Role of Endothelial Cells in Renal Fibrosis

  • Zhen Yang
  • Li-Jie He
  • Shi-Ren SunEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)


Renal fibrosis has been regarded as the common pathway of end-stage renal failure. Understanding the fundamental mechanism that leads to renal fibrosis is essential for developing better therapeutic options for chronic kidney diseases. So far, the main abstractions are on the injury of tubular epithelial cells, activation of interstitial cells, expression of chemotactic factor and adhesion molecule, infiltration of inflammatory cells and homeostasis of ECM. However, emerging studies revealed that endothelial cells (ECs) might happen to endothelial-to-mesenchymal transition (EndMT) dependent and/or independent endothelial dysfunction, which were supposed to accelerate renal fibrosis and are identified as new mechanisms for the proliferation of myofibroblasts as well. In this chapter, we are about to interpret the role of ECs in renal fibrosis and analyze the related molecules and pathways of both EndMT and EndMT independent endothelial dysfunction.


Endothelial cell Renal fibrosis EndMT Endothelial dysfunction 



This work is supported by NSFC (No: 81670655, 81600520).

Conflict of Interest The authors have no conflict of interest to disclose.


  1. Arfian N, Muflikhah K, Soeyono SK, Sari DC, Tranggono U, Anggorowati N et al (2016) Vitamin d attenuates kidney fibrosis via reducing fibroblast expansion, inflammation, and epithelial cell apoptosis. Kobe J Med Sci 62:E38–E44PubMedPubMedCentralGoogle Scholar
  2. Basile DP (2004) Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens 13:1–7PubMedCrossRefGoogle Scholar
  3. Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156PubMedCrossRefGoogle Scholar
  4. Basile DP, Collett JA, Yoder MC (2018) Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 222(2):e12914CrossRefGoogle Scholar
  5. Bernatova I, Andriantsitohaina R, Arribas SM, Matchkov VV (2014) Endothelium in diseased states. Biomed Res Int 2014:810436PubMedPubMedCentralGoogle Scholar
  6. Bishop B, Aricescu AR, Harlos K, O’Callaghan CA, Jones EY, Siebold C (2009) Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein hhip. Nat Struct Mol Biol 16:698–703PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boesen EI, Crislip GR, Sullivan JC (2012) Use of ultrasound to assess renal reperfusion and p-selectin expression following unilateral renal ischemia. Am J Physiol Renal Physiol 303:F1333–F1340PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bosanac I, Maun HR, Scales SJ, Wen X, Lingel A, Bazan JF et al (2009) The structure of SHH in complex with HHIP reveals a recognition role for the SHH pseudo active site in signaling. Nat Struct Mol Biol 16:691–697PubMedCrossRefGoogle Scholar
  9. Bussolati B, David S, Cambi V, Tobias PS, Camussi G (2002) Urinary soluble CD14 mediates human proximal tubular epithelial cell injury induced by LPS. Int J Mol Med 10:441–449PubMedGoogle Scholar
  10. Carew RM, Wang B, Kantharidis P (2012) The role of EMT in renal fibrosis. Cell Tissue Res 347:103–116PubMedCrossRefPubMedCentralGoogle Scholar
  11. Castellano G, Stasi A, Intini A, Gigante M, Di Palma AM, Divella C et al (2014) Endothelial dysfunction and renal fibrosis in endotoxemia-induced oliguric kidney injury: possible role of LPS-binding protein. Crit Care 18:520PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen IC, Chiang WF, Chen PF, Chiang HC (2014) Stress-responsive deacetylase SIRT3 is up-regulated by areca nut extract-induced oxidative stress in human oral keratinocytes. J Cell Biochem 115:328–339PubMedCrossRefGoogle Scholar
  13. Chen CL, Chou KJ, Fang HC, Hsu CY, Huang WC, Huang CW et al (2015) Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition. Stem Cell Res Ther 6:239PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chisalita SI, Arnqvist HJ (2004) Insulin-like growth factor i receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab 286:E896–E901PubMedCrossRefGoogle Scholar
  15. Cho MH (2010) Renal fibrosis. Korean J Pediatr 53:735–740PubMedPubMedCentralCrossRefGoogle Scholar
  16. Choi SH, Chun SY, Chae SY, Kim JR, Oh SH, Chung SK et al (2015) Development of a porcine renal extracellular matrix scaffold as a platform for kidney regeneration. J Biomed Mater Res A 103:1391–1403PubMedCrossRefGoogle Scholar
  17. Chuang PT, McMahon AP (1999) Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature 397:617–621PubMedCrossRefPubMedCentralGoogle Scholar
  18. Collett JA, Mehrotra P, Crone A, Shelley WC, Yoder MC, Basile DP (2017) Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am J Physiol Renal Physiol 312:F897–F907PubMedPubMedCentralCrossRefGoogle Scholar
  19. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P et al (2007) Prevalence of chronic kidney disease in the united states. JAMA 298:2038–2047PubMedCrossRefPubMedCentralGoogle Scholar
  20. Coulombe J, Traiffort E, Loulier K, Faure H, Ruat M (2004) Hedgehog interacting protein in the mature brain: membrane-associated and soluble forms. Mol Cell Neurosci 25:323–333PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cruz-Solbes AS, Youker K (2017) Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Results Probl Cell Differ 60:345–372PubMedCrossRefPubMedCentralGoogle Scholar
  22. Curci C, Castellano G, Stasi A, Divella C, Loverre A, Gigante M et al (2014) Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrol Dial Transplant 29:799–808PubMedCrossRefPubMedCentralGoogle Scholar
  23. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295PubMedCrossRefPubMedCentralGoogle Scholar
  24. Demirjian S, Lane BR, Derweesh IH, Takagi T, Fergany A, Campbell SC (2014) Chronic kidney disease due to surgical removal of nephrons: relative rates of progression and survival. J Urol 192:1057–1062PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R et al (2017) Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res 121:564–574PubMedPubMedCentralCrossRefGoogle Scholar
  26. Drawz P, Rahman M (2015) Chronic kidney disease. Ann Intern Med 162:Itc1–Itc16PubMedCrossRefPubMedCentralGoogle Scholar
  27. Du Y, Chen Q, Huang L, Wang S, Yin X, Zhou L et al (2018) VEGFR2 and VEGF-C suppresses the epithelial-mesenchymal transition via yap in retinal pigment epithelial cells. Curr Mol Med 18:273–286PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dunzendorfer S, Lee HK, Soldau K, Tobias PS (2004) Toll-like receptor 4 functions intracellularly in human coronary artery endothelial cells: roles of LBP and sCD14 in mediating lps responses. FASEB J 18:1117–1119PubMedCrossRefPubMedCentralGoogle Scholar
  29. Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (the Wiggers award lecture). Am J Physiol Heart Circ Physiol 291:H985–H1002PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ferrannini E, Solini A (2012) SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol 8:495–502PubMedCrossRefPubMedCentralGoogle Scholar
  31. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85:47–64PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fu J, Lee K, Chuang PY, Liu Z, He JC (2015) Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 308:F287–F297PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H et al (2003) Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun 305:1002–1007PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gammelager H, Christiansen CF, Johansen MB, Tonnesen E, Jespersen B, Sorensen HT (2014) Three-year risk of cardiovascular disease among intensive care patients with acute kidney injury: a population-based cohort study. Crit Care 18:492PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gimbrone MA Jr, Garcia-Cardena G (2013) Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 22:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  36. Guerrot D, Dussaule JC, Kavvadas P, Boffa JJ, Chadjichristos CE, Chatziantoniou C (2012) Progression of renal fibrosis: the underestimated role of endothelial alterations. Fibrogenesis Tissue Repair 5:S15PubMedPubMedCentralCrossRefGoogle Scholar
  37. Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921PubMedCrossRefPubMedCentralGoogle Scholar
  38. He J, Xu Y, Koya D, Kanasaki K (2013) Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol 17:488–497PubMedCrossRefPubMedCentralGoogle Scholar
  39. Holtz AM, Griffiths SC, Davis SJ, Bishop B, Siebold C, Allen BL (2015) Secreted HHIP1 interacts with heparan sulfate and regulates hedgehog ligand localization and function. J Cell Biol 209:739–757PubMedPubMedCentralCrossRefGoogle Scholar
  40. Horbelt M, Lee SY, Mang HE, Knipe NL, Sado Y, Kribben A et al (2007) Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 293:F688–F695PubMedCrossRefGoogle Scholar
  41. Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP et al (2010) Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension 55:1165–1171PubMedCrossRefPubMedCentralGoogle Scholar
  42. Iliescu R, Fernandez SR, Kelsen S, Maric C, Chade AR (2010) Role of renal microcirculation in experimental renovascular disease. Nephrol Dial Transplant 25:1079–1087PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ishikane S, Ohnishi S, Yamahara K, Sada M, Harada K, Mishima K et al (2008) Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells 26:2625–2633PubMedCrossRefPubMedCentralGoogle Scholar
  44. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C et al (1995) Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 91:1314–1319PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kang DH (2018) Hyperuricemia and progression of chronic kidney disease: role of phenotype transition of renal tubular and endothelial cells. Contrib Nephrol 192:48–55PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kang DH, Joly AH, Oh SW, Hugo C, Kerjaschki D, Gordon KL et al (2001) Impaired angiogenesis in the remnant kidney model: I Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 12:1434–1447PubMedPubMedCentralGoogle Scholar
  47. Kawasaki T, Nishiwaki T, Sekine A, Nishimura R, Suda R, Urushibara T et al (2015) Vascular repair by tissue-resident endothelial progenitor cells in endotoxin-induced lung injury. Am J Respir Cell MolBiol 53:500–512CrossRefGoogle Scholar
  48. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kretzschmar M, Massague J (1998) SMADs: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev 8:103–111PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kwong L, Bijlsma MF, Roelink H (2014) SHH-mediated degradation of HHIP allows cell autonomous and non-cell autonomous shhsignalling. Nat Commun 5:4849PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lee PT, Lin HH, Jiang ST, Lu PJ, Chou KJ, Fang HC et al (2010) Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury. Stem Cells 28:573–584PubMedPubMedCentralGoogle Scholar
  52. Li J, Qu X, Bertram JF (2009) Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 175:1380–1388PubMedPubMedCentralCrossRefGoogle Scholar
  53. Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y et al (2010) Blockade of endothelial-mesenchymal transition by a smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–2624PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lin JR, Zheng YJ, Zhang ZB, Shen WL, Li XD, Wei T et al (2018) Suppression of endothelial-to-mesenchymal transition by SIRT (sirtuin) 3 alleviated the development of hypertensive renal injury. Hypertension 72:350–360PubMedCrossRefPubMedCentralGoogle Scholar
  55. Lipphardt M, Dihazi H, Jeon NL, Dadafarin S, Ratliff BB, Rowe DW et al (2019) Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dial Transplant 34:49–62PubMedCrossRefPubMedCentralGoogle Scholar
  56. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696PubMedPubMedCentralCrossRefGoogle Scholar
  57. Liu Z, Huang XR, Lan HY (2012) Smad3 mediates ANG II-induced hypertensive kidney disease in mice. Am J Physiol Renal Physiol 302:F986–F997PubMedCrossRefPubMedCentralGoogle Scholar
  58. Liu S, Soong Y, Seshan SV, Szeto HH (2014) Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Renal Physiol 306:F970–F980PubMedCrossRefGoogle Scholar
  59. Loverre A, Ditonno P, Crovace A, Gesualdo L, Ranieri E, Pontrelli P et al (2004) Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J Am Soc Nephrol 15:2675–2686PubMedCrossRefPubMedCentralGoogle Scholar
  60. Markwald RR, Fitzharris TP, Smith WN (1975) Sturctural analysis of endocardial cytodifferentiation. DevBiol 42:160–180Google Scholar
  61. Martínezmiguel P, Valdivielso JM, Medranoandrés D, Romángarcía P, Canopeñalver JL, Rodríguezpuyol M et al (2014) The active form of vitamin d, calcitriol, induces a complex dual upregulation of endothelin and nitric oxide in cultured endothelial cells. Am J Physiol Endocrinol Metab 307:1085–1096CrossRefGoogle Scholar
  62. Matsuzaki K (2012) Smadphosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res 347:225–243PubMedCrossRefPubMedCentralGoogle Scholar
  63. Medici D, Kalluri R (2012) Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22:379–384PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mentzer SJ, Konerding MA (2014) Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 17:499–509PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mercado-Pimentel ME, Runyan RB (2007) Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185:146–156PubMedCrossRefPubMedCentralGoogle Scholar
  66. Molitoris BA (2014) Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 124:2355–2363PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mooren OL, Li J, Nawas J, Cooper JA (2014) Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell 25:4115–4129PubMedPubMedCentralCrossRefGoogle Scholar
  68. Munshi R, Hsu C, Himmelfarb J (2011) Advances in understanding ischemic acute kidney injury. BMC Med 9:11PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nakano D, Doi K, Kitamura H, Kuwabara T, Mori K, Mukoyama M et al (2015) Reduction of tubular flow rate as a mechanism of oliguria in the early phase of endotoxemia revealed by intravital imaging. J Am Soc Nephrol 26:3035–3044PubMedPubMedCentralCrossRefGoogle Scholar
  70. Newman JC, He W, Verdin E (2012) Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem 287:42436–42443PubMedPubMedCentralCrossRefGoogle Scholar
  71. O’Neill JD, Freytes DO, Anandappa AJ, Oliver JA, Vunjak-Novakovic GV (2013) The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials 34:9830–9841PubMedCrossRefGoogle Scholar
  72. Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP (2002) SIRT3, a human SIR2 homologue, is an nad-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA 99:13653–13658PubMedCrossRefPubMedCentralGoogle Scholar
  73. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277:39684–39695PubMedCrossRefPubMedCentralGoogle Scholar
  74. Paneni F, Beckman JA, Creager MA, Cosentino F (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34:2436–2443PubMedPubMedCentralCrossRefGoogle Scholar
  75. Persson PB (2015) The multiple functions of the endothelium: More than just wallpaper. Acta Physiol (Oxf) 213:747–749CrossRefGoogle Scholar
  76. Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M et al (2001) Functional characterization of transforming growth factor beta signaling in SMAD2- and SMAD3-deficient fibroblasts. J Biol Chem 276:19945–19953PubMedCrossRefGoogle Scholar
  77. Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pollak M (2000) Insulin-like growth factor physiology and cancer risk. Eur J Cancer 36:1224–1228PubMedCrossRefPubMedCentralGoogle Scholar
  79. Pushpakumar S, Kundu S, Narayanan N, Sen U (2015) DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney. FASEB J 29:4713–4725PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G et al (2013) The vascular endothelium and human diseases. Int J Biol Sci 9:1057–1069PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ramnath RD, Ng SW, Guglielmotti A, Bhatia M (2008) Role of MCP-1 in endotoxemia and sepsis. Int Immunopharmacol 8:810–818PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM et al (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179:2660–2673PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ronco C, Brendolan A, Dan M, Piccinni P, Bellomo R, De Nitti C et al (2000) Adsorption in sepsis. Kidney Int Suppl 76:S148–S155PubMedCrossRefPubMedCentralGoogle Scholar
  84. Sanchez-Duffhues G, Orlova V, Ten Dijke P (2016) In brief: endothelial-to-mesenchymal transition. J Pathol 238:378–380PubMedCrossRefGoogle Scholar
  85. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494PubMedPubMedCentralCrossRefGoogle Scholar
  86. Shen L, Evans IM, Souza D, Dreifaldt M, Dashwood MR, Vidya MA (2016) Adiponectin: an endothelium-derived vasoprotective factor? Curr Vasc Pharmacol 14:168–174PubMedCrossRefGoogle Scholar
  87. Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–1250PubMedCrossRefGoogle Scholar
  88. Shu DY, Wojciechowski M, Lovicu FJ (2018) Erk1/2-mediated EGFR-signaling is required for TGFbeta-induced lens epithelial-mesenchymal transition. Exp Eye Res 178:108–121PubMedCrossRefGoogle Scholar
  89. Singla S, Predescu D, Bardita C, Wang M, Zhang J, Balk RA et al (2011) Pro-inflammatory endothelial cell dysfunction is associated with intersectin-1s down-regulation. Respir Res 12:46PubMedPubMedCentralCrossRefGoogle Scholar
  90. Spoerri PE, Ellis EA, Tarnuzzer RW, Grant MB (1998) Insulin-like growth factor: receptor and binding proteins in human retinal endothelial cell cultures of diabetic and non-diabetic origin. Growth Horm IGF Res 8:125–132PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sun S, Ning X, Zhang Y, Lu Y, Nie Y, Han S et al (2009) Hypoxia-inducible factor-1alpha induces twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int 75:1278–1287PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sun YB, Qu X, Li X, Nikolic-Paterson DJ, Li J (2013) Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast smad3 linker phosphorylation in the mouse obstructed kidney. PLoS ONE 8:e84063PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sureka B, Mittal MK, Mittal A, Sinha M, Thukral BB (2014) Supernumerary kidneys—a rare anatomic variant. Surg Radiol Anat 36:199–202PubMedCrossRefGoogle Scholar
  94. Suzuki S, Arakawa M (1991) Age-related changes in the kidney of patients with mild mesangial proliferative glomerulonephritis. Nihon Ronen Igakkai Zasshi 28:311–317PubMedPubMedCentralGoogle Scholar
  95. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27PubMedCrossRefGoogle Scholar
  96. Thuillez C, Richard V (2005) Targeting endothelial dysfunction in hypertensive subjects. J Hum Hypertens 19(Suppl 1):S21–S25PubMedCrossRefPubMedCentralGoogle Scholar
  97. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635PubMedCrossRefPubMedCentralGoogle Scholar
  98. Wang A, Ziyadeh FN, Lee EY, Pyagay PE, Sung SH, Sheardown SA et al (2007) Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol 293:F1657–F1665PubMedCrossRefGoogle Scholar
  99. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yasuda K, Vasko R, Hayek P, Ratliff B, Bicer H, Mares J et al (2012) Functional consequences of inhibiting exocytosis of weibel-palade bodies in acute renal ischemia. Am J Physiol Renal Physiol 302:F713–F721PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zal F, Mostafavi-Pour Z, Moattari A, Sardarian A, Vessal M (2014) Altered expression of alpha 2 beta 1 integrin in kidney fibroblasts: a potential mechanism for CsA-induced nephrotoxicity. Arch Iran Med 17:556–562PubMedPubMedCentralGoogle Scholar
  102. Zarjou A, Agarwal A (2011) Sepsis and acute kidney injury. J Am SocNephrol 22:999–1006Google Scholar
  103. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang Y, Nakano D, Guan Y, Hitomi H, Uemura A, Masaki T et al (2018) A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int 94:524–535PubMedCrossRefPubMedCentralGoogle Scholar
  105. Zhao XP, Liao MC, Chang SY, Abdo S, Aliou Y, Chenier I et al (2014) Maternal diabetes modulates kidney formation in murine progeny: the role of hedgehog interacting protein (HHIP). Diabetologia 57:1986–1996PubMedCrossRefPubMedCentralGoogle Scholar
  106. Zhu R, Zheng R, Deng Y, Chen Y, Zhang S (2014) Ergosterol peroxide from cordyceps cicadae ameliorates TGF-beta1-induced activation of kidney fibroblasts. Phytomedicine 21:372–378PubMedCrossRefPubMedCentralGoogle Scholar
  107. Zimmerman CM, Padgett RW (2000) Transforming growth factor beta signaling mediators and modulators. Gene 249:17–30PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of NephrologyThe First Affiliated Hospital of Air Force Medical UniversityXi’anChina

Personalised recommendations