Advertisement

A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy

  • Ling-Feng Zeng
  • Ying Xiao
  • Lin SunEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Diabetic nephropathy (DN) is a common kidney disease in people with diabetes, which is also a serious microvascular complication of diabetes and the main cause of end-stage renal disease (ESRD) in developed and developing countries. Renal fibrosis is a finally pathological change in DN. Nevertheless, the relevant mechanism of cause to renal fibrosis in DN is still complex. In this review, we summarized that the role of cell growth factors, epithelial–mesenchymal transition (EMT) in the renal fibrosis of DN, we also highlighted the miRNA and inflammatory cells, such as macrophage, T lymphocyte, and mastocyte modulate the progression of DN. In addition, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules, such as Notch, Wnt, mTOR, Epac-Rap-1 pathway, may play a pivotal role in the modulation of ECM accumulation and renal fibrosis in DN. This review aims to elucidate the mechanism of renal fibrosis in DN and has provided new insights into possible therapeutic interventions to inhibit renal fibrosis and delay the development of DN.

Keywords

Renal fibrosis Diabetic nephropathy TGF-β Epithelial–mesenchymal transition miRNA 

References

  1. Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T et al (2010) Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 5:1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aggarwal N, Kare PK, Varshney P, Kalra OP, Madhu SV, Banerjee BD et al (2017) Role of angiotensin converting enzyme and angiotensinogen gene polymorphisms in angiotensin converting enzyme inhibitor-mediated antiproteinuric action in type 2 diabetic nephropathy patients. World J Diabetes 8:112–119PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aghadavod E, Khodadadi S, Baradaran A, Nasri P, Bahmani M, Rafieian-Kopaei M (2016) Role of oxidative stress and inflammatory factors in diabetic kidney disease. Iran J Kidney Dis 10:337–343PubMedGoogle Scholar
  4. Assmann TS, Recamonde-Mendoza M, de Souza BM, Bauer AC, Crispim D (2018) MicroRNAs and diabetic kidney disease: systematic review and bioinformatic analysis. Mol Cell Endocrinol 477:90–102PubMedCrossRefGoogle Scholar
  5. Balakumar P, Reddy J, Singh M (2009) Do resident renal mast cells play a role in the pathogenesis of diabetic nephropathy? Mol Cell Biochem 330:187–192PubMedCrossRefGoogle Scholar
  6. Bao NN, Kong DY, Zhu D, Hao LR (2015) Influence of overexpression of SOCS2 on cells of DN rat. Asian Pac J Trop Med 8:583–589PubMedCrossRefGoogle Scholar
  7. Bedogni B (2014) Notch signaling in melanoma: interacting pathways and stromal influences that enhance Notch targeting. Pigment Cell Melanoma Res 27:162–168PubMedCrossRefGoogle Scholar
  8. Bending JJ, Lobo-Yeo A, Vergani D, Viberti GC (1988) Proteinuria and activated T-lymphocytes in diabetic nephropathy. Diabetes 37:507–511PubMedCrossRefGoogle Scholar
  9. Ben-Shushan E, Feldman E, Reubinoff BE (2015) Notch signaling regulates motor neuron differentiation of human embryonic stem cells. Stem Cells 33:403–415PubMedCrossRefGoogle Scholar
  10. Benz K, Amann K (2011) Endothelin in diabetic renal disease. Contrib Nephrol 172:139–148PubMedCrossRefGoogle Scholar
  11. Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4:733–738PubMedCrossRefGoogle Scholar
  12. Bracken CP, Khew-Goodall Y, Goodall GJ (2015) Network-based approaches to understand the roles of miR-200 and other microRNAs in cancer. Cancer Res 75:2594–2599PubMedCrossRefGoogle Scholar
  13. Brosius FC, Tuttle KR, Kretzler M (2016) JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59:1624–1627PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bruserud O, Pawelec G (1997) Interleukin-13 secretion by normal and posttransplant T lymphocytes; in vitro studies of cellular immune responses in the presence of acute leukaemia blast cells. Cancer Immunol Immunother 45:45–52PubMedCrossRefGoogle Scholar
  15. Burotto M, Chiou VL, Lee JM, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120:3446–3456PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cai B, Cai JP, Luo YL, Chen C, Zhang S (2015) The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation 38:1599–1608PubMedCrossRefGoogle Scholar
  17. Chandrasekaran K, Karolina DS, Sepramaniam S, Armugam A, Wintour EM, Bertram JF et al (2012) Role of microRNAs in kidney homeostasis and disease. Kidney Int 81:617–627PubMedCrossRefGoogle Scholar
  18. Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:118r–121rCrossRefGoogle Scholar
  19. Chen HY, Zhong X, Huang XR, Meng XM, You Y, Chung AC et al (2014) MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 22:842–853PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen H, Yang X, Lu K, Lu C, Zhao Y, Zheng S et al (2017) Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice. Toxicol Lett 278:48–58PubMedCrossRefGoogle Scholar
  21. Cheng M, Liu F, Peng Y, Chen J, Chen G, Xiao L et al (2014) Construction of a CTGF and RFP-coexpressed renal tubular epithelial cell and its application on evaluation of CTGF-specific siRNAs on epithelial-mesenchymal transition. Urology 83:1441–1443CrossRefGoogle Scholar
  22. Cheng M, Liu H, Zhang D, Liu Y, Wang C, Liu F et al (2015) HMGB1 enhances the AGE-induced expression of CTGF and TGF-beta via RAGE-dependent signaling in renal tubular epithelial cells. Am J Nephrol 41:257–266PubMedCrossRefGoogle Scholar
  23. Chuang PY, He JC (2010) JAK/STAT signaling in renal diseases. Kidney Int 78:231–234PubMedCrossRefGoogle Scholar
  24. Chung AC, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21:1317–1325PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chung AC, Dong Y, Yang W, Zhong X, Li R, Lan HY (2013) Smad7 suppresses renal fibrosis via altering expression of TGF-beta/Smad3-regulated microRNAs. Mol Ther 21:388–398PubMedCrossRefGoogle Scholar
  26. Crean JK, Furlong F, Mitchell D, McArdle E, Godson C, Martin F (2006) Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B-mediated phosphorylation and cytoplasmic translocation of p27(Kip-1). FASEB J 20:1712–1714PubMedCrossRefGoogle Scholar
  27. Danilewicz M, Wagrowska-Danilewicz M (2005) Immunohistochemical analysis of the interstitial mast cells in rebiopsied patients with idiopathic mesangial proliferative glomerulonephritis. Pol J Pathol 56:63–68PubMedGoogle Scholar
  28. Davis RJ (1994) MAPKs: new JNK expands the group. Trends Biochem Sci 19:470–473PubMedCrossRefGoogle Scholar
  29. de Borst MH, Prakash J, Sandovici M, Klok PA, Hamming I, Kok RJ et al (2009) c-Jun NH2-terminal kinase is crucially involved in renal tubulo-interstitial inflammation. J Pharmacol Exp Ther 331:896–905PubMedCrossRefGoogle Scholar
  30. de Larco JE, Todaro GJ (1980) Sarcoma growth factor (SGF): specific binding to epidermal growth factor (EGF) membrane receptors. J Cell Physiol 102:267–277PubMedCrossRefGoogle Scholar
  31. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477PubMedCrossRefGoogle Scholar
  32. Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG et al (2013) Transforming growth factor-beta-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62:3151–3162PubMedPubMedCentralCrossRefGoogle Scholar
  33. Donate-Correa J, Martin-Nunez E, Muros-de-Fuentes M, Mora-Fernandez C, Navarro-Gonzalez JF (2015) Inflammatory cytokines in diabetic nephropathy. J Diabetes Res 2015:948417PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dounousi E, Duni A, Leivaditis K, Vaios V, Eleftheriadis T, Liakopoulos V (2015) Improvements in the management of diabetic nephropathy. Rev Diabet Stud 12:119–133PubMedPubMedCentralCrossRefGoogle Scholar
  35. Egido J, Rojas-Rivera J, Mas S, Ruiz-Ortega M, Sanz AB, Gonzalez PE et al (2017) Atrasentan for the treatment of diabetic nephropathy. Expert Opin Invest Drugs 26:741–750CrossRefGoogle Scholar
  36. Esposito C, Fasoli G, Rampino T, Dal Canton A (2006) Hepatocyte growth factor and kidney. G Ital Nefrol 23:381–388PubMedGoogle Scholar
  37. Feng M, Tang PM, Huang XR, Sun SF, You YK, Xiao J et al (2018) TGF-beta Mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis. Mol Ther 26:148–161PubMedCrossRefGoogle Scholar
  38. Fukasawa H, Yamamoto T, Suzuki H, Togawa A, Ohashi N, Fujigaki Y et al (2004) Treatment with anti-TGF-beta antibody ameliorates chronic progressive nephritis by inhibiting Smad/TGF-beta signaling. Kidney Int 65:63–74PubMedCrossRefGoogle Scholar
  39. Gao Q, Shen W, Qin W, Zheng C, Zhang M, Zeng C et al (2010) Treatment of db/db diabetic mice with triptolide: a novel therapy for diabetic nephropathy. Nephrol Dial Transplant 25:3539–3547PubMedCrossRefGoogle Scholar
  40. Glowacki F, Savary G, Gnemmi V, Buob D, Van der Hauwaert C, Lo-Guidice JM et al (2013) Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE 8:e58014PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gohda E (2002) Function and regulation of production of hepatocyte growth factor (HGF). Nihon Yakurigaku Zasshi 119:287–294PubMedCrossRefGoogle Scholar
  42. Goto E, Honjo S, Yamashita H, Shomori K, Adachi H, Ito H (2002) Mast cells in human allografted kidney: correlation with interstitial fibrosis. Clin Transplant 16(Suppl 8):7–11PubMedCrossRefGoogle Scholar
  43. Guha M, Xu ZG, Tung D, Lanting L, Natarajan R (2007) Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J 21:3355–3368PubMedCrossRefGoogle Scholar
  44. Hathaway CK, Gasim AM, Grant R, Chang AS, Kim HS, Madden VJ et al (2015) Low TGFbeta1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proc Natl Acad Sci U S A 112:5815–5820PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hay ED, Zuk A (1995) Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 26:678–690PubMedCrossRefGoogle Scholar
  46. He J, Yuan G, Cheng F, Zhang J, Guo X (2017) Mast cell and M1 macrophage infiltration and local pro-inflammatory factors were attenuated with incretin-based therapies in obesity-related glomerulopathy. Metab Syndr Relat Disord 15:344–353PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hickey FB, Martin F (2018) Role of the immune system in diabetic kidney disease. Curr Diab Rep 18:20PubMedCrossRefGoogle Scholar
  48. Ho C, Lee PH, Hsu YC, Wang FS, Huang YT, Lin CL (2012) Sustained Wnt/beta-catenin signaling rescues high glucose induction of transforming growth factor-beta1-mediated renal fibrosis. Am J Med Sci 344:374–382PubMedCrossRefGoogle Scholar
  49. Hong JP, Li XM, Li MX, Zheng FL (2013) VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR192, a Smad3-dependent microRNA. Int J Mol Med 31:1436–1442PubMedCrossRefGoogle Scholar
  50. Hou M, Bao X, Luo F, Chen X, Liu L, Wu M (2018) HMGA2 modulates the TGFbeta/Smad, TGFbeta/ERK and Notch signaling pathways in human lens epithelial-mesenchymal transition. Curr Mol Med 18:71–82PubMedCrossRefGoogle Scholar
  51. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND et al (2018) New insights into TGF-beta/smad signaling in tissue fibrosis. Chem Biol Interact 292:76–83PubMedCrossRefGoogle Scholar
  52. Huang JS, Guh JY, Chen HC, Hung WC, Lai YH, Chuang LY (2001) Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem 81:102–113PubMedCrossRefGoogle Scholar
  53. Huang S, Liu F, Niu Q, Li Y, Liu C, Zhang L et al (2013) GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PLoS ONE 8:e58574PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huang Y, Tong J, He F, Yu X, Fan L, Hu J et al (2015) miR-141 regulates TGF-beta1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med 35:311–318PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hwang I, Seo EY, Ha H (2009) Wnt/beta-catenin signaling: a novel target for therapeutic intervention of fibrotic kidney disease. Arch Pharm Res 32:1653–1662PubMedCrossRefGoogle Scholar
  56. Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H (2019) PI3k/AKT signaling pathway: erythropoiesis and beyond. J Cell Physiol 234:2373–2385PubMedCrossRefGoogle Scholar
  57. Jang YN, Baik EJ (2013) JAK-STAT pathway and myogenic differentiation. JAKSTAT 2:e23282PubMedPubMedCentralGoogle Scholar
  58. Jenkins RH, Martin J, Phillips AO, Bowen T, Fraser DJ (2012a) Pleiotropy of microRNA-192 in the kidney. Biochem Soc Trans 40:762–767PubMedCrossRefGoogle Scholar
  59. Jenkins RH, Martin J, Phillips AO, Bowen T, Fraser DJ (2012b) Transforming growth factor beta1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochem J 443:407–416PubMedCrossRefGoogle Scholar
  60. Jiang L, Qiu W, Zhou Y, Wen P, Fang L, Cao H et al (2013) A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-beta1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int 84:285–296PubMedPubMedCentralCrossRefGoogle Scholar
  61. Juan YS, Chuang SM, Long CY, Lin RJ, Liu KM, Wu WJ et al (2012) Protein kinase C inhibitor prevents renal apoptotic and fibrotic changes in response to partial ureteric obstruction. BJU Int 110:283–292PubMedCrossRefGoogle Scholar
  62. Kanasaki K, Shi S, Kanasaki M, He J, Nagai T, Nakamura Y et al (2014) Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63:2120–2131PubMedCrossRefGoogle Scholar
  63. Kang MJ, Wu X, Ly H, Thai K, Scholey JW (1999) Effect of glucose on stress-activated protein kinase activity in mesangial cells and diabetic glomeruli. Kidney Int 55:2203–2214PubMedCrossRefGoogle Scholar
  64. Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kato M, Natarajan R (2014) Diabetic nephropathy—emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kato M, Natarajan R (2015) MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci 1353:72–88PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104:3432–3437PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R (2011) A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int 80:358–368PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kato M, Dang V, Wang M, Park JT, Deshpande S, Kadam S et al (2013) TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal 6:a43CrossRefGoogle Scholar
  70. Kim SM, Lee SH, Lee A, Kim DJ, Kim YG, Kim SY et al (2015) Targeting T helper 17 by mycophenolate mofetil attenuates diabetic nephropathy progression. Transl Res 166:375–383PubMedCrossRefGoogle Scholar
  71. Kinashi H, Falke LL, Nguyen TQ, Bovenschen N, Aten J, Leask A et al (2017) Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int 92:850–863PubMedCrossRefGoogle Scholar
  72. Kolling M, Kaucsar T, Schauerte C, Hubner A, Dettling A, Park JK et al (2017) Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol Ther 25:165–180PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedPubMedCentralCrossRefGoogle Scholar
  74. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21:438–447PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lai JY, Luo J, O’Connor C, Jing X, Nair V, Ju W et al (2015) MicroRNA-21 in glomerular injury. J Am Soc Nephrol 26:805–816PubMedCrossRefGoogle Scholar
  76. Lan X, Wen H, Aslam R, Shoshtari S, Mishra A, Kumar V et al (2018) Nicotine enhances mesangial cell proliferation and fibronectin production in high glucose milieu via activation of Wnt/beta-catenin pathway. Biosci Rep 38PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  78. Li J, Bertram JF (2010) Review: endothelial-myofibroblast transition, a new player in diabetic renal fibrosis. Nephrology (Carlton) 15:507–512CrossRefGoogle Scholar
  79. Liau N, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E et al (2018) The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 9:1558PubMedPubMedCentralCrossRefGoogle Scholar
  80. Libetta C, Esposito P, Martinelli C, Grosjean F, Gregorini M, Rampino T et al (2016) Hepatocyte growth factor (HGF) and hemodialysis: physiopathology and clinical implications. Clin Exp Nephrol 20:371–378PubMedCrossRefGoogle Scholar
  81. Lim AK, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediat Inflamm 2012:146154CrossRefGoogle Scholar
  82. Lin S, Sahai A, Chugh SS, Pan X, Wallner EI, Danesh FR et al (2002) High glucose stimulates synthesis of fibronectin via a novel protein kinase C, Rap1b, and B-Raf signaling pathway. J Biol Chem 277:41725–41735PubMedCrossRefGoogle Scholar
  83. Lin CL, Wang FS, Hsu YC, Chen CN, Tseng MJ, Saleem MA et al (2010a) Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy. Diabetes 59:1915–1925PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lin CL, Wang JY, Ko JY, Huang YT, Kuo YH, Wang FS (2010b) Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J Am Soc Nephrol 21:124–135PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lin CL, Lee PH, Hsu YC, Lei CC, Ko JY, Chuang PC et al (2014) MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol 25:1698–1709PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lin Y, Zhao JL, Zheng QJ, Jiang X, Tian J, Liang SQ et al (2018) Notch signaling modulates macrophage polarization and phagocytosis through direct suppression of signal regulatory protein alpha expression. Front Immunol 9:1744PubMedPubMedCentralCrossRefGoogle Scholar
  87. Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222CrossRefGoogle Scholar
  88. Liu Q, Xing L, Wang L, Yao F, Liu S, Hao J et al (2014a) Therapeutic effects of suppressors of cytokine signaling in diabetic nephropathy. J Histochem Cytochem 62:119–128PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu R, Zhong Y, Li X, Chen H, Jim B, Zhou MM et al (2014b) Role of transcription factor acetylation in diabetic kidney disease. Diabetes 63:2440–2453PubMedPubMedCentralCrossRefGoogle Scholar
  90. Liu H, Wang X, Liu S, Li H, Yuan X, Feng B et al (2016a) Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy. Int J Biochem Cell Biol 70:149–160PubMedCrossRefGoogle Scholar
  91. Liu XJ, Hong Q, Wang Z, Yu YY, Zou X, Xu LH (2016b) MicroRNA21 promotes interstitial fibrosis via targeting DDAH1: a potential role in renal fibrosis. Mol Cell Biochem 411:181–189PubMedCrossRefGoogle Scholar
  92. Liu D, Cao Y, Zhang X, Peng C, Tian X, Yan C et al (2018) Chemokine CC-motif ligand 2 participates in platelet function and arterial thrombosis by regulating PKCalpha-P38MAPK-HSP27 pathway. Biochim Biophys Acta 1864:2901–2912CrossRefGoogle Scholar
  93. Loeffler I, Wolf G (2015) Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells 4:631–652PubMedPubMedCentralCrossRefGoogle Scholar
  94. Long J, Wang Y, Wang W, Chang BH, Danesh FR (2011) MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 286:11837–11848PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lopez-Arribillaga E, Rodilla V, Colomer C, Vert A, Shelton A, Cheng JH et al (2018) Manic Fringe deficiency imposes Jagged1 addiction to intestinal tumor cells. Nat Commun 9:2992PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lu Q, Zuo WZ, Ji XJ, Zhou YX, Liu YQ, Yao XQ et al (2015) Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. Phytomedicine 22:1071–1078PubMedCrossRefGoogle Scholar
  97. Lv LL, Liu BC (2015) Role of non-classical renin-angiotensin system axis in renal fibrosis. Front Physiol 6:117PubMedPubMedCentralCrossRefGoogle Scholar
  98. Manson SR, Austin PF, Guo Q, Moore KH (2015) BMP-7 signaling and its critical roles in kidney development, the responses to renal injury, and chronic kidney disease. Vitam Horm 99:91–144PubMedCrossRefGoogle Scholar
  99. March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N et al (2018) Targeting TGFbeta signaling to address fibrosis using antisense oligonucleotides. Biomedicines 6Google Scholar
  100. Mariappan MM, Shetty M, Sataranatarajan K, Choudhury GG, Kasinath BS (2008) Glycogen synthase kinase 3beta is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. J Biol Chem 283:30566–30575PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mason RM (2009) Connective tissue growth factor (CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it? J Cell Commun Signal 3:95–104PubMedPubMedCentralCrossRefGoogle Scholar
  102. McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S et al (2015) miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 129:1237–1249CrossRefGoogle Scholar
  103. Meng XM, Huang XR, Xiao J, Chen HY, Zhong X, Chung AC et al (2012) Diverse roles of TGF-beta receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol 227:175–188PubMedCrossRefGoogle Scholar
  104. Meng X, Chung ACK, Lan HY (2013) Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci 124:243–254PubMedCrossRefPubMedCentralGoogle Scholar
  105. Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  106. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338PubMedPubMedCentralCrossRefGoogle Scholar
  107. Menne J, Shushakova N, Bartels J, Kiyan Y, Laudeley R, Haller H et al (2013) Dual inhibition of classical protein kinase C-alpha and protein kinase C-beta isoforms protects against experimental murine diabetic nephropathy. Diabetes 62:1167–1174PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mizuno S, Nakamura T (2004) Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol Renal Physiol 286:F134–F143PubMedCrossRefGoogle Scholar
  109. Mizuno S, Matsumoto K, Nakamura T (2008) HGF as a renotrophic and anti-fibrotic regulator in chronic renal disease. Front Biosci 13:7072–7086PubMedCrossRefGoogle Scholar
  110. Mohamed R, Jayakumar C, Chen F, Fulton D, Stepp D, Gansevoort RT et al (2016) Low-dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J Am Soc Nephrol 27:745–765PubMedCrossRefGoogle Scholar
  111. Moon JY, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH (2012) Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol 35:164–174PubMedCrossRefGoogle Scholar
  112. Moriya R, Manivel JC, Mauer M (2004) Juxtaglomerular apparatus T-cell infiltration affects glomerular structure in Type 1 diabetic patients. Diabetologia 47:82–88PubMedCrossRefGoogle Scholar
  113. Mou X, Zhou DY, Zhou DY, Ma JR, Liu YH, Chen HP et al (2016) Serum TGF-beta1 as a biomarker for type 2 diabetic nephropathy: a meta-analysis of randomized controlled trials. PLoS ONE 11:e149513Google Scholar
  114. Mu J, Pang Q, Guo YH, Chen JG, Zeng W, Huang YJ et al (2013) Functional implications of microRNA-215 in TGF-beta1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1. PLoS ONE 8:e58622PubMedPubMedCentralCrossRefGoogle Scholar
  115. Natarajan R, Putta S, Kato M (2012) MicroRNAs and diabetic complications. J Cardiovasc Transl Res 5:413–422PubMedPubMedCentralCrossRefGoogle Scholar
  116. Navarro-Gonzalez JF, Mora-Fernandez C, Muros DFM, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327–340PubMedCrossRefGoogle Scholar
  117. Nguyen TQ, Roestenberg P, van Nieuwenhoven FA, Bovenschen N, Li Z, Xu L et al (2008) CTGF inhibits BMP-7 signaling in diabetic nephropathy. J Am Soc Nephrol 19:2098–2107PubMedPubMedCentralCrossRefGoogle Scholar
  118. Nlandu KS, Neelisetty S, Woodbury L, Green E, Harris RC, Zent R (2016) Deleting the TGF-beta receptor in proximal tubules impairs HGF signaling. Am J Physiol Renal Physiol 310:F499–F510CrossRefGoogle Scholar
  119. Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M (2012) microRNA are central players in anti- and profibrotic gene regulation during liver fibrosis. Front Physiol 3:49PubMedPubMedCentralCrossRefGoogle Scholar
  120. Oba S, Kumano S, Suzuki E, Nishimatsu H, Takahashi M, Takamori H et al (2010) miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE 5:e13614PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ohta M, Chosa N, Kyakumoto S, Yokota S, Okubo N, Nemoto A et al (2018) IL-1β and TNF-α suppress TGF-β-promoted NGF expression in periodontal ligament-derived fibroblasts through inactivation of TGF-β- induced Smad2/3- and p38 MAPK-mediated signals. Int J Mol Med 42:1484–1494PubMedPubMedCentralGoogle Scholar
  122. Okada S, Shikata K, Matsuda M, Ogawa D, Usui H, Kido Y et al (2003) Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes 52:2586–2593PubMedCrossRefGoogle Scholar
  123. Okayama Y, Kawakami T (2006) Development, migration, and survival of mast cells. Immunol Res 34:97–115PubMedPubMedCentralCrossRefGoogle Scholar
  124. Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V et al (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pan J, Zhang J, Zhang X, Zhou X, Lu S, Huang X et al (2014) Role of microRNA-29b in angiotensin II-induced epithelial-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med 34:1381–1387PubMedCrossRefGoogle Scholar
  126. Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M et al (2013) FOG2 protein down-regulation by transforming growth factor-beta1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem 288:22469–22480PubMedPubMedCentralCrossRefGoogle Scholar
  127. Peng R, Zhou L, Zhou Y, Zhao Y, Li Q, Ni D et al (2015) MiR-30a inhibits the epithelial-mesenchymal transition of podocytes through downregulation of NFATc3. Int J Mol Sci 16:24032–24047PubMedPubMedCentralCrossRefGoogle Scholar
  128. Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23:458–469PubMedPubMedCentralCrossRefGoogle Scholar
  129. Rahimi Z (2016) The role of renin angiotensin aldosterone system genes in diabetic nephropathy. Can J Diabetes 40:178–183PubMedCrossRefGoogle Scholar
  130. Rane MJ, Song Y, Jin S, Barati MT, Wu R, Kausar H et al (2010) Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy. Am J Physiol Renal Physiol 298:F49–F61PubMedCrossRefGoogle Scholar
  131. Reddy MA, Tak PJ, Natarajan R (2013) Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin Nephrol 33:341–353PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rousselle A, Kettritz R, Schreiber A (2017) Monocytes promote crescent formation in anti-myeloperoxidase antibody-induced glomerulonephritis. Am J Pathol 187:1908–1915PubMedCrossRefGoogle Scholar
  133. Sanai T, Sobka T, Johnson T, El-Essawy M, Muchaneta-Kubara EC, Ben GO et al (2000) Expression of cytoskeletal proteins during the course of experimental diabetic nephropathy. Diabetologia 43:91–100PubMedCrossRefGoogle Scholar
  134. Shemesh II, Rozen-Zvi B, Kalechman Y, Gafter U, Sredni B (2014) AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway. PLoS ONE 9:e114287PubMedPubMedCentralCrossRefGoogle Scholar
  135. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G et al (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169PubMedPubMedCentralCrossRefGoogle Scholar
  136. Simpson K, Wonnacott A, Fraser DJ, Bowen T (2016) MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep 16:35PubMedPubMedCentralCrossRefGoogle Scholar
  137. Singh M, Yelle N, Venugopal C, Singh SK (2018) EMT: mechanisms and therapeutic implications. Pharmacol Ther 182:80–94PubMedCrossRefGoogle Scholar
  138. Sirin Y, Susztak K (2012) Notch in the kidney: development and disease. J Pathol 226:394–403PubMedCrossRefGoogle Scholar
  139. Sun L, Kondeti VK, Xie P, Raparia K, Kanwar YS (2011a) Epac1-mediated, high glucose-induced renal proximal tubular cells hypertrophy via the Akt/p21 pathway. Am J Pathol 179:1706–1718PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sun L, Zhang D, Liu F, Xiang X, Ling G, Xiao L et al (2011b) Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J Pathol 225:364–377PubMedPubMedCentralCrossRefGoogle Scholar
  141. Teng B, Duong M, Tossidou I, Yu X, Schiffer M (2014) Role of protein kinase C in podocytes and development of glomerular damage in diabetic nephropathy. Front Endocrinol (Lausanne) 5:179CrossRefGoogle Scholar
  142. Tesch GH (2017) Diabetic nephropathy—is this an immune disorder? Clin Sci (Lond) 131:2183–2199CrossRefGoogle Scholar
  143. Togawa H, Nakanishi K, Shima Y, Obana M, Sako M, Nozu K et al (2009) Increased chymase-positive mast cells in children with crescentic glomerulonephritis. Pediatr Nephrol 24:1071–1075PubMedCrossRefGoogle Scholar
  144. Trionfini P, Benigni A (2017) MicroRNAs as master regulators of glomerular function in health and disease. J Am Soc Nephrol 28:1686–1696PubMedPubMedCentralCrossRefGoogle Scholar
  145. Trionfini P, Benigni A, Remuzzi G (2015) MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 11:23–33PubMedCrossRefGoogle Scholar
  146. Tripurani SK, Wang Y, Fan YX, Rahimi M, Wong L, Lee MH et al (2018) Suppression of Wnt/β-catenin signaling by EGF receptor is required for hair follicle development. Mol Biol Cell 29:2784–2799PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tu Y, Wu T, Dai A, Pham Y, Chew P, de Haan JB et al (2011) Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-beta in diabetic nephropathy. Kidney Int 79:199–209PubMedCrossRefGoogle Scholar
  148. Turner CA, Sharma V, Hagenauer MH, Chaudhury S, O’Connor AM, Hebda-Bauer EK et al (2018) Connective tissue growth factor is a novel prodepressant. Biol Psychiatry 84:555–562PubMedPubMedCentralCrossRefGoogle Scholar
  149. Umanath K, Lewis JB (2018) Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 71:884–895PubMedCrossRefGoogle Scholar
  150. van der Sande NG, Dorresteijn JA, Visseren FL, Dwyer JP, Blankestijn PJ, van der Graaf Y et al (2016) Individualized prediction of the effect of angiotensin receptor blockade on renal and cardiovascular outcomes in patients with diabetic nephropathy. Diab Obes Metab 18:1120–1127CrossRefGoogle Scholar
  151. Vasanthakumar R, Mohan V, Anand G, Deepa M, Babu S, Aravindhan V (2015) Serum IL-9, IL-17, and TGF-beta levels in subjects with diabetic kidney disease (CURES-134). Cytokine 72:109–112PubMedCrossRefGoogle Scholar
  152. Verhave JC, Bouchard J, Goupil R, Pichette V, Brachemi S, Madore F et al (2013) Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: a prospective study. Diabetes Res Clin Pract 101:333–340PubMedCrossRefGoogle Scholar
  153. Voelker J, Berg PH, Sheetz M, Duffin K, Shen T, Moser B et al (2017) Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol 28:953–962PubMedCrossRefGoogle Scholar
  154. Wahlang B, McClain C, Barve S, Gobejishvili L (2018) Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 49:105–115PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang S (2015) Role of upstream stimulatory factor 2 in diabetic nephropathy. Front Biol (Beijing) 10:221–229CrossRefGoogle Scholar
  156. Wang Y, Rangan GK, Tay YC, Wang Y, Harris DC (1999) Induction of monocyte chemoattractant protein-1 by albumin is mediated by nuclear factor kappaB in proximal tubule cells. J Am Soc Nephrol 10:1204–1213PubMedGoogle Scholar
  157. Wang A, Ziyadeh FN, Lee EY, Pyagay PE, Sung SH, Sheardown SA et al (2007) Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol 293:F1657–F1665CrossRefGoogle Scholar
  158. Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A et al (2010) E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59:1794–1802PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A et al (2011a) miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60:280–287PubMedCrossRefGoogle Scholar
  160. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW et al (2011b) Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair 4:4PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M et al (2012) Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol 23:252–265PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang J, Gao Y, Ma M, Li M, Zou D, Yang J et al (2013) Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys 67:537–546PubMedCrossRefGoogle Scholar
  163. Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY et al (2014a) miR-21 overexpression enhances TGF-beta1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol 392:163–172PubMedCrossRefGoogle Scholar
  164. Wang Z, Wei M, Wang M, Chen L, Liu H, Ren Y et al (2014b) Inhibition of macrophage migration inhibitory factor reduces diabetic nephropathy in type II diabetes mice. Inflammation 37:2020–2029PubMedCrossRefGoogle Scholar
  165. Wei J, Zhang Y, Luo Y, Wang Z, Bi S, Song D et al (2014) Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfbeta1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic Biol Med 67:91–102PubMedCrossRefGoogle Scholar
  166. White DA, Su Y, Kanellakis P, Kiriazis H, Morand EF, Bucala R et al (2014) Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction. J Mol Cell Cardiol 69:32–42PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wu CC, Sytwu HK, Lu KC, Lin YF (2011) Role of T cells in type 2 diabetic nephropathy. Exp Diabetes Res 2011:514738PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wu J, Zheng C, Fan Y, Zeng C, Chen Z, Qin W et al (2014) Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J Am Soc Nephrol 25:92–104PubMedCrossRefGoogle Scholar
  169. Wu H, Kong L, Tan Y, Epstein PN, Zeng J, Gu J et al (2016) C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21. Diabetologia 59:1558–1568PubMedPubMedCentralCrossRefGoogle Scholar
  170. Xiao L, Wang M, Yang S, Liu F, Sun L (2013) A glimpse of the pathogenetic mechanisms of Wnt/beta-catenin signaling in diabetic nephropathy. Biomed Res Int 2013:987064PubMedPubMedCentralGoogle Scholar
  171. Xie X, Xia W, Fei X, Xu Q, Yang X, Qiu D et al (2015) Relaxin inhibits high glucose-induced matrix accumulation in human mesangial cells by interfering with TGF-beta1 production and mesangial cells phenotypic transition. Biol Pharm Bull 38:1464–1469PubMedCrossRefGoogle Scholar
  172. Xu W, Yang Z, Lu N (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr 9:317–324PubMedPubMedCentralCrossRefGoogle Scholar
  173. Yacoub R, Campbell KN (2015) Inhibition of RAS in diabetic nephropathy. Int J Nephrol Renovasc Dis 8:29–40PubMedPubMedCentralGoogle Scholar
  174. Yakush WJ (2017) Management strategies for patients with diabetic kidney disease and chronic kidney disease in diabetes. Nurs Clin North Am 52:575–587CrossRefGoogle Scholar
  175. Yang J, Dai C, Liu Y (2003) Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol 163:621–632PubMedPubMedCentralCrossRefGoogle Scholar
  176. Yang Z, Guo Z, Dong J, Sheng S, Wang Y, Yu L et al (2018) miR-374a regulates inflammatory response in diabetic nephropathy by targeting MCP-1 expression. Front Pharmacol 9:900PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yano N, Suzuki D, Endoh M, Zhao TC, Padbury JF, Tseng YT (2007) A novel phosphoinositide 3-kinase-dependent pathway for angiotensin II/AT-1 receptor-mediated induction of collagen synthesis in MES-13 mesangial cells. J Biol Chem 282:18819–18830PubMedCrossRefGoogle Scholar
  178. Yokoi H, Mukoyama M, Mori K, Kasahara M, Suganami T, Sawai K et al (2008) Overexpression of connective tissue growth factor in podocytes worsens diabetic nephropathy in mice. Kidney Int 73:446–455PubMedCrossRefGoogle Scholar
  179. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zha D, Cheng H, Li W, Wu Y, Li X, Zhang L et al (2017) High glucose instigates tubulointerstitial injury by stimulating hetero-dimerization of adiponectin and angiotensin II receptors. Biochem Biophys Res Commun 493:840–846PubMedCrossRefGoogle Scholar
  181. Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X et al (2009) MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 583:2009–2014PubMedCrossRefGoogle Scholar
  182. Zhang HT, Zhang D, Zha ZG, Hu CD (2014) Transcriptional activation of PRMT5 by NF-Y is required for cell growth and negatively regulated by the PKC/c-Fos signaling in prostate cancer cells. Biochim Biophys Acta 1839:1330–1340PubMedPubMedCentralCrossRefGoogle Scholar
  183. Zhang C, Hou B, Yu S, Chen Q, Zhang N, Li H (2016a) HGF alleviates high glucose-induced injury in podocytes by GSK3beta inhibition and autophagy restoration. Biochim Biophys Acta 1863:2690–2699PubMedCrossRefGoogle Scholar
  184. Zhang H, Li A, Zhang W, Huang Z, Wang J, Yi B (2016b) High glucose-induced cytoplasmic translocation of Dnmt3a contributes to CTGF hypo-methylation in mesangial cells. Biosci Rep 36PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zhang Y, Sun X, Icli B, Feinberg MW (2017) Emerging roles for microRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev 38:145–168PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zhang W, Hou X, Huang M, Zeng X, He X, Liao Y (2018) TDCPP protects cardiomyocytes from H2O2-induced injuries via activating PI3K/Akt/GSK3beta signaling pathway. Mol Cell BiochemGoogle Scholar
  187. Zhao B, Li H, Liu J, Han P, Zhang C, Bai H et al (2016) MicroRNA-23b targets Ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy. J Am Soc Nephrol 27:2597–2608PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhao D, Jia J, Shao H (2017a) miR-30e targets GLIPR-2 to modulate diabetic nephropathy: in vitro and in vivo experiments. J Mol Endocrinol 59:181–190PubMedCrossRefGoogle Scholar
  189. Zhao Y, Yin Z, Li H, Fan J, Yang S, Chen C et al (2017b) MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell 16:387–400PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zheng JM, Yao GH, Cheng Z, Wang R, Liu ZH (2012) Pathogenic role of mast cells in the development of diabetic nephropathy: a study of patients at different stages of the disease. Diabetologia 55:801–811PubMedCrossRefGoogle Scholar
  191. Zhong X, Chung AC, Chen HY, Meng XM, Lan HY (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22:1668–1681PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R et al (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674PubMedCrossRefGoogle Scholar
  193. Zhou L, Liu Y (2016) Wnt/beta-catenin signaling and renin-angiotensin system in chronic kidney disease. Curr Opin Nephrol Hypertens 25:100–106PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zhou T, He X, Cheng R, Zhang B, Zhang RR, Chen Y et al (2012) Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia 55:255–266PubMedCrossRefGoogle Scholar
  195. Zhu L, Zhao S, Liu S, Liu Q, Li F, Hao J (2016) PTEN regulates renal extracellular matrix deposit via increased CTGF in diabetes mellitus. J Cell Biochem 117:1187–1198PubMedCrossRefGoogle Scholar
  196. Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De LCM, Hong SW, Isono M et al (2000) Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 97:8015–8020PubMedPubMedCentralCrossRefGoogle Scholar
  197. Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z (2017) MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol 796:190–206PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of NephrologySecond Xiangya Hospital, Central South UniversityChangshaChina

Personalised recommendations