Advertisement

Polycystic Kidney Disease and Renal Fibrosis

  • Cheng Xue
  • Chang-Lin MeiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Polycystic kidney disease (PKD) is a common genetic disorder characterized by formations of numerous cysts in kidneys and most caused by PKD1 or PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). The interstitial inflammation and fibrosis is one of the major pathological changes in polycystic kidney tissues with an accumulation of inflammatory cells, chemokines, and cytokines. The immune response is observed across different stages and occurs prior to or coincident with cyst formation in ADPKD. Evidence for inflammation as an important contributor to cyst growth and fibrosis includes increased interstitial macrophages, upregulated expressions of pro-inflammatory cytokines, activated complement system, and activated pathways including NF-κB and JAK-STAT signaling in polycystic kidney tissues. Inflammatory cells are responsible for overproduction of several pro-fibrotic growth factors which promote renal fibrosis in ADPKD. These growth factors trigger epithelial mesenchymal transition and myofibroblast/fibrocyte activation, which stimulate the expansion of extracellular matrix (ECM) including collagen I, III, IV, V, and fibronectin, leading to renal fibrosis and reduced renal function. Besides, there are imbalanced ECM turnover regulators which lead to the increased ECM production and inadequate degradation in polycystic kidney tissues. Several fibrosis associated signaling pathways, such as TGFβ-SMAD, Wnt, and periostin–integrin-linked kinase are also activated in polycystic kidney tissues. Although the effective anti-fibrotic treatments are limited at the present time, slowing the cyst expansion and fibrosis development is very important for prolonging life span and improving the palliative care of ADPKD patients. The inhibition of pro-fibrotic cytokines involved in fibrosis might be a new therapeutic strategy for ADPKD in the future.

Keywords

Polycystic kidney disease Inflammation Extracellular matrix Fibrosis 

References

  1. Anders HJ, Ryu M (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80:915–925CrossRefGoogle Scholar
  2. Anil Kumar Bhunia KP, Boletta Alessandra, Liu Lijuan, Qian Feng, Pei-Ning Xu et al (2002) PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168PubMedCrossRefGoogle Scholar
  3. Bakun M, Niemczyk M, Domanski D, Jazwiec R, Perzanowska A et al (2012) Urine proteome of autosomal dominant polycystic kidney disease patients. Clin Proteomics 9:13PubMedPubMedCentralCrossRefGoogle Scholar
  4. Banzi M, Aguiari G, Trimi V, Mangolini A, Pinton P et al (2006) Polycystin-1 promotes PKCalpha-mediated NF-kappaB activation in kidney cells. Biochem Biophys Res Commun 350:257–262PubMedCrossRefGoogle Scholar
  5. Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF et al (2009) Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J Am Soc Nephrol 20:2389–2402PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bergmann C (2017) Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr 5:221PubMedCrossRefGoogle Scholar
  7. Bernhardt WM, Wiesener MS, Weidemann A, Schmitt R, Weichert W et al (2007) Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol 170:830–842PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cassini MF, Kakade VR, Kurtz E, Sulkowski P, Glazer P et al (2018) Mcp1 promotes macrophage-dependent cyst expansion in autosomal dominant polycystic kidney disease. J Am Soc NephrolGoogle Scholar
  9. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292:F905–F911PubMedCrossRefGoogle Scholar
  10. Chauvet V, Tian X, Husson H, Grimm DH, Wang T et al (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen WC, Tzeng YS, Li H (2008) Gene expression in early and progression phases of autosomal dominant polycystic kidney disease. BMC Res Notes 1:131PubMedPubMedCentralCrossRefGoogle Scholar
  12. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V et al (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10:70–76PubMedCrossRefGoogle Scholar
  13. Cowley BD Jr, Ricardo SD, Nagao S, Diamond JR (2001) Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int 60:2087–2096PubMedCrossRefGoogle Scholar
  14. Dai B, Liu Y, Mei C, Fu L, Xiong X et al (2010) Rosiglitazone attenuates development of polycystic kidney disease and prolongs survival in Han: SPRD rats. Clin Sci (Lond) 119:323–333CrossRefGoogle Scholar
  15. Dang Y, Liu B, Xu P, Zhu P, Zhai Y et al (2014) Gpr48 deficiency induces polycystic kidney lesions and renal fibrosis in mice by activating Wnt signal pathway. PLoS ONE 9:e89835PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dell KM, Nemo R, Sweeney WE Jr, Levin JI, Frost P et al (2001) A novel inhibitor of tumor necrosis factor-alpha converting enzyme ameliorates polycystic kidney disease. Kidney Int 60:1240–1248PubMedCrossRefGoogle Scholar
  17. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111PubMedCrossRefGoogle Scholar
  18. Du J, Wilson PD (1995) Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol 269:C487–C495PubMedCrossRefGoogle Scholar
  19. Eddy AA (1996) Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 7:2495–2508PubMedPubMedCentralGoogle Scholar
  20. Eddy AA (2009) Serine proteases, inhibitors and receptors in renal fibrosis. Thromb Haemost 101:656–664PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW (2002) Ras and relatives–job sharing and networking keep an old family together. Exp Hematol 30:1089–1106PubMedCrossRefGoogle Scholar
  22. Elberg D, Jayaraman S, Turman MA, Elberg G (2012) Transforming growth factor-beta inhibits cystogenesis in human autosomal dominant polycystic kidney epithelial cells. Exp Cell Res 318:1508–1516PubMedCrossRefGoogle Scholar
  23. Follonier Castella L, Gabbiani G, McCulloch CA, Hinz B (2010) Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res 316:2390–2401PubMedCrossRefGoogle Scholar
  24. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805PubMedCrossRefGoogle Scholar
  25. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964PubMedCrossRefGoogle Scholar
  26. Grantham JJ, Mulamalla S, Swenson-Fields KI (2011) Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 7:556–566PubMedCrossRefGoogle Scholar
  27. Harms JC, Song CJ, Mrug M (2018) The role of inflammation and fibrosis in cystic kidney diseaseCrossRefGoogle Scholar
  28. Harris PC, Torres VE (2014) Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 124:2315–2324PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hassane S, Leonhard WN, van der Wal A, Hawinkels LJ, Lantinga-van Leeuwen IS et al (2010) Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol 222:21–31PubMedGoogle Scholar
  30. Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21:223–244PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234PubMedPubMedCentralCrossRefGoogle Scholar
  32. Holditch SJ, Schreiber CA, Harris PC, LaRusso NF, Ramirez-Alvarado M et al (2017) B-type natriuretic peptide overexpression ameliorates hepatorenal fibrocystic disease in a rat model of polycystic kidney disease. Kidney Int 92:657–668PubMedPubMedCentralCrossRefGoogle Scholar
  33. Horie S, Higashihara E, Nutahara K, Mikami Y, Okubo A et al (1994) Mediation of renal cyst formation by hepatocyte growth factor. Lancet 344:789–791PubMedCrossRefGoogle Scholar
  34. Hu MC, Piscione TD, Rosenblum ND (2003) Elevated SMAD1/beta-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice. Development 130:2753–2766PubMedCrossRefGoogle Scholar
  35. Huen SC, Cantley LG (2015) Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol 30:199–209PubMedCrossRefGoogle Scholar
  36. John J O’Shea, SMH, Louis M Staudt (2013) JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 368:161–170PubMedCrossRefGoogle Scholar
  37. Joly D, Morel V, Hummel A, Ruello A, Nusbaum P et al (2003) Beta4 integrin and laminin 5 are aberrantly expressed in polycystic kidney disease: role in increased cell adhesion and migration. Am J Pathol 163:1791–1800PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kaplan MH (2013) STAT signaling in inflammation. Jak-Stat 2(1):e24198PubMedPubMedCentralCrossRefGoogle Scholar
  39. Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D et al (2011) Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol 22:1809–1814PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kistler AD, Mischak H, Poster D, Dakna M, Wuthrich RP et al (2009) Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int 76:89–96PubMedCrossRefGoogle Scholar
  41. Kistler AD, Serra AL, Siwy J, Poster D, Krauer F et al (2013) Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS ONE 8:e53016PubMedPubMedCentralCrossRefGoogle Scholar
  42. Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4:68–75PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kuo NT, Norman JT, Wilson PD (1997) Acidic FGF regulation of hyperproliferation of fibroblasts in human autosomal dominant polycystic kidney disease. Biochem Mol Med 61:178–191PubMedCrossRefGoogle Scholar
  44. LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  45. Leonhard WN, Kunnen SJ, Plugge AJ, Pasternack A, Jianu SB et al (2016) Inhibition of activin signaling slows progression of polycystic kidney disease. J Am Soc Nephrol 27:3589–3599PubMedPubMedCentralCrossRefGoogle Scholar
  46. Li L, Huang L, Sung SS, Vergis AL, Rosin DL et al (2008a) The chemokine receptors CCR47 and CX3CR47 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–1537PubMedPubMedCentralCrossRefGoogle Scholar
  47. Li X, Magenheimer BS, Xia S, Johnson T, Wallace DP et al (2008b) A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med 14:863–868PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lin SL, Castano AP, Nowlin BT, Lupher ML Jr, Duffield JS (2009) Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol 183:6733–6743PubMedCrossRefGoogle Scholar
  49. Liu D, Wang CJ, Judge DP, Halushka MK, Ni J et al (2014) A Pkd1-Fbn1 genetic interaction implicates TGF-beta signaling in the pathogenesis of vascular complications in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 25:81–91PubMedCrossRefGoogle Scholar
  50. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N et al (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69PubMedCrossRefGoogle Scholar
  51. Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S et al (2010) The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 3:354–365PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mason SB, Lai X, Bacallao RL, Blazer-Yost BL, Gattone VH et al (2009) The biomarker enriched proteome of autosomal dominant polycystic kidney disease cyst fluid. Proteomics Clin Appl 3:1247–1250PubMedPubMedCentralCrossRefGoogle Scholar
  53. McGlashan SR, Jensen CG, Poole CA (2006) Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem 54:1005–1014PubMedCrossRefGoogle Scholar
  54. McPherson EA, Luo Z, Brown RA, LeBard LS, Corless CC et al (2004) Chymase-like angiotensin II-generating activity in end-stage human autosomal dominant polycystic kidney disease. J Am Soc Nephrol 15:493–500PubMedCrossRefGoogle Scholar
  55. Ming Wu MC, Jing Ying, Junhui Gu, Mei Shuqin (2016) The C-terminal tail of polycystin-1 regulates complement factor B expression by signal transducer and activator of transcription 1. Am J Physiol Renal Physiol 310:F1284–F1294PubMedCrossRefGoogle Scholar
  56. Mrug M, Zhou J, Woo Y, Cui X, Szalai AJ et al (2008) Overexpression of innate immune response genes in a model of recessive polycystic kidney disease. Kidney Int 73:63–76PubMedCrossRefGoogle Scholar
  57. Mrug M, Zhou J, Mrug S, Guay-Woodford LM, Yoder BK, Szalai AJ (2014) Complement C3 activation in cyst fluid and urine from autosomal dominant polycystic kidney disease patients. J Intern Med 276:539–540PubMedCrossRefGoogle Scholar
  58. Mun H, Park JH (2016) Inflammation and Fibrosis in ADPKD. Adv Exp Med Biol 933:35–44PubMedCrossRefGoogle Scholar
  59. Nakamura T, Ushiyama C, Suzuki S, Ebihara I, Shimada N et al (2000) Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol 20:32–36PubMedCrossRefGoogle Scholar
  60. Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K et al (2009) CD4 + T cells control the differentiation of Gr1 + monocytes into fibrocytes. Proc Natl Acad Sci U S A 106:17892–17897PubMedPubMedCentralCrossRefGoogle Scholar
  61. Nishio S, Hatano M, Nagata M, Horie S, Koike T et al (2005) Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J Clin Invest 115:910–918PubMedPubMedCentralCrossRefGoogle Scholar
  62. Norman J (2011) Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 1812:1327–1336PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pahl HL (1999) Activators and target genes of Rel/NF-kB transcription factors. Oncogene 18:6853–6866PubMedCrossRefGoogle Scholar
  64. Park EY, Seo MJ, Park JH (2010) Effects of specific genes activating RAGE on polycystic kidney disease. Am J Nephrol 32:169–178PubMedCrossRefGoogle Scholar
  65. Qi W, Chen X, Poronnik P, Pollock CA (2006) The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 38:1–5PubMedCrossRefGoogle Scholar
  66. Qian F, Boletta A, Bhunia AK, Xu H, Liu L et al (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Nat Acad Sci U S A 99:16981–16986CrossRefGoogle Scholar
  67. Qin S, Taglienti M, Cai L, Zhou J, Kreidberg JA (2012) c-Met and NF-kappaB-dependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J Am Soc Nephrol 23:1309–1318PubMedPubMedCentralCrossRefGoogle Scholar
  68. Raman A, Reif GA, Dai Y, Khanna A, Li X et al (2017) Integrin-linked kinase signaling promotes cyst growth and fibrosis in polycystic kidney disease. J Am Soc Nephrol 28:2708–2719PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rankin CA, Suzuki K, Itoh Y, Ziemer DM, Grantham JJ et al (1996) Matrix metalloproteinases and TIMPS in cultured C57BL/6 J-cpk kidney tubules. Kidney Int 50:835–844PubMedCrossRefGoogle Scholar
  70. Rawlings Jason S, Rosler KM et al (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283PubMedCrossRefGoogle Scholar
  71. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797PubMedPubMedCentralCrossRefGoogle Scholar
  72. Schaefer L, Han X, Gretz N, Hafner C, Meier K et al (1996) Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han: SPRD rat. Kidney Int 49:75–81PubMedCrossRefGoogle Scholar
  73. Schieren G, Rumberger B, Klein M, Kreutz C, Wilpert J et al (2006) Gene profiling of polycystic kidneys. Nephrol Dial Transplant 21:1816–1824PubMedCrossRefGoogle Scholar
  74. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90PubMedCrossRefGoogle Scholar
  75. Semedo P, Donizetti-Oliveira C, Burgos-Silva M, Cenedeze MA, Avancini Costa Malheiros DM et al (2010) Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Lab Invest 90:685–695PubMedCrossRefGoogle Scholar
  76. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795PubMedPubMedCentralCrossRefGoogle Scholar
  77. Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A et al (2010) A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330:90–94PubMedPubMedCentralCrossRefGoogle Scholar
  78. Song X, Di Giovanni V, He N, Wang K, Ingram A et al (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343PubMedCrossRefGoogle Scholar
  79. Song CJ, Zimmerman KA, Henke SJ, Yoder BK (2017) Inflammation and fibrosis in polycystic kidney disease. Results Probl Cell Differ 60:323–344PubMedCrossRefGoogle Scholar
  80. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683PubMedCrossRefGoogle Scholar
  81. Su Z, Wang X, Gao X, Liu Y, Pan C et al (2014) Excessive activation of the alternative complement pathway in autosomal dominant polycystic kidney disease. J Int Med 276:470–485CrossRefGoogle Scholar
  82. Sureshbabu A, Muhsin SA, Choi ME (2016) TGF-beta signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol 310:F596–F606PubMedPubMedCentralCrossRefGoogle Scholar
  83. Swenson-Fields KI, Vivian CJ, Salah SM, Peda JD, Davis BM et al (2013) Macrophages promote polycystic kidney disease progression. Kidney Int 83:855–864PubMedPubMedCentralCrossRefGoogle Scholar
  84. Talbot JJ, Shillingford JM, Vasanth S, Doerr N, Mukherjee S et al (2011) Polycystin-1 regulates STAT activity by a dual mechanism. Proc Nati Acad Sci U S A 108:7985–7990CrossRefGoogle Scholar
  85. Vernon MA, Mylonas KJ, Hughes J (2010) Macrophages and renal fibrosis. Semin Nephrol 30:302–317PubMedCrossRefGoogle Scholar
  86. Vilayur E, Harris DC (2009) Emerging therapies for chronic kidney disease: what is their role? Nat Rev Nephrol 5:375–383PubMedCrossRefGoogle Scholar
  87. Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K (2011) Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol 15:8–13PubMedCrossRefGoogle Scholar
  88. Wallace DP, White C, Savinkova L, Nivens E, Reif GA et al (2014) Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 85:845–854PubMedCrossRefGoogle Scholar
  89. Wei W, Hackmann K, Xu H, Germino G, Qian F (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282:21729–21737PubMedCrossRefGoogle Scholar
  90. Weimbs T, Olsan EE, Talbot JJ (2013) Regulation of STATs by polycystin-1 and their role in polycystic kidney disease. Jak-Stat 2:e23650PubMedPubMedCentralCrossRefGoogle Scholar
  91. Wilson PD, Burrow CR (1999) Cystic diseases of the kidney: role of adhesion molecules in normal and abnormal tubulogenesis. Exp Nephrol 7:114–124PubMedCrossRefGoogle Scholar
  92. Wilson PD, Hreniuk D, Gabow PA (1992) Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. J Cell Physiol 150:360–369PubMedCrossRefGoogle Scholar
  93. Wilson PD, Norman JT, Kuo NT, Burrow CR (1996) Abnormalities in extracellular matrix regulation in autosomal dominant polycystic kidney disease. Contrib Nephrol 118:126–134PubMedCrossRefGoogle Scholar
  94. Wilson PD, Geng L, Li X, Burrow CR (1999) The PKD1 gene product, “polycystin-1,” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 79:1311–1323PubMedGoogle Scholar
  95. Wuthrich RP, Mei C (2012) Aquaretic treatment in polycystic kidney disease. N Engl J Med 367:2440–2442PubMedCrossRefGoogle Scholar
  96. Xue C, Zhou CC, Wu M, Mei CL (2016) The clinical manifestation and management of autosomal dominant polycystic kidney disease in China. Kidney Dis (Basel) 2:111–119CrossRefGoogle Scholar
  97. Xue C, Zhou C, Mei C (2018) Total kidney volume: the most valuable predictor of autosomal dominant polycystic kidney disease progression. Kidney Int 93:540–542PubMedCrossRefGoogle Scholar
  98. Yamashita S, Maeshima A, Kojima I, Nojima Y (2004) Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol 15:91–101PubMedCrossRefGoogle Scholar
  99. Yang Y, Chen M, Zhou J, Lv J, Song S et al (2018) Interactions between macrophages and cyst-lining epithelial cells promote kidney cyst growth in Pkd1-deficient mice. J Am Soc Nephrol 29:2310–2325PubMedCrossRefGoogle Scholar
  100. Zeier M, Fehrenbach P, Geberth S, Mohring K, Waldherr R, Ritz E (1992) Renal histology in polycystic kidney disease with incipient and advanced renal failure. Kidney Int 42:1259–1265PubMedCrossRefGoogle Scholar
  101. Zeltner R, Hilgers KF, Schmieder RE, Porst M, Schulze BD et al (2008) A promoter polymorphism of the alpha 8 integrin gene and the progression of autosomal-dominant polycystic kidney disease. Nephron Clin Pract 108:c169–c175PubMedCrossRefGoogle Scholar
  102. Zheng D, Wolfe M, Cowley BD Jr, Wallace DP et al (2003) Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 14:2588–2595PubMedCrossRefGoogle Scholar
  103. Zimmerman K, Yoder BK (2015) SnapShot: sensing and signaling by cilia. Cell 161(692–692):e691Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of NephrologyKidney Institute of PLA, Changzheng Hospital, Second Military Medical UniversityShanghaiChina

Personalised recommendations