Advertisement

Renal Injury Repair: How About the Role of Stem Cells

  • Jian-Si Li
  • Bing LiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Renal failure is one of the most important causes of mortality and morbidity all over the world. Acute kidney injury (AKI) is a major clinical problem that affects up to 5% of all hospitalized patients. Although the kidney has a remarkable capacity for regeneration after acute injury, the mortality among patients with severe AKI remains dismally high, and in clinical practice, most patients cannot be cured completely and suffer from chronic kidney disease (CKD). Recently, the incidence and prevalence of CKD have increased, largely as a result of the enhanced prevalence of diabetes and obesity. The progressive nature of CKD and the ensuing end-stage renal disease (ESRD) place a substantial burden on global healthcare resources. Currently, dialysis and transplantation remain the only treatment options. Finding new therapeutic methods to fight AKI and CKD remains an ongoing quest. Although the human renal histological structure is complex, stem cell therapies have been applied to repair injured kidneys. The curative effects of mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and nephron progenitor cells (NPCs) on renal repair have also been reported by researchers. This review focuses on stem cell therapy and mechanisms for renal injury repair.

Keywords

Stem cell Renal repair Acute kidney injury Chronic kidney disease 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81670616 and No. 81873598), the innovation fund for the clinical research of the Harbin Medical University (2017LCZX44).

References

  1. Araoka T, Mae S, Kurose Y, Uesugi M, Ohta A, Yamanaka S et al (2014) Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS ONE 9:e84881PubMedPubMedCentralCrossRefGoogle Scholar
  2. Asanuma H, Meldrum DR, Meldrum KK (2010) Therapeutic applications of mesenchymal stem cells to repair kidney injury. J Urol 184:26–33PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bruno S, Chiabotto G, Camussi G (2014) Concise review: different mesenchymal stromal/stem cell populations reside in the adult kidney. Stem Cells Transl Med 3:1451–1455PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE 7:e33115PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555PubMedPubMedCentralCrossRefGoogle Scholar
  7. Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cho JH, Patel B, Bonala S, Manne S, Zhou Y, Vadrevu SK et al (2017) Notch transactivates Rheb to maintain the multipotency of TSC-null cells. Nat Commun 8:1848PubMedPubMedCentralCrossRefGoogle Scholar
  9. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5:e11803PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK et al (2017) Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater 16:1112–1119PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dai X, Tan Y, Cai S, Xiong X, Wang L, Ye Q et al (2011) The role of CXCR11 on the adhesion, proliferation and angiogenesis of endothelial progenitor cells. J Cell Mol Med 15:1299–1309PubMedPubMedCentralCrossRefGoogle Scholar
  12. Darisipudi MN, Kulkarni OP, Sayyed SG, Ryu M, Migliorini A, Sagrinati C et al (2011) Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol 179:116–124PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dekel B, Shezen E, Even-Tov-Friedman S, Katchman H, Margalit R, Nagler A et al (2006) Transplantation of human hematopoietic stem cells into ischemic and growing kidneys suggests a role in vasculogenesis but not tubulogenesis. Stem Cells 24:1185–1193PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefPubMedCentralGoogle Scholar
  15. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fang TC, Alison MR, Cook HT, Jeffery R, Wright NA, Poulsom R (2005) Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol 16:1723–1732PubMedCrossRefPubMedCentralGoogle Scholar
  17. Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V et al (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715PubMedPubMedCentralCrossRefGoogle Scholar
  18. Freedman BS, Lam AQ, Sundsbak JL, Iatrino R, Su X, Koon SJ et al (2013) Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations. J Am Soc Nephrol 24:1571–1586PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483PubMedCrossRefPubMedCentralGoogle Scholar
  20. Goncalves AF, Adlesic M, Brandt S, Hejhal T, Harlander S, Sommer L et al (2017) Evidence of renal angiomyolipoma neoplastic stem cells arising from renal epithelial cells. Nat Commun 8:1466PubMedPubMedCentralCrossRefGoogle Scholar
  21. Grange C, Moggio A, Tapparo M, Porta S, Camussi G, Bussolati B (2014) Protective effect and localization by optical imaging of human renal CD133 + progenitor cells in an acute kidney injury model. Physiol Rep 2:e12009PubMedPubMedCentralCrossRefGoogle Scholar
  22. He J, Wang Y, Sun S, Yu M, Wang C, Pei X et al (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17:493–500CrossRefGoogle Scholar
  23. Held PK, Al-Dhalimy M, Willenbring H, Akkari Y, Jiang S, Torimaru Y et al (2006) In vivo genetic selection of renal proximal tubules. Mol Ther 13:49–58PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hickson LJ, Eirin A, Lerman LO (2016) Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 89:767–778PubMedPubMedCentralCrossRefGoogle Scholar
  25. Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59:311–325PubMedCrossRefPubMedCentralGoogle Scholar
  26. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291PubMedCrossRefGoogle Scholar
  27. Imasawa T, Utsunomiya Y, Kawamura T, Zhong Y, Nagasawa R, Okabe M et al (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12:1401–1409PubMedPubMedCentralGoogle Scholar
  28. Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635PubMedPubMedCentralGoogle Scholar
  29. Iwasaki M, Adachi Y, Minamino K, Suzuki Y, Zhang Y, Okigaki M et al (2005) Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSF. J Am Soc Nephrol 16:658–666PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jang HR, Park JH, Kwon GY, Lee JE, Huh W, Jin HJ et al (2014) Effect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 307:F1149–F1161PubMedCrossRefPubMedCentralGoogle Scholar
  31. Jia X, Xie X, Feng G, Lu H, Zhao Q, Che Y et al (2012) Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury. BMC Nephrol 13:105PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kaushal GP, Shah SV (2014) Challenges and advances in the treatment of AKI. J Am Soc Nephrol 25:877–883PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kramann R, Humphreys BD (2014) Kidney pericytes: roles in regeneration and fibrosis. Semin Nephrol 34:374–383PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25:1211–1225PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F et al (2015) Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J Am Soc Nephrol 26:1961–1974PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lee PY, Chien Y, Chiou GY, Lin CH, Chiou CH, Tarng DC (2012) Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplant 21:2569–2585PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764PubMedPubMedCentralCrossRefGoogle Scholar
  38. Liu H, Liu S, Li Y, Wang X, Xue W, Ge G et al (2012) The role of SDF-1-CXCR38/CXCR38 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS ONE 7:e34608PubMedPubMedCentralCrossRefGoogle Scholar
  39. Liu N, Han G, Cheng J, Huang J, Tian J (2013a) Erythropoietin promotes the repair effect of acute kidney injury by bone-marrow mesenchymal stem cells transplantation. Exp Biol Med (Maywood) 238:678–686CrossRefGoogle Scholar
  40. Liu N, Patzak A, Zhang J (2013b) CXCR40-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol 305:F1064–F1073PubMedCrossRefPubMedCentralGoogle Scholar
  41. Liu P, Feng Y, Dong C, Liu D, Wu X, Wu H et al (2013c) Study on therapeutic action of bone marrow derived mesenchymal stem cell combined with vitamin E against acute kidney injury in rats. Life Sci 92:829–837PubMedCrossRefPubMedCentralGoogle Scholar
  42. Mae SI, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N et al (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367PubMedPubMedCentralCrossRefGoogle Scholar
  43. Marquez-Curtis LA, Janowska-Wieczorek A (2013) Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR43 axis. Biomed Res Int 2013:561098PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mazzinghi B, Ronconi E, Lazzeri E, Sagrinati C, Ballerini L, Angelotti ML et al (2008) Essential but differential role for CXCR44 and CXCR44 in the therapeutic homing of human renal progenitor cells. J Exp Med 205:479–490PubMedPubMedCentralCrossRefGoogle Scholar
  45. Migliorini A, Angelotti ML, Mulay SR, Kulkarni OO, Demleitner J, Dietrich A et al (2013) The antiviral cytokines IFN-alpha and IFN-beta modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am J Pathol 183:431–440PubMedCrossRefPubMedCentralGoogle Scholar
  46. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804PubMedCrossRefPubMedCentralGoogle Scholar
  47. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33:1193–1200PubMedPubMedCentralCrossRefGoogle Scholar
  48. Morizane R, Monkawa T, Itoh H (2009) Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem Biophys Res Commun 390:1334–1339PubMedCrossRefPubMedCentralGoogle Scholar
  49. Peired A, Angelotti ML, Ronconi E, la Marca G, Mazzinghi B, Sisti A et al (2013) Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J Am Soc Nephrol 24:1756–1768PubMedPubMedCentralCrossRefGoogle Scholar
  50. Peired AJ, Sisti A, Romagnani P (2016) Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016:4798639PubMedPubMedCentralGoogle Scholar
  51. Pichaiwong W, Hudkins KL, Wietecha T, Nguyen TQ, Tachaudomdach C, Li W et al (2013) Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol 24:1088–1102PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745PubMedCrossRefPubMedCentralGoogle Scholar
  53. Qi S, Wu D (2013) Bone marrow-derived mesenchymal stem cells protect against cisplatin-induced acute kidney injury in rats by inhibiting cell apoptosis. Int J Mol Med 32:1262–1272PubMedPubMedCentralCrossRefGoogle Scholar
  54. Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909PubMedCrossRefPubMedCentralGoogle Scholar
  55. Reinders ME, de Fijter JW, Rabelink TJ (2014) Mesenchymal stromal cells to prevent fibrosis in kidney transplantation. Curr Opin Organ Transplant 19:54–59PubMedCrossRefPubMedCentralGoogle Scholar
  56. Rizzo P, Perico N, Gagliardini E, Novelli R, Alison MR, Remuzzi G et al (2013) Nature and mediators of parietal epithelial cell activation in glomerulonephritides of human and rat. Am J Pathol 183:1769–1778PubMedCrossRefPubMedCentralGoogle Scholar
  57. Romagnani P, Lasagni L, Remuzzi G (2013) Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 9:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  58. Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L et al (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332PubMedPubMedCentralCrossRefGoogle Scholar
  59. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F et al (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456PubMedCrossRefPubMedCentralGoogle Scholar
  60. Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA et al (2007) Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury. Transplant Proc 39:421–423PubMedCrossRefPubMedCentralGoogle Scholar
  61. Shih YC, Lee PY, Cheng H, Tsai CH, Ma H, Tarng DC (2013) Adipose-derived stem cells exhibit antioxidative and antiapoptotic properties to rescue ischemic acute kidney injury in rats. Plast Reconstr Surg 132:940e–951ePubMedCrossRefPubMedCentralGoogle Scholar
  62. Si XY, Li JJ, Yao T, Wu XY (2014) Transforming growth factor-beta1 in the microenvironment of ischemia reperfusion-injured kidney enhances the chemotaxis of mesenchymal stem cells to stromal cell-derived factor-1 through upregulation of surface chemokine (C-X-C motif) receptor 4. Mol Med Rep 9:1794–1798PubMedCrossRefPubMedCentralGoogle Scholar
  63. Solanas G, Benitah SA (2013) Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat Rev Mol Cell Biol 14:737–748PubMedCrossRefPubMedCentralGoogle Scholar
  64. Song B, Niclis JC, Alikhan MA, Sakkal S, Sylvain A, Kerr PG et al (2011) Generation of induced pluripotent stem cells from human kidney mesangial cells. J Am Soc Nephrol 22:1213–1220PubMedPubMedCentralCrossRefGoogle Scholar
  65. Stokman G, Leemans JC, Claessen N, Weening JJ, Florquin S (2005) Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol 16:1684–1692PubMedCrossRefPubMedCentralGoogle Scholar
  66. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H et al (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67PubMedCrossRefPubMedCentralGoogle Scholar
  67. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089PubMedCrossRefPubMedCentralGoogle Scholar
  68. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefPubMedCentralGoogle Scholar
  69. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefPubMedCentralGoogle Scholar
  70. Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG et al (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16:118–126PubMedCrossRefPubMedCentralGoogle Scholar
  71. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568PubMedCrossRefPubMedCentralGoogle Scholar
  72. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefPubMedCentralGoogle Scholar
  73. Togel F, Isaac J, Westenfelder C (2004) Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure. J Am Soc Nephrol 15:1261–1267PubMedCrossRefPubMedCentralGoogle Scholar
  74. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635PubMedCrossRefPubMedCentralGoogle Scholar
  75. Togel FE, Westenfelder C (2011) Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney Int 1(Suppl):87–89CrossRefGoogle Scholar
  76. Togel FE, Westenfelder C (2012) Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 60:1012–1022PubMedCrossRefPubMedCentralGoogle Scholar
  77. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736PubMedCrossRefPubMedCentralGoogle Scholar
  78. Westenfelder C, Togel FE (2011) Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney Int 1(Suppl):103–106CrossRefGoogle Scholar
  79. Wise AF, Williams TM, Kiewiet MB, Payne NL, Siatskas C, Samuel CS et al (2014) Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. Am J Physiol Renal Physiol 306:F1222–F1235PubMedCrossRefPubMedCentralGoogle Scholar
  80. Wong CY, Tan EL, Cheong SK (2014) In vitro differentiation of mesenchymal stem cells into mesangial cells when co-cultured with injured mesangial cells. Cell Biol Int 38:497–501PubMedCrossRefPubMedCentralGoogle Scholar
  81. Yuen DA, Connelly KA, Zhang Y, Advani SL, Thai K, Kabir G et al (2013) Early outgrowth cells release soluble endocrine antifibrotic factors that reduce progressive organ fibrosis. Stem Cells 31:2408–2419PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ (2013) Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol 304:F1375–F1389PubMedPubMedCentralCrossRefGoogle Scholar
  83. Zhao JJ, Liu JL, Liu L, Jia HY (2014) Protection of mesenchymal stem cells on acute kidney injury. Mol Med Rep 9:91–96PubMedCrossRefPubMedCentralGoogle Scholar
  84. Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J et al (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7:2080–2089PubMedCrossRefPubMedCentralGoogle Scholar
  85. Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y et al (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22:1221–1228PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Nephrology, 2nd Affiliated HospitalHarbin Medical UniversityHarbinChina

Personalised recommendations