Advertisement

How Acute Kidney Injury Contributes to Renal Fibrosis

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Acute kidney injury (AKI) is a widespread clinical syndrome directly associated with patient short-term and long-term morbidity and mortality. During the last decade, the incidence rate of AKI has been increasing, the repeated and severe episodes of AKI have been recognized as a major risk factor chronic kidney diseases (CKD) and end-stage kidney disease (ESRD) leading to global disease burden. Proposed pathological processes and risk factors that add to the transition of AKI to CKD and ESRD include severity and frequency of kidney injury, older age, gender, genetics and chronic health conditions like diabetes, hypertension, and obesity. Therefore, there is a great interest in learning about the mechanism of AKI leading to renal fibrosis, the ultimate renal lesions of CKD. Over the last several years, a significant attention has been given to the field of renal fibrosis with impressive progression in knowing the mechanism of renal fibrosis to detailed cellular characterization and molecular pathways implicated in tubulointerstitial fibrosis. Research and clinical trial are underway for emerging biomarkers detecting early kidney injury, predicting kidney disease progression and developing strategies to efficiently treat AKI and to minimize AKI progression to CKD and ESRD. Specific interventions to prevent renal fibrosis are still experimental. Potential therapeutic advances based on those molecular mechanisms will hopefully offer promising insights into the development of new therapeutic interventions for patients in the near future.

Keywords

Acute kidney injury Fibrosis Maladaptive repair Proximal tubular cell Inflammation 

References

  1. Afsar B, Afsar RE, Dagel T, Kaya E, Erus S et al (2018) Capillary rarefaction from the kidney point of view. Clin Kidney J 11:295–301PubMedCrossRefGoogle Scholar
  2. Alge JL, Karakala N, Neely BA, Janech MG, Tumlin JA et al (2013a) Association of elevated urinary concentration of renin-angiotensin system components and severe AKI. Clin J Am Soc Nephrol 8:2043–2052PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alge JL, Karakala N, Neely BA, Janech MG, Velez JC et al (2013b) Urinary angiotensinogen predicts adverse outcomes among acute kidney injury patients in the intensive care unit. Crit Care 17:R69PubMedPubMedCentralCrossRefGoogle Scholar
  4. Al-Lamki RS, Mayadas TN (2015) TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int 87:281–296PubMedCrossRefGoogle Scholar
  5. Anders HJ (2016) Of inflammasomes and alarmins: IL-1beta and IL-1alpha in kidney disease. J Am Soc Nephrol 27:2564–2575PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aydin S, Yanar K, Atukeren P, Dalo E, Sitar ME et al (2012) Comparison of oxidative stress biomarkers in renal tissues of D-galactose induced, naturally aged and young rats. Biogerontology 13:251–260PubMedCrossRefGoogle Scholar
  7. Baek JH, Zeng R, Weinmann-Menke J, Valerius MT, Wada Y et al (2015) IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J Clin Invest 125:3198–3214PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ballermann BJ, Obeidat M (2014) Tipping the balance from angiogenesis to fibrosis in CKD. Kidney Int Suppl 4:45–52 (2011)CrossRefGoogle Scholar
  9. Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156PubMedCrossRefGoogle Scholar
  10. Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 294:F928–F936PubMedCrossRefGoogle Scholar
  11. Basile DP, Anderson MD, Sutton TA (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353PubMedPubMedCentralGoogle Scholar
  12. Baum J, Duffy HS (2011) Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol 57:376–379PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baylis C (1994) Age-dependent glomerular damage in the rat. Dissociation between glomerular injury and both glomerular hypertension and hypertrophy. Male gender as a primary risk factor. J Clin Invest 94:1823–1829PubMedPubMedCentralCrossRefGoogle Scholar
  14. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J et al (2017) Acute kidney injury in sepsis. Intensive Care Med 43:816–828PubMedCrossRefGoogle Scholar
  16. Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A et al (2010) Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 120:4040–4054PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S et al (2009) Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 4:337–344PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bonventre JV (2012) Can we target tubular damage to prevent renal function decline in diabetes? Semin Nephrol 32:452–462PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bonventre JV (2014) Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney Int Suppl 4:39–44 (2011)CrossRefGoogle Scholar
  20. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221PubMedPubMedCentralCrossRefGoogle Scholar
  21. Borges FT, Melo SA, Ozdemir BC, Kato N, Revuelta I et al (2013) TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392PubMedCrossRefPubMedCentralGoogle Scholar
  22. Canaud G, Bonventre JV (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30:575–583PubMedCrossRefGoogle Scholar
  23. Chang FC, Chou YH, Chen YT, Lin SL (2012) Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc 111:589–598PubMedCrossRefGoogle Scholar
  24. Chawla LS, Kimmel PL (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 82:516–524PubMedCrossRefGoogle Scholar
  25. Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE (2011) The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 79:1361–1369PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66PubMedCrossRefGoogle Scholar
  27. Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306:F367–F378PubMedCrossRefGoogle Scholar
  28. Chen L, Liu BC, Zhang XL, Zhang JD, Liu H, Li MX (2006) Influence of connective tissue growth factor antisense oligonucleotide on angiotensin II-induced epithelial mesenchymal transition in HK2 cells. Acta Pharmacol Sin 27:1029–1036PubMedCrossRefGoogle Scholar
  29. Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL et al (2011) Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 80:1170–1181PubMedCrossRefGoogle Scholar
  30. Chou YH, Huang TM, Chu TS (2017) Novel insights into acute kidney injury-chronic kidney disease continuum and the role of renin-angiotensin system. J Formos Med Assoc 116:652–659PubMedCrossRefGoogle Scholar
  31. Chung AC, Lan HY (2015) MicroRNAs in renal fibrosis. Front Physiol 6:50PubMedPubMedCentralCrossRefGoogle Scholar
  32. Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR (2009) Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 53:961–973PubMedPubMedCentralCrossRefGoogle Scholar
  33. Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448PubMedCrossRefGoogle Scholar
  34. Cruz-Solbes AS, Youker K (2017) Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Results Probl Cell Differ 60:345–372PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ding H, Zhou D, Hao S, Zhou L, He W et al (2012) Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 23:801–813PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipila P et al (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453PubMedPubMedCentralCrossRefGoogle Scholar
  37. Farris AB, Alpers CE (2014) What is the best way to measure renal fibrosis?: a pathologist’s perspective. Kidney Int Suppl 4:9–15 (2011)CrossRefGoogle Scholar
  38. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fine LG, Orphanides C, Norman JT (1998) Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl 65:S74–S78PubMedGoogle Scholar
  40. Fiorentino M, Grandaliano G, Gesualdo L, Castellano G (2018) Acute kidney injury to chronic kidney disease transition. Contrib Nephrol 193:45–54PubMedCrossRefGoogle Scholar
  41. Freedman BI, Volkova NV, Satko SG, Krisher J, Jurkovitz C et al (2005) Population-based screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol 25:529–535PubMedCrossRefGoogle Scholar
  42. Funk JA, Schnellmann RG (2012) Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Renal Physiol 302:F853–F864PubMedCrossRefGoogle Scholar
  43. Galvan DL, Green NH, Danesh FR (2017) The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92:1051–1057PubMedPubMedCentralCrossRefGoogle Scholar
  44. Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH et al (2012) Lysophosphatidic acid increases proximal tubule cell secretion of profibrotic cytokines PDGF-B and CTGF through LPA2- and Galphaq-mediated Rho and alphavbeta6 integrin-dependent activation of TGF-beta. Am J Pathol 181:1236–1249PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gerstung M, Roth T, Dienes HP, Licht C, Fries JW (2007) Endothelin-1 induces NF-kappaB via two independent pathways in human renal tubular epithelial cells. Am J Nephrol 27:294–300PubMedCrossRefGoogle Scholar
  46. Gewin L, Vadivelu S, Neelisetty S, Srichai MB, Paueksakon P et al (2012) Deleting the TGF-beta receptor attenuates acute proximal tubule injury. J Am Soc Nephrol 23:2001–2011PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gewin L, Zent R, Pozzi A (2017) Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 91:552–560PubMedCrossRefGoogle Scholar
  48. Go AS, Parikh CR, Ikizler TA, Coca S, Siew ED et al (2010) The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods. BMC Nephrol 11:22PubMedPubMedCentralCrossRefGoogle Scholar
  49. Goldstein SL, Jaber BL, Faubel S, Chawla LS, Acute Kidney Injury Advisory Group of American Society of Nephrology (2013) AKI transition of care: a potential opportunity to detect and prevent CKD. Clin J Am Soc Nephrol 8:476–483PubMedCrossRefGoogle Scholar
  50. Gomez-Garre D, Largo R, Tejera N, Fortes J, Manzarbeitia F, Egido J (2001) Activation of NF-kappaB in tubular epithelial cells of rats with intense proteinuria: role of angiotensin II and endothelin-1. Hypertension 37:1171–1178PubMedCrossRefGoogle Scholar
  51. Goodarzi AA, Block WD, Lees-Miller SP (2003) The role of ATM and ATR in DNA damage-induced cell cycle control. Prog Cell Cycle Res 5:393–411PubMedGoogle Scholar
  52. Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A et al (2016) Erratum: Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 22:217PubMedCrossRefGoogle Scholar
  53. Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol 6:524–551PubMedPubMedCentralCrossRefGoogle Scholar
  54. Grynberg K, Ma FY, Nikolic-Paterson DJ (2017) The JNK signaling pathway in renal fibrosis. Front Physiol 8:829PubMedPubMedCentralCrossRefGoogle Scholar
  55. Haase VH (2012) Hypoxia-inducible factor signaling in the development of kidney fibrosis. Fibrogenesis Tissue Repair 5:S16PubMedPubMedCentralCrossRefGoogle Scholar
  56. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN et al (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57:1752–1761PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hall AM, Schuh CD (2016) Mitochondria as therapeutic targets in acute kidney injury. Curr Opin Nephrol Hypertens 25:355–362PubMedCrossRefGoogle Scholar
  58. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C et al (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298PubMedPubMedCentralCrossRefGoogle Scholar
  59. Heung M, Chawla LS (2014) Acute kidney injury: gateway to chronic kidney disease. Nephron Clin Pract 127:30–34PubMedCrossRefGoogle Scholar
  60. Hewitson TD, Boon WC, Simpson ER, Smith ER, Samuel CS (2016) Estrogens do not protect, but androgens exacerbate, collagen accumulation in the female mouse kidney after ureteric obstruction. Life Sci 158:130–136PubMedCrossRefGoogle Scholar
  61. Hewitson TD, Holt SG, Smith ER (2017) Progression of tubulointerstitial fibrosis and the chronic kidney disease phenotype—role of risk factors and epigenetics. Front Pharmacol 8:520PubMedPubMedCentralCrossRefGoogle Scholar
  62. Horbelt M, Lee SY, Mang HE, Knipe NL, Sado Y, Kribben A et al (2007) Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol 293:F688–F695PubMedCrossRefGoogle Scholar
  63. Hosohata K (2016) Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci 17:1826PubMedCentralCrossRefPubMedGoogle Scholar
  64. Hsu CY (2012) Yes, AKI truly leads to CKD. J Am Soc Nephrol 23:967–969PubMedCrossRefGoogle Scholar
  65. Huang XR, Chung AC, Wang XJ, Lai KN, Lan HY (2008) Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease. Am J Physiol Renal Physiol 295:F118–F127PubMedPubMedCentralCrossRefGoogle Scholar
  66. Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG (2015) GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 26:1334–1345PubMedCrossRefGoogle Scholar
  67. Hultstrom M, Becirovic-Agic M, Jonsson S (2018) Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 50:127–141PubMedCrossRefGoogle Scholar
  68. Humphreys BD, Xu F, Sabbisetti V, Grgic I, Movahedi Naini S et al (2013) Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 123:4023–4035PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA et al (2009) Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol 20:223–228PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kang DH, Anderson S, Kim YG, Mazzalli M, Suga S et al (2001) Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis 37:601–611PubMedCrossRefGoogle Scholar
  71. Kida Y, Tchao BN, Yamaguchi I (2014) Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease. Pediatr Nephrol 29:333–342PubMedCrossRefGoogle Scholar
  72. Kimura M, Asano M, Abe K, Miyazaki M, Suzuki T, Hishida A (2005) Role of atrophic changes in proximal tubular cells in the peritubular deposition of type IV collagen in a rat renal ablation model. Nephrol Dial Transplant 20:1559–1565PubMedCrossRefGoogle Scholar
  73. Kitching AR (2014) Dendritic cells in progressive renal disease: some answers, many questions. Nephrol Dial Transplant 29:2185–2193PubMedCrossRefGoogle Scholar
  74. Ko GJ, Grigoryev DN, Linfert D, Jang HR, Watkins T et al (2010) Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol 298:F1472–F1483PubMedCrossRefGoogle Scholar
  75. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287PubMedCrossRefGoogle Scholar
  76. Kok HM, Falke LL, Goldschmeding R, Nguyen TQ (2014) Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 10:700–711PubMedCrossRefGoogle Scholar
  77. Kokeny G, Nemeth Z, Godo M, Hamar P (2010) The Rowett rat strain is resistant to renal fibrosis. Nephrol Dial Transplant 25:1458–1462PubMedCrossRefGoogle Scholar
  78. Kramann R, Humphreys BD (2014) Kidney pericytes: roles in regeneration and fibrosis. Semin Nephrol 34:374–383PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S et al (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66PubMedCrossRefGoogle Scholar
  80. Kriz W, Kaissling B, Le Hir M (2011) Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 121:468–474PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196PubMedPubMedCentralCrossRefGoogle Scholar
  82. Le Clef N, Verhulst A, D’Haese PC, Vervaet BA (2016) Unilateral renal ischemia-reperfusion as a robust model for acute to chronic kidney injury in mice. PLoS ONE 11:e0152153PubMedPubMedCentralCrossRefGoogle Scholar
  83. LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  84. Leemans JC, Kors L, Anders HJ, Florquin S (2014) Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol 10:398–414PubMedCrossRefGoogle Scholar
  85. Leonard EC, Friedrich JL, Basile DP (2008) VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am J Physiol Renal Physiol 295:F1648–F1657PubMedPubMedCentralCrossRefGoogle Scholar
  86. Leung KC, Tonelli M, James MT (2013) Chronic kidney disease following acute kidney injury-risk and outcomes. Nat Rev Nephrol 9:77–85PubMedCrossRefGoogle Scholar
  87. Lewington AJ, Cerda J, Mehta RL (2013) Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int 84:457–467PubMedPubMedCentralCrossRefGoogle Scholar
  88. Li J, Qu X, Bertram JF (2009) Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 175:1380–1388PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12PubMedCrossRefGoogle Scholar
  90. Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222PubMedCrossRefGoogle Scholar
  91. Liu BC, Chen L, Sun J, Huang HQ, Ma KL, Liu H et al (2006) Connective tissue growth factor-mediated angiotensin II-induced hypertrophy of proximal tubular cells. Nephron Exp Nephrol 103:e16–e26PubMedCrossRefGoogle Scholar
  92. Liu S, Soong Y, Seshan SV, Szeto HH (2014) Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Renal Physiol 306:F970–F980PubMedCrossRefGoogle Scholar
  93. Liu M, Ning X, Li R, Yang Z, Yang X, Sun S et al (2017) Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 21:1248–1259PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lopez-Hernandez FJ, Lopez-Novoa JM (2012) Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347:141–154PubMedCrossRefGoogle Scholar
  95. Lorz C, Ortiz A, Justo P, Gonzalez-Cuadrado S, Duque N et al (2000) Proapoptotic Fas ligand is expressed by normal kidney tubular epithelium and injured glomeruli. J Am Soc Nephrol 11:1266–1277PubMedGoogle Scholar
  96. Lovisa S, Zeisberg M, Kalluri R (2016) Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol Metab 27:681–695PubMedCrossRefGoogle Scholar
  97. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128PubMedPubMedCentralCrossRefGoogle Scholar
  98. Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V et al (2016) Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J Am Soc Nephrol 27:781–790PubMedCrossRefGoogle Scholar
  99. Macconi D, Remuzzi G, Benigni A (2014) Key fibrogenic mediators: old players. Renin-angiotensin system. Kidney Int Suppl 4:58–64 (2011)CrossRefGoogle Scholar
  100. Machida Y, Kitamoto K, Izumi Y, Shiota M, Uchida J et al (2010) Renal fibrosis in murine obstructive nephropathy is attenuated by depletion of monocyte lineage, not dendritic cells. J Pharmacol Sci 114:464–473PubMedCrossRefGoogle Scholar
  101. Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87:297–307PubMedCrossRefPubMedCentralGoogle Scholar
  102. Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  103. Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG et al (2009) CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest 119:2330–2342PubMedPubMedCentralCrossRefGoogle Scholar
  104. Moonen L, D’Haese PC, Vervaet BA (2018) Epithelial cell cycle behaviour in the injured kidney. Int J Mol Sci 19:2038PubMedCentralCrossRefPubMedGoogle Scholar
  105. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969PubMedPubMedCentralCrossRefGoogle Scholar
  106. Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496PubMedCrossRefGoogle Scholar
  107. Murea M, Park JK, Sharma S, Kato H, Gruenwald A et al (2010) Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int 78:514–522PubMedCrossRefGoogle Scholar
  108. Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L (2018) Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 129:295–307PubMedCrossRefGoogle Scholar
  109. Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17PubMedCrossRefGoogle Scholar
  110. Nelson PJ, Rees AJ, Griffin MD, Hughes J, Kurts C, Duffield J (2012) The renal mononuclear phagocytic system. J Am Soc Nephrol 23:194–203PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomska E et al (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70:121–129PubMedCrossRefGoogle Scholar
  112. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. Vivo 31:1–22CrossRefGoogle Scholar
  113. Ohtomo S, Nangaku M, Izuhara Y, Takizawa S, Strihou C, Miyata T (2008) Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol Dial Transplant 23:1166–1172PubMedCrossRefGoogle Scholar
  114. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43:405–414PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rodrigues-Diez RR, Garcia-Redondo AB, Orejudo M, Rodrigues-Diez R, Briones AM et al (2015) The C-terminal module IV of connective tissue growth factor, through EGFR/Nox1 signaling, activates the NF-kappaB pathway and proinflammatory factors in vascular smooth muscle cells. Antioxid Redox Signal 22:29–47PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sanz AB, Sanchez-Nino MD, Ortiz A (2011) TWEAK, a multifunctional cytokine in kidney injury. Kidney Int 80:708–718PubMedCrossRefGoogle Scholar
  117. Sanz AB, Izquierdo MC, Sanchez-Nino MD, Ucero AC, Egido J et al (2014) TWEAK and the progression of renal disease: clinical translation. Nephrol Dial Transplant 29(Suppl 1):i54–i62PubMedPubMedCentralCrossRefGoogle Scholar
  118. Schmiedt CW, Brainard BM, Hinson W, Brown SA, Brown CA (2016) Unilateral renal ischemia as a model of acute kidney injury and renal fibrosis in cats. Vet Pathol 53:87–101PubMedCrossRefGoogle Scholar
  119. Schrijvers BF, Flyvbjerg A, Tilton RG, Rasch R, Lameire NH, De Vriese AS (2005) Pathophysiological role of vascular endothelial growth factor in the remnant kidney. Nephron Exp Nephrol 101:e9–e15PubMedCrossRefGoogle Scholar
  120. Sharfuddin AA, Molitoris BA (2011) Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 7:189–200PubMedCrossRefGoogle Scholar
  121. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM (2017) Cellular senescence in renal ageing and disease. Nat Rev Nephrol 13:77–89PubMedCrossRefGoogle Scholar
  122. Sun YB, Qu X, Caruana G, Li J (2016) The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation 92:102–107PubMedCrossRefPubMedCentralGoogle Scholar
  123. Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL (2013) Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis 61:430–439PubMedCrossRefGoogle Scholar
  124. Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y et al (2016) Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol 27:2393–2406PubMedCrossRefGoogle Scholar
  125. Tan RJ, Zhou D, Zhou L, Liu Y (2014) Wnt/beta-catenin signaling and kidney fibrosis. Kidney Int Suppl 4:84–90 (2011)CrossRefGoogle Scholar
  126. Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I et al (2005) Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int 68:2714–2725PubMedCrossRefGoogle Scholar
  127. Tang WW, Ulich TR, Lacey DL, Hill DC, Qi M et al (1996) Platelet-derived growth factor-BB induces renal tubulointerstitial myofibroblast formation and tubulointerstitial fibrosis. Am J Pathol 148:1169–1180PubMedPubMedCentralGoogle Scholar
  128. Tang Z, Lu B, Hatch E, Sacks SH, Sheerin NS (2009) C3a mediates epithelial-to-mesenchymal transition in proteinuric nephropathy. J Am Soc Nephrol 20:593–603PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tsai YC, Chiu YW, Tsai JC, Kuo HT, Lee SC et al (2014) Association of angiopoietin-2 with renal outcome in chronic kidney disease. PLoS ONE 9:e108862PubMedPubMedCentralCrossRefGoogle Scholar
  130. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK (2010) Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 298:F1078–F1094PubMedPubMedCentralCrossRefGoogle Scholar
  131. Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J, Sola A (2008) Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J Pathol 214:104–113PubMedCrossRefGoogle Scholar
  132. Wang S, Diao H, Guan Q, Cruikshank WW, Delovitch TL et al (2008) Decreased renal ischemia-reperfusion injury by IL-16 inactivation. Kidney Int 73:318–326PubMedCrossRefGoogle Scholar
  133. Wang Y, Chang J, Yao B, Niu A, Kelly E et al (2015) Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int 88:1274–1282PubMedPubMedCentralCrossRefGoogle Scholar
  134. Weisheit CK, Engel DR, Kurts C (2015) Dendritic cells and macrophages: sentinels in the kidney. Clin J Am Soc Nephrol 10:1841–1851PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wirthensohn G, Guder WG (1986) Renal substrate metabolism. Physiol Rev 66:469–497PubMedCrossRefGoogle Scholar
  136. Wolf G, Ziyadeh FN, Stahl RA (1999) Angiotensin II stimulates expression of transforming growth factor beta receptor type II in cultured mouse proximal tubular cells. J Mol Med (Berl) 77:556–564CrossRefGoogle Scholar
  137. Wong WK, Robertson H, Carroll HP, Ali S, Kirby JA (2003) Tubulitis in renal allograft rejection: role of transforming growth factor-beta and interleukin-15 in development and maintenance of CD103+ intraepithelial T cells. Transplantation 75:505–514PubMedCrossRefGoogle Scholar
  138. Wu H, Craft ML, Wang P, Wyburn KR, Chen G et al (2008) IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol 19:2331–2341PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT et al (2013) Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 182:118–131PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yan M, Tang C, Ma Z, Huang S, Dong Z (2016) DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol Appl Pharmacol 313:104–108PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yang Y, Zhang ZX, Lian D, Haig A, Bhattacharjee RN, Jevnikar AM (2015) IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury. Kidney Int 87:396–408PubMedCrossRefGoogle Scholar
  143. Yano T, Nozaki Y, Kinoshita K, Hino S, Hirooka Y et al (2015) The pathological role of IL-18Ralpha in renal ischemia/reperfusion injury. Lab Invest 95:78–91PubMedCrossRefGoogle Scholar
  144. Yard BA, Daha MR, Kooymans-Couthino M, Bruijn JA, Paape ME et al (1992) IL-1 alpha stimulated TNF alpha production by cultured human proximal tubular epithelial cells. Kidney Int 42:383–389PubMedCrossRefGoogle Scholar
  145. Yu M, Ryu DR, Kim SJ, Choi KB, Kang DH (2010) Clinical implication of metabolic syndrome on chronic kidney disease depends on gender and menopausal status: results from the Korean National Health and Nutrition Examination Survey. Nephrol Dial Transplant 25:469–477PubMedCrossRefGoogle Scholar
  146. Zager RA, Johnson AC, Andress D, Becker K (2013) Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int 84:703–712PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG (2008) The aging kidney. Kidney Int 74:710–720PubMedCrossRefGoogle Scholar
  149. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y (2012) Tubule-specific ablation of endogenous beta-catenin aggravates acute kidney injury in mice. Kidney Int 82:537–547PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zhou X, Fukuda N, Matsuda H, Endo M, Wang X et al (2013a) Complement 3 activates the renal renin-angiotensin system by induction of epithelial-to-mesenchymal transition of the nephrotubulus in mice. Am J Physiol Renal Physiol 305:F957–F967PubMedCrossRefGoogle Scholar
  151. Zhou Y, Xiong M, Fang L, Jiang L, Wen P et al (2013b) miR-21-containing microvesicles from injured tubular epithelial cells promote tubular phenotype transition by targeting PTEN protein. Am J Pathol 183:1183–1196PubMedCrossRefPubMedCentralGoogle Scholar
  152. Zhou D, Li Y, Zhou L, Tan RJ, Xiao L et al (2014) Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 25:2187–2200PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zhou L, Li Y, Hao S, Zhou D, Tan RJ et al (2015) Multiple genes of the renin-angiotensin system are novel targets of Wnt/beta-catenin signaling. J Am Soc Nephrol 26:107–120PubMedCrossRefGoogle Scholar
  154. Zhou D, Tan RJ, Fu H, Liu Y (2016) Wnt/beta-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 96:156–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Renal Division, Department of MedicinePeking University First HospitalBeijingChina
  2. 2.Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
  3. 3.Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of Education of ChinaBeijingChina

Personalised recommendations