Antifibrotic Roles of RAAS Blockers: Update

  • Ying-Ying Zhang
  • Ying Yu
  • Chen YuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)


The rennin–angiotensin–aldosterone system (RAAS) has been well documented in regulating blood pressure, fluid volume, and sodium balance. Overactivity of RAAS promotes both systemic and regional glomerular capillary hypertension, which could induce hemodynamic injury to the glomerulus, leading to kidney damage and renal fibrosis via profibrotic and proinflammatory pathway. Therefore, the use of RAAS inhibitors (i.e., ACEIs, ARBs, and MRAs) as the optional therapy has been demonstrated to prevent proteinuria, and kidney fibrosis and slow the decline of renal function effectively in the process of kidney disease during the last few decades. Recently, several new components of the RAAS have been discovered, including ACE2 and the corresponding ACE2/Ang (1-7)/Mas axis, which are also present in the kidney. Besides the classic RAAS inhibitors target the angiotensin-AT1-aldosterone axis, with the expanding knowledge about RAAS, a number of potential therapeutic targets in this system is emerging. Newer agents that are more specific are being developed. The present chapter outlines the insights of the RAAS agents (classic RAAS antagonists/the new RAAS drugs), and discusses its clinical application in the combat of renal fibrosis.


Renin–angiotensin–aldosterone system (RAAS) Fibrosis Antagonists 


  1. Abadir PM, Carey RM, Siragy HM (2003) Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 42:600–604PubMedCrossRefGoogle Scholar
  2. Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S et al (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22:4209–4217PubMedCrossRefGoogle Scholar
  3. Ambuhl PM, Tissot AC, Fulurija A, Maurer P, Nussberger J, Sabat R et al (2007) A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. J Hypertens 25:63–72PubMedCrossRefGoogle Scholar
  4. Andersen K, Hartman D, Peppard T, Hermann D, Van Ess P, Lefkowitz M et al (2012) The effects of aldosterone synthase inhibition on aldosterone and cortisol in patients with hypertension: a phase II, randomized, double-blind, placebo-controlled, multicenter study. J Clin Hypertens 14:580–587CrossRefGoogle Scholar
  5. Arai K, Morikawa Y, Ubukata N, Tsuruoka H, Homma T (2016) CS-3150, a novel nonsteroidal mineralocorticoid receptor antagonist, shows preventive and therapeutic effects on renal injury in deoxycorticosterone acetate/salt-induced hypertensive rats. J Pharmacol Exp Ther 358:548–557PubMedCrossRefGoogle Scholar
  6. Arai K, Tsuruoka H, Homma T (2015) CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol 769:266–273PubMedCrossRefGoogle Scholar
  7. Azizi M, Amar L, Menard J (2013) Aldosterone synthase inhibition in humans. Nephrol Dial Transplant 28:36–43PubMedCrossRefGoogle Scholar
  8. Balavoine F, Azizi M, Bergerot D, De Mota N, Patouret R, Roques BP et al (2014) Randomised, double-blind, placebo-controlled, dose-escalating phase I study of QGC001, a centrally acting aminopeptidase a inhibitor prodrug. Clin Pharmacokinet 53:385–395PubMedCrossRefGoogle Scholar
  9. Barrera-Chimal J, Estrela GR, Lechner SM, Giraud S, El Moghrabi S, Kaaki S et al (2018) The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling. Kidney Int 93:1344–1355PubMedCrossRefGoogle Scholar
  10. Barroso LC, Silveira KD, Lima CX, Borges V, Bader M, Rachid M et al (2012) Renoprotective effects of AVE0991, a nonpeptide mas receptor agonist, in experimental acute renal injury. Int J Hypertens 2012:808726PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bertocchio JP, Warnock DG, Jaisser F (2011) Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int 79:1051–1060PubMedCrossRefGoogle Scholar
  12. Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 121:297–303CrossRefGoogle Scholar
  13. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869PubMedCrossRefGoogle Scholar
  14. Brown NJ (2013) Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol 9:459–469PubMedPubMedCentralCrossRefGoogle Scholar
  15. Clarke NE, Turner AJ (2012) Angiotensin-converting enzyme 2: the first decade. Int J Hypertens 2012:307315PubMedCrossRefGoogle Scholar
  16. Do TH, Chen Y, Nguyen VT, Phisitkul S (2010) Vaccines in the management of hypertension. Expert Opin Biol Ther 10:1077–1087PubMedCrossRefGoogle Scholar
  17. Doulton TW, Macgregor GA (2005) Combination renin-angiotensin system blockade in hypertension. Kidney Int 68:1898PubMedCrossRefGoogle Scholar
  18. Downham MR, Auton TR, Rosul A, Sharp HL, Sjostrom L, Rushton A et al (2003) Evaluation of two carrier protein-angiotensin I conjugate vaccines to assess their future potential to control high blood pressure (hypertension) in man. Br J Clin Pharmacol 56:505–512PubMedPubMedCentralCrossRefGoogle Scholar
  19. Elseweidy MM, Askar ME, Elswefy SE, Shawky M (2018) Nephrotoxicity induced by cisplatin intake in experimental rats and therapeutic approach of using mesenchymal stem cells and spironolactone. Appl Biochem Biotechnol 184:1390–1403PubMedCrossRefGoogle Scholar
  20. Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R et al (2006) Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 1:940–951PubMedCrossRefGoogle Scholar
  21. Ferreira AJ, Shenoy V, Qi Y, Fraga-Silva RA, Santos RA, Katovich MJ et al (2011) Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol 96:287–294PubMedCrossRefGoogle Scholar
  22. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W et al (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369:1892–1903PubMedCrossRefGoogle Scholar
  23. Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C (2014) A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin Sci 127:135–148PubMedCrossRefGoogle Scholar
  24. Gardiner SM, Auton TR, Downham MR, Sharp HL, Kemp PA, March JE et al (2000) Active immunization with angiotensin I peptide analogue vaccines selectively reduces the presser effects of exogenous angiotensin I in conscious rats. Brit J Pharmacol 129:1178–1182CrossRefGoogle Scholar
  25. Gradman AH, Pinto R (2008) Vaccination: a novel strategy for inhibiting the renin-angiotensin-aldosterone system. Curr Hypertens Rep 10:473–479PubMedCrossRefGoogle Scholar
  26. Grobe JL, Der Sarkissian S, Stewart JM, Meszaros JG, Raizada MK, Katovich MJ (2007) ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clin Sci (Lond) 113:357–364CrossRefGoogle Scholar
  27. Hallberg M, Sumners C, Steckelings UM, Hallberg A (2018) Small-molecule AT2 receptor agonists. Med Res Rev 38:602–624PubMedCrossRefGoogle Scholar
  28. Handa RK, Handa SE, Elgemark MK (2001) Autoradiographic analysis and regulation of angiotensin receptor subtypes AT(4), AT(1), and AT((1-7)) in the kidney. Am J Physiol Renal Physiol 281:F936–F947PubMedCrossRefGoogle Scholar
  29. Jensen C, Herold P, Brunner HR (2008) Aliskiren: the first renin inhibitor for clinical treatment. Nat Rev Drug Discov 7:399–410PubMedCrossRefGoogle Scholar
  30. Jing W, Vaziri ND, Nunes A, Suematsu Y, Farzaneh T, Khazaeli M et al (2017) LCZ696 (Sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD. Am J Transl Res 9:5473–5484PubMedPubMedCentralGoogle Scholar
  31. Kelly DJ, Zhang Y, Moe G, Naik G, Gilbert RE (2007) Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia 50:2398–2404PubMedCrossRefGoogle Scholar
  32. Kolkhof P, Nowack C, Eitner F (2015) Nonsteroidal antagonists of the mineralocorticoid receptor. Curr Opin Nephrol Hypertens 24:417–424PubMedCrossRefGoogle Scholar
  33. Lattenist L, Lechner SM, Messaoudi S, Le Mercier A, El Moghrabi S, Prince S et al (2017) Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury-mediated chronic kidney disease: role of oxidative stress. Hypertension 69:870–878PubMedCrossRefGoogle Scholar
  34. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. N Engl J Med 329:1456–1462PubMedCrossRefGoogle Scholar
  35. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860PubMedCrossRefGoogle Scholar
  36. Li SY, Chen YT, Yang WC, Tarng DC, Lin CC, Yang CY et al (2012) Effect of add-on direct renin inhibitor aliskiren in patients with non-diabetes related chronic kidney disease. BMC Nephrol 13:89PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lijnen P, Staessen J, Fagard R, Amery A (1982) Increase in plasma aldosterone during prolonged captopril treatment. Am J Cardiol 49:1561–1563PubMedCrossRefGoogle Scholar
  38. MacKinnon M, Shurraw S, Akbari A, Knoll GA, Jaffey J, Clark HD (2006) Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am J Kidney Dis 48:8–20PubMedCrossRefGoogle Scholar
  39. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J et al (2008) Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372:547–553PubMedCrossRefGoogle Scholar
  40. Marquez DF, Ruiz-Hurtado G, Ruilope LM, Segura J (2015) An update of the blockade of the renin angiotensin aldosterone system in clinical practice. Expert Opin Pharmacother 16:2283–2292PubMedCrossRefGoogle Scholar
  41. Matavelli LC, Siragy HM (2015) AT2 receptor activities and pathophysiological implications. J Cardiovasc Pharmacol 65:226–232PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mehdi UF, Adams-Huet B, Raskin P, Vega GL, Toto RD (2009) Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol 20:2641–2650PubMedPubMedCentralCrossRefGoogle Scholar
  43. Miyata K, Satou R, Inui D, Katsurada A, Seth D, Davis A et al (2014) Renoprotective effects of direct renin inhibition in glomerulonephritis. Am J Med Sci 348:306–314PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nadeem S, Batisky DL (2014) Aliskiren, the first direct renin inhibitor: assessing a role in pediatric hypertension and kidney diseases. Pediatr Nephrol 29:2105–2111PubMedCrossRefGoogle Scholar
  45. Nicolas LB, Gutierrez M, Binkert C, Dingemanse J (2013) Pharmacokinetics, pharmacodynamics, and tolerability of ACT-077825, a new direct renin inhibitor after multiple-ascending doses in healthy subjects. J Cardiovasc Pharm 61:42–50CrossRefGoogle Scholar
  46. Nishiyama A, Seth DM, Navar LG (2002) Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension 39:129–134PubMedCrossRefGoogle Scholar
  47. Nomura M, Nomura S, Mitsui T, Suzuki M, Kobayashi H, Ito T et al (2005) Possible involvement of aminopeptidase A in hypertension and renal damage in Dahl salt-sensitive rats. Am J Hypertens 18:538–543PubMedCrossRefGoogle Scholar
  48. Obata J, Nakamura T, Kuroyanagi R, Yoshida Y, Guo DF, Inagami T (1997) Candesartan prevents the progression of glomerulosclerosis in genetic hypertensive rats. Kidney Int 63(Suppl):S229–S231Google Scholar
  49. Oparil S, Haber E (1971) Renin in differential diagnosis of hypertension. Am Heart J 82:568–570PubMedCrossRefGoogle Scholar
  50. Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J et al (2010) Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes 59:529–538PubMedCrossRefGoogle Scholar
  51. Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM (1997) Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension 30:1238–1246PubMedCrossRefGoogle Scholar
  52. Pandey A, Gaikwad AB (2017) AT2 receptor agonist Compound 21: a silver lining for diabetic nephropathy. Eur J Pharmacol 815:251–257PubMedCrossRefGoogle Scholar
  53. Parving HH, Brenner BM, McMurray JJV, de Zeeuw D, Haffner SM, Solomon SD et al (2012) Cardiorenal end points in a trial of aliskiren for type 2 diabetes. New Engl J Med 367:2204–2213PubMedCrossRefGoogle Scholar
  54. Paulis L, Rajkovicova R, Simko F (2015) New developments in the pharmacological treatment of hypertension: dead-end or a glimmer at the horizon? Curr Hypertens Rep 17:557PubMedCrossRefGoogle Scholar
  55. Persson F, Rossing P, Schjoedt KJ, Juhl T, Tarnow L, Stehouwer CD et al (2008) Time course of the antiproteinuric and antihypertensive effects of direct renin inhibition in type 2 diabetes. Kidney Int 73:1419–1425PubMedCrossRefGoogle Scholar
  56. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med 341:709–717PubMedCrossRefGoogle Scholar
  57. Rasche FM, Joel C, Ebert T, Frese T, Barinka F, Busch V et al (2018) Dual RAAS blockade with aliskiren in patients with severely impaired chronic kidney disease. Exp Clin Endocrinol Diab 126:39–52CrossRefGoogle Scholar
  58. Renke M, Lizakowski S, Tylicki L, Rutkowski P, Knap N, Heleniak Z et al (2014) Aliskiren attenuates oxidative stress and improves tubular status in non-diabetic patients with chronic kidney disease-Placebo controlled, randomized, cross-over study. Adv Med Sci 59:256–260PubMedCrossRefGoogle Scholar
  59. Rice ASC, Dworkin RH, McCarthy TD, Anand P, Bountra C, McCloud PI et al (2014) EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: a randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 383:1637–1647PubMedCrossRefGoogle Scholar
  60. Rompe F, Artuc M, Hallberg A, Alterman M, Stroder K, Thone-Reineke C et al (2010) Direct angiotensin II type 2 receptor stimulation acts anti-inflammatory through epoxyeicosatrienoic acid and inhibition of nuclear factor kappaB. Hypertension 55:924–931PubMedCrossRefGoogle Scholar
  61. Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V et al (2004) Preventing microalbuminuria in type 2 diabetes. N Engl J Med 351:1941–1951PubMedCrossRefGoogle Scholar
  62. Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal disease. II. The correlations. Hum Pathol 1:631–641PubMedCrossRefGoogle Scholar
  63. Schmerbach K, Kalk P, Wengenmayer C, Lucht K, Unger T, Hocher B et al (2012) Renal outcome in equipotent antihypertensive treatment with telmisartan, ramipril and in combination in SHR-SP rats. Clin Lab 58:625–633PubMedGoogle Scholar
  64. Singh K, Sharma K, Singh M, Sharma PL (2012) Possible mechanism of the cardio-renal protective effects of AVE-0991, a non-peptide Mas-receptor agonist, in diabetic rats. J Renin-Angio-Aldo S 13:334–340Google Scholar
  65. Singh Y, Singh K, Sharma PL (2013) Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA-salt-induced hypertension in rats. Mol Cell Biochem 373:189–194PubMedCrossRefGoogle Scholar
  66. Siragy HM, Carey RM (1997) The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269PubMedPubMedCentralCrossRefGoogle Scholar
  67. Steckelings UM, Paulis L, Namsolleck P, Unger T (2012) AT2 receptor agonists: hypertension and beyond. Curr Opin Nephrol Hypertens 21:142–146PubMedCrossRefGoogle Scholar
  68. Sun N, Zhai L, Li H, Shi LH, Yao Z, Zhang B (2016) Angiotensin-converting enzyme inhibitor (ACEI)-mediated amelioration in renal fibrosis involves suppression of mast cell degranulation. Kidney Blood Press Res 41:108–118PubMedCrossRefGoogle Scholar
  69. Sun QL, Li M, Rui HL, Chen YP (2015) Inhibition of local aldosterone by eplerenone reduces renal structural damage in a novel model of chronic cyclosporine A nephrotoxicity. J Renin Angiotensin Aldosterone Syst 16:301–310PubMedCrossRefGoogle Scholar
  70. Sureshkumar KK (2008) Renin inhibition with aliskiren in hypertension: focus on aliskiren/hydrochlorothiazide combination therapy. Vasc Health Risk Manag 4:1205–1220PubMedPubMedCentralCrossRefGoogle Scholar
  71. Taira M, Toba H, Murakami M, Iga I, Serizawa R, Murata S et al (2008) Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats. Eur J Pharmacol 589:264–271PubMedCrossRefGoogle Scholar
  72. Tamargo J, Solini A, Ruilope LM (2014) Comparison of agents that affect aldosterone action. Semin Nephrol 34:285–306PubMedCrossRefGoogle Scholar
  73. Tikellis C, Johnston CI, Forbes JM, Burns W, Thomas MC, Lew RA et al (2004) Identification of angiotensin converting enzyme 2 in the rodent retina. Curr Eye Res 29:419–427PubMedCrossRefGoogle Scholar
  74. Treml B, Neu N, Kleinsasser A, Gritsch C, Finsterwalder T, Geiger R et al (2010) Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med 38:596–601PubMedCrossRefGoogle Scholar
  75. Vaidyanathan S, Bigler H, Yeh CM, Bizot MN, Dieterich HA, Howard D et al (2007) Pharmacokinetics of the oral direct renin inhibitor aliskiren alone and in combination with irbesartan in renal impairment. Clin Pharmacokinet 46:661–675PubMedCrossRefGoogle Scholar
  76. Velez JC, Janech MG, Hicks MP, Morinelli TA, Rodgers J, Self SE et al (2014) Lack of renoprotective effect of chronic intravenous angiotensin-(1-7) or angiotensin-(2-10) in a rat model of focal segmental glomerulosclerosis. PLoS ONE 9:e110083PubMedPubMedCentralCrossRefGoogle Scholar
  77. Velez JCQ, Arif E, Rodgers J, Hicks MP, Arthur JM, Nihalani D et al (2017) Deficiency of the angiotensinase aminopeptidase A increases susceptibility to glomerular injury. J Am Soc Nephrol 28:2119–2132PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wakahara S, Konoshita T, Mizuno S, Motomura M, Aoyama C, Makino Y et al (2007) Synergistic expression of angiotensin-converting enzyme (ACE) and ACE2 in human renal tissue and confounding effects of hypertension on the ACE to ACE2 ratio. Endocrinology 148:2453–2457PubMedCrossRefGoogle Scholar
  79. Wang H, Fu W, Jin Z, Wang Y, Yao W, Yin P et al (2013) Advanced IgA nephropathy with impaired renal function benefits from losartan treatment in rats. Ren Fail 35:812–818PubMedCrossRefGoogle Scholar
  80. Wang Y, Del Borgo M, Lee HW, Baraldi D, Hirmiz B, Gaspari TA et al (2017) Anti-fibrotic potential of AT2 receptor agonists. Front Pharmacol 8:564PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H (2002) AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension 40:847–852PubMedCrossRefGoogle Scholar
  82. Williams VR, Scholey JW (2018) Angiotensin-converting enzyme 2 and renal disease. Curr Opin Nephrol Hy 27:35–41CrossRefGoogle Scholar
  83. Wu MT, Tung SC, Hsu KT, Lee CT (2014) Aliskiren add-on therapy effectively reduces proteinuria in chronic kidney disease: an open-label prospective trial. J Renin Angiotensin Aldosterone Syst 15:271–277PubMedCrossRefGoogle Scholar
  84. Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM (1998) Converting enzyme determines plasma clearance of angiotensin-(1-7). Hypertension 32:496–502PubMedCrossRefGoogle Scholar
  85. Ye M, Wysocki J, Naaz P, Salabat MR, LaPointe MS, Batlle D (2004) Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination? Hypertension 43:1120–1125PubMedCrossRefGoogle Scholar
  86. Zhang F, Liu H, Liu D, Liu Y, Li H, Tan X, Liu F, Peng Y, Zhang H (2017) Effects of RAAS inhibitors in patients with kidney disease. Curr Hypertens Rep 19:72PubMedCrossRefGoogle Scholar
  87. Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H et al (2011) Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension 57:314–322PubMedCrossRefGoogle Scholar
  88. Zhu F, Liao YH, Li LD, Cheng M, Wei F, Wei YM et al (2006) Target organ protection from a novel angiotensin II receptor (AT1) vaccine ATR12181 in spontaneously hypertensive rats. Cell Mol Immunol 3:107–114PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Nephrology, Tongji HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations