar
  136. Xu Z, Jia Q, Li H, Wang J, Zhao Y, Chen S et al (2013) Effects of parthenolide on high glucose-induced cell proliferation, NF-κB activation and MCP-1 expression in rat mesangial cells. Nan fang yi ke da xue xue bao 33:1471–1473PubMedGoogle Scholar
  137. Xu ZJ, Shu S, Li ZJ, Liu YM, Zhang RY, Zhang Y (2017) Liuwei Dihuang pill treats diabetic nephropathy in rats by inhibiting of TGF-β/SMADS, MAPK, and NF-kB and upregulating expression of cytoglobin in renal tissues. Medicine (Baltimore) 96:e5879CrossRefGoogle Scholar
  138. Yamamoto Y, Iyoda M, Tachibana S, Matsumoto K, Wada Y, Suzuki T et al (2018) Erlotinib attenuates the progression of chronic kidney disease in rats with remnant kidney. Nephrol Dial Transplant 33:598–606PubMedCrossRefGoogle Scholar
  139. Yang X, Wang Y, Gao G (2016) High glucose induces rat mesangial cells proliferation and MCP-1 expression via ROS-mediated activation of NF-κB pathway, which is inhibited by eleutheroside E. J Recept Sig Transduct Res 36:152–157CrossRefGoogle Scholar
  140. Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD et al (2017) LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis 8:e2583PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yoshida Y, Fogo A, Ichikawa I (1989) Glomerular hemodynamic changes vs. hypertrophy in experimental glomerular sclerosis. Kidney Int 35:654–660PubMedCrossRefGoogle Scholar
  142. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z et al (2011) Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrol Dial Transplant 26:2119–2126PubMedCrossRefGoogle Scholar
  143. Yuan Y, Fan Q, Du SY, Yuan F, Xu L, Li L et al (2017) Effect of ursolic acid on hypertrophy and proliferation of renal glomerular mesangial cells and extracellular matrix production accumulation induced by high glucose. Chin J Clin Pharmacol 33:2158Google Scholar
  144. Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19:128–139PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zhang L, Pang S, Deng B, Qian L, Chen J, Zou J et al (2012) High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int J Biochem Cell Biol 44:629–638PubMedCrossRefGoogle Scholar
  146. Zhang M, Yan Z, Bu L, An C, Wang D, Liu X et al (2018) Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy. Drug Des Devel Ther 12:1255–1268PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H et al (2012) Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem 287:7026–7038PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhou X, Feng Y, Zhan Z, Chen J (2014) Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model. J Biol Chem 289:28827–28834PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhou J, Zhong J, Huang Z, Liao M, Lin S, Chen J et al (2018) TAK1 mediates apoptosis via p38 involve in ischemia-induced renal fibrosis. Artif Cells Nanomed Biotechnol 16:1–10Google Scholar
  150. Zlotnik A, Yoshie O (2000) Chemokines. Immunity 12:121–127PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Nephrology, Xinqiao HospitalArmy Medical UniversityChongqingChina

Personalised recommendations