Advertisement

Urinary Biomarkers of Renal Fibrosis

  • Le-Ting Zhou
  • Lin-Li Lv
  • Bi-Cheng LiuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Renal fibrosis is the common pathological pathway of progressive CKD. The commonly used biomarkers in clinical practice are not optimal to detect injury or predict prognosis. Therefore, it is crucial to develop novel biomarkers to allow prompt intervention. Urine serves as a valuable resource of biomarker discovery for kidney diseases. Owing to the rapid development of omics platforms and bioinformatics, research on novel urinary biomarkers for renal fibrosis has proliferated in recent years. In this chapter, we discuss the current status and provide basic knowledge in this field. We present novel promising biomarkers including tubular injury markers, proteins related to activated inflammation/fibrosis pathways, CKD273, transcriptomic biomarkers, as well as metabolomic biomarkers. Furthermore, considering the complex nature of the pathogenesis of renal fibrosis, we also highlight the combination of biomarkers to further improve the diagnostic and prognostic performance.

Keywords

Urinary biomarker Renal fibrosis Omics Combined biomarker 

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2018YFC1314004), the National Natural Science Foundation of China (No.81720108007, 81670696, 81470922 and 31671194), the Clinic Research Center of Jiangsu Province (No. BL2014080).

References

  1. Aflarian M, Zelnick LR, Ruzinski J, Kestenbaum B, Himmelfarb J, de Boer IH et al (2015) Urine matrix metalloproteinase-7 and risk of kidney disease progression and mortality in type 2 diabetes. J Diabetes Complicat 29:1024–1031CrossRefGoogle Scholar
  2. Aregger F, Uehlinger DE, Witowski J, Brunisholz RA, Hunziker P, Frey FJ et al (2014) Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int 85:909–919PubMedPubMedCentralCrossRefGoogle Scholar
  3. Argiles A, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U et al (2013) CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS ONE 8:e62837PubMedPubMedCentralCrossRefGoogle Scholar
  4. Astor BC, Koettgen A, Hwang S-J, Bhavsar NA, Fox CS, Coresh J (2011) Trefoil factor 3 predicts incident chronic kidney disease: a case-control study nested within the atherosclerosis risk in communities (ARIC) study. Am J Nephrol 34:291–297PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T et al (2015) Correlation of circular RNA abundance with proliferation—exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057PubMedPubMedCentralCrossRefGoogle Scholar
  6. Betz BB, Jenks SJ, Cronshaw AD, Lamont DJ, Cairns C, Manning JR et al (2016) Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney Int 89:1125–1135PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bhavsar NA, Koettgen A, Coresh J, Astor BC (2012) Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) as predictors of incident CKD Stage 3: the atherosclerosis risk in communities (ARIC) Study. Am J Kidney Dis 60:233–240PubMedPubMedCentralCrossRefGoogle Scholar
  8. Burns KD, Hiremath S (2012) Urinary angiotensinogen as a biomarker of chronic kidney disease: ready for prime time? Nephrol Dial Transplant 27:3010–3013PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cao YH, Lv LL, Zhang X, Hu H, Ding LH, Yin D et al (2015) Urinary vimentin mRNA as a potential novel biomarker of renal fibrosis. Am J Physiol Renal Physiol 309:F514–F522PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cheng L, Sun X, Scicluna BJ, Coleman BM, Hill AF (2014) Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 86:433–444PubMedPubMedCentralCrossRefGoogle Scholar
  11. Craciun FL, Bijol V, Ajay AK, Rao P, Kumar RK, Hutchinson J et al (2015) RNA sequencing identifies novel translational biomarkers of kidney fibrosis. J Am Soc Nephrol 27:1702–1713PubMedPubMedCentralCrossRefGoogle Scholar
  12. Critselis E, Heerspink HL (2016) Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrol Dial Transplant 31:249–254PubMedPubMedCentralGoogle Scholar
  13. Dear JW, Street JM, Bailey MA (2013) Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics 13:1572–1580PubMedPubMedCentralCrossRefGoogle Scholar
  14. Duan ZY, Cai GY, Bu R, Lu Y, Hou K, Chen XM (2016) Selection of urinary sediment miRNAs as specific biomarkers of IgA nephropathy. Sci Rep 6:23498PubMedPubMedCentralCrossRefGoogle Scholar
  15. Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G et al (2014) Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin J Am Soc Nephrol 9:37–45PubMedPubMedCentralCrossRefGoogle Scholar
  16. Erdbrugger U, Le TH (2016) Extracellular vesicles in renal diseases: more than novel biomarkers? J Am Soc Nephrol 27:12–26PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fiehn O (2002) Metabolomics- the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gonzalez-Calero L, Martinez PJ, Martin-Lorenzo M, Baldan-Martin M, Ruiz-Hurtado G, de la Cuesta F et al (2017) Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria. Oncotarget 8:44217–44231PubMedPubMedCentralCrossRefGoogle Scholar
  19. Good DM, Zuerbig P, Argiles A, Bauer HW, Behrens G, Coon JJ et al (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9:2424–2437PubMedPubMedCentralCrossRefGoogle Scholar
  20. He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF et al (2012) Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/beta-Catenin activity in CKD. J Am Soc Nephrol 23:294–304PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hsu CY, Xie DW, Waikar SS, Bonventre JV, Zhang XM, Sabbisetti V et al (2017) Urine biomarkers of tubular injury do not improve on the clinical model predicting chronic kidney disease progression. Kidney Int 91:196–203PubMedPubMedCentralCrossRefGoogle Scholar
  22. Huang YS, Hsieh HY, Shih HM, Sytwu HK, Wu CC (2014) Urinary Xist is a potential biomarker for membranous nephropathy. Biochem Biophys Res Commun 452:415–421PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hwang JH, Lee JP, Kim CT, Yang SH, Kim JH, An JN et al (2016) Urinary periostin excretion predicts renal outcome in IgA nephropathy. Am J Nephrol 44:481–492PubMedCrossRefGoogle Scholar
  24. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M (2017) RNA in extracellular vesicles. Wiley Interdisciplinary Reviews-Rna 8Google Scholar
  26. Klein J, Bascands J-L, Mischak H, Schanstra JP (2016) The role of urinary peptidomics in kidney disease research. Kidney Int 89:539–545PubMedPubMedCentralCrossRefGoogle Scholar
  27. Latterich M, Schnitzer JE (2011) Streamlining biomarker discovery. Nat Biotechnol 29:600–602PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lebherz-Eichinger D, Klaus DA, Reiter T, Hoerl WH, Haas M, Ankersmit HJ et al (2014) Increased chemokine excretion in patients suffering from chronic kidney disease. Transl Res 164:433–443PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lebherz-Eichinger D, Tudor B, Ankersmit HJ, Reiter T, Haas M, Roth-Walter F et al (2015) Trefoil Factor 1 excretion is increased in early stages of chronic kidney disease. PLoS ONE 10:e0138312PubMedPubMedCentralCrossRefGoogle Scholar
  30. Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B et al (2001) Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 344:947–954PubMedPubMedCentralCrossRefGoogle Scholar
  31. Liu BC, Tang TT, Lv LL, Lan HY (2018) Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 93:568–579CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lorenzen JM, Haller H, Thum T (2011) MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol 7:286–294PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H et al (2013a) MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol-Ren Physiol 305:F1220–F1227CrossRefGoogle Scholar
  34. Lv LL, Cao Y, Liu D, Xu M, Liu H, Tang RN et al (2013b) Isolation and quantification of MicroRNAs from urinary exosomes/microvesicles for biomarker discovery. Int J Biol Sci 9:1021–1031PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lv LL, Cao YH, Pan MM, Liu H, Tang RN, Ma KL et al (2014) CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin Chim Acta 428:26–31PubMedCrossRefGoogle Scholar
  36. Lyu LL, Feng Y, Liu BC (2017) Urinary biomarkers for chronic kidney disease with a focus on gene transcript. Chin Med J 130:2251–2256PubMedPubMedCentralCrossRefGoogle Scholar
  37. Magalhaes P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Svec-Billa D et al (2017) Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep 7:16915PubMedPubMedCentralCrossRefGoogle Scholar
  38. Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzas EI et al (2017) Obstacles and opportunities in the functional analysis of extracellular vesicle RNA- an ISEV position paper. J Extracell Vesicles 6:1286095PubMedPubMedCentralCrossRefGoogle Scholar
  39. McGeechan K, Macaskill P, Irwig L, Liew G, Wong TY (2008) Assessing new biomarkers and predictive models for use in clinical practice a clinician’s guide. Arch Intern Med 168:2304–2310PubMedPubMedCentralCrossRefGoogle Scholar
  40. McMahon GM, Hwang SJ, Clish CB, Tin A, Yang Q, Larson MG et al (2017) Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease. Kidney Int 91:1426–1435PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mills KT, Kobori H, Hamm LL, Alper AB, Khan IE, Rahman M et al (2012) Increased urinary excretion of angiotensinogen is associated with risk of chronic kidney disease. Nephrol Dial Transplant 27:3176–3181PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mischak H, Delles C, Vlahou A, Vanholder R (2015) Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 11:221–232PubMedPubMedCentralCrossRefGoogle Scholar
  43. Moons KGM, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG et al (2012a) Risk prediction models: II. External validation, model updating, and impact assessment. Heart 98:691–698PubMedPubMedCentralCrossRefGoogle Scholar
  44. Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG et al (2012b) Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 98:683–690PubMedPubMedCentralCrossRefGoogle Scholar
  45. Mou S, Wang Q, Li J, Shi B, Ni Z (2012) Urinary excretion of liver-type fatty acid-binding protein as a marker of progressive kidney function deterioration in patients with chronic glomerulonephritis. Clin Chim Acta 413:187–191PubMedPubMedCentralCrossRefGoogle Scholar
  46. Muralidharan J, Ramezani A, Hubal M, Knoblach S, Shrivastav S, Karandish S et al (2017) Extracellular microRNA signature in chronic kidney disease. Am J Physiol-Ren Physiol 312:F982–F991CrossRefGoogle Scholar
  47. Nadkarni GN, Rao V, Ismail-Beigi F, Fonseca VA, Shah SV, Simonson MS et al (2016) Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: the ACCORD trial. Clin J Am Soc Nephrol 11:1343–1352PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nguyen TQ, Tarnow L, Andersen S, Hovind P, Parving HH, Goldschmeding R et al (2006) Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care 29:83–88PubMedPubMedCentralCrossRefGoogle Scholar
  49. O’Seaghdha CM, Hwang SJ, Bhavsar NA, Koettgen A, Coresh J, Astor BC et al (2011) Lower urinary connective tissue growth factor levels and incident CKD Stage 3 in the general population. Am J Kidney Dis 57:841–849PubMedPubMedCentralCrossRefGoogle Scholar
  50. O’Seaghdha CM, Hwang SJ, Larson MG, Meigs JB, Vasan RS, Fox CS (2013) Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol 24:1880–1888PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ovrehus MA, Zuerbig P, Vikse BE, Hallan SI (2015) Urinary proteomics in chronic kidney disease: diagnosis and risk of progression beyond albuminuria. Clin Proteomics 12:21PubMedPubMedCentralCrossRefGoogle Scholar
  52. Papadopoulos T, Belliere J, Bascands JL, Neau E, Klein J, Schanstra JP (2015) miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 15:361–374PubMedPubMedCentralCrossRefGoogle Scholar
  53. Papadopoulos T, Krochmal M, Cisek K, Fernandes M, Husi H, Stevens R et al (2016) Omics databases on kidney disease: where they can be found and how to benefit from them. Clin Kidney J 9:343–352PubMedPubMedCentralCrossRefGoogle Scholar
  54. Peralta CA, Katz R, Bonventre JV, Sabbisetti V, Siscovick D, Sarnak M et al (2012) Associations of urinary levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the multi-ethnic study of atherosclerosis (MESA). Am J Kidney Dis 60:904–911PubMedPubMedCentralCrossRefGoogle Scholar
  55. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373PubMedPubMedCentralCrossRefGoogle Scholar
  56. Pontillo C, Jacobs L, Staessen JA, Schanstra JP, Rossing P, Heerspink HJ et al (2016) A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol Dial Transpl 32:1510–1516Google Scholar
  57. Posada-Ayala M, Zubiri I, Martin-Lorenzo M, Sanz-Maroto A, Molero D, Gonzalez-Calero L et al (2014) Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int 85:103–111PubMedPubMedCentralCrossRefGoogle Scholar
  58. Prakoura N, Chatziantoniou C (2017) Periostin in kidney diseases. Cell Mol Life Sci 74:4315–4320PubMedPubMedCentralCrossRefGoogle Scholar
  59. Puzantian HV, Townsend RR (2013) Understanding kidney function assessment: the basics and advances. J Am Assoc Nurse Pract 25:334–341PubMedPubMedCentralGoogle Scholar
  60. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983PubMedPubMedCentralCrossRefGoogle Scholar
  61. Riser BL, Cortes P, Denichilo M, Deshmukh PV, Chahal PS, Mohammed AK et al (2003) Urinary CCN2 (CTGF) as a possible predictor of diabetic nephropathy: preliminary report. Kidney Int 64:451–458PubMedPubMedCentralCrossRefGoogle Scholar
  62. Satirapoj B, Wang Y, Chamberlin MP, Dai T, LaPage J, Phillips L et al (2012) Periostin: novel tissue and urinary biomarker of progressive renal injury induces a coordinated mesenchymal phenotype in tubular cells. Nephrol Dial Transpl 27:2702–2711CrossRefGoogle Scholar
  63. Satirapoj B, Tassanasorn S, Charoenpitakchai M, Supasyndh O (2015) Periostin as a tissue and urinary biomarker of renal injury in type 2 diabetes mellitus. PLoS ONE 10:e0124055PubMedPubMedCentralCrossRefGoogle Scholar
  64. Sato Y, Wharram BL, Lee SK, Wickman L, Goyal M, Venkatareddy M et al (2009) Urine podocyte mRNAs mark progression of renal disease. J Am Soc Nephrol 20:1041–1052PubMedPubMedCentralCrossRefGoogle Scholar
  65. Sawaguchi M, Araki S-i, Kobori H, Urushihara M, Haneda M, Koya D et al (2012) Association between urinary angiotensinogen levels and renal and cardiovascular prognoses in patients with type 2 diabetes mellitus. J Diabetes Investig 3:318–324PubMedPubMedCentralCrossRefGoogle Scholar
  66. Schanstra JP, Zurbig P, Alkhalaf A, Argiles A, Bakker SJ, Beige J et al (2015) Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol 26:1999–2010PubMedPubMedCentralCrossRefGoogle Scholar
  67. Shoukry A, Bdeer SE-A, El-Sokkary RH (2015) Urinary monocyte chemoattractant protein-1 and vitamin D-binding protein as biomarkers for early detection of diabetic nephropathy in type 2 diabetes mellitus. Mol Cell Biochem 408:25–35PubMedPubMedCentralCrossRefGoogle Scholar
  68. Sun JZ, Zhang S, Shi BH, Zheng DX, Shi J (2017) Transcriptome identified lncRNAs associated with renal fibrosisin UUO rat model. Front Physiol 8:658PubMedPubMedCentralCrossRefGoogle Scholar
  69. Szeto CC, Chan RW, Lai KB, Szeto CY, Chow KM, Li PK et al (2005) Messenger RNA expression of target genes in the urinary sediment of patients with chronic kidney diseases. Nephrol Dial Transplant 20:105–113PubMedPubMedCentralCrossRefGoogle Scholar
  70. Szeto CC, Ching-Ha KB, Ka-Bik L, Mac-Moune LF, Cheung-Lung CP, Gang W et al (2012) Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis Markers 33:137–144PubMedPubMedCentralCrossRefGoogle Scholar
  71. Tan HL, Yap JQ, Qian Q (2016) Acute kidney injury: tubular markers and risk for chronic kidney disease and end-stage kidney failure. Blood Purif 41:144–150PubMedPubMedCentralCrossRefGoogle Scholar
  72. Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D et al (2011) A predictive model for progression of chronic kidney disease to kidney failure. Jama-J Am Med Assoc 305:1553–1559CrossRefGoogle Scholar
  73. Titan SM, Vieira JM Jr, Dominguez WV, Moreira SRS, Pereira AB, Barros RT et al (2012) Urinary MCP-1 and RBP: independent predictors of renal outcome in macroalbuminuric diabetic nephropathy. J Diabetes Complicat 26:546–553PubMedPubMedCentralCrossRefGoogle Scholar
  74. Van der Hauwaert C, Savary G, Hennino MF, Pottier N, Glowacki F, Cauffiez C (2015) MicroRNAs in kidney fibrosis. Nephrol Ther 11:474–482PubMedPubMedCentralCrossRefGoogle Scholar
  75. Verhave JC, Bouchard J, Goupil R, Pichette V, Brachemi S, Madore F et al (2013) Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: a prospective study. Diabetes Res Clin Pract 101:333–340PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wang G, Kwan BCH, Lai FMM, Chow KM, Li PKT, Szeto CC (2012) Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol 36:412–418PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wang G, Lai FMM, Chow KM, Kwan BCH, Pang WF, Luk CCW et al (2015) Urinary mRNA levels of ELR-negative CXC chemokine ligand and extracellular matrix in diabetic nephropathy. Diabetes-MetabIsm Res Rev 31:699–706CrossRefGoogle Scholar
  78. Wang L, Wang Y, Chang Q (2016) Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods 111:21–31PubMedPubMedCentralCrossRefGoogle Scholar
  79. Wang W, Sue ACH, Goh WWB (2017a) Feature selection in clinical proteomics: with great power comes great reproducibility. Drug Discovery Today 22(6):912–918PubMedPubMedCentralCrossRefGoogle Scholar
  80. Wang X, Dai Y, Zhang WF, Sun DL, Zhang XZ (2017b) Microarray based circRNA expression profiles in uremic plasma and PBMCs due to chronic glomerulonephritis. Arch Biol Sci 69:523–534CrossRefGoogle Scholar
  81. Yamamoto T, Nakagawa T, Suzuki H, Ohashi N, Fukasawa H, Fujigaki Y et al (2007) Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol 18:1558–1565PubMedPubMedCentralCrossRefGoogle Scholar
  82. Yamamoto CM, Murakami T, Oakes ML, Mitsuhashi M, Kelly C, Henry RR et al (2018) Uromodulin mRNA from urinary extracellular vesicles correlate to kidney function decline in Type 2 diabetes mellitus. Am J Nephrol 47:283–291PubMedCrossRefGoogle Scholar
  83. Zhao YY (2013) Metabolomics in chronic kidney disease. Clin Chim Acta 422:59–69PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhao YY, Liu J, Cheng XL, Bai X, Lin RC (2012) Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta 413:642–649PubMedPubMedCentralCrossRefGoogle Scholar
  85. Zhao Y, Zhu L, Zhou T, Zhang Q, Shi S, Liu L et al (2015) Urinary CXCL1: a novel predictor of IgA nephropathy progression. PLoS ONE 10:e0119033PubMedPubMedCentralCrossRefGoogle Scholar
  86. Zheng M, Lv LL, Ni J, Ni HF, Li Q, Ma KL et al (2011) Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS ONE 6:e20431PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zheng M, Lv LL, Cao YH, Liu H, Ni J, Dai HY et al (2012) A pilot trial assessing urinary gene expression profiling with an mRNA array for diabetic nephropathy. PLoS ONE 7:e34824PubMedPubMedCentralCrossRefGoogle Scholar
  88. Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H et al (2006) Exosomal fetuin-a identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zhou Q, Chung ACK, Huang XR, Dong Y, Yu X, Lan HY (2014) Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol 184:409–417PubMedCrossRefGoogle Scholar
  90. Zhou LT, Lv LL, Pan MM, Cao YH, Liu H, Feng Y et al (2016) Are urinary tubular injury markers useful in chronic kidney disease? a systematic review and meta analysis. PLoS ONE 11:e0167334PubMedPubMedCentralCrossRefGoogle Scholar
  91. Zhou D, Tian Y, Sun L, Zhou LL, Xiao LX, Tan RJ et al (2017a) Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis. J Am Soc Nephrol 28:598–611PubMedPubMedCentralCrossRefGoogle Scholar
  92. Zhou LT, Cao YH, Lv LL, Ma KL, Chen PS, Ni HF et al (2017b) Feature selection and classification of urinary mRNA microarray data by iterative random forest to diagnose renal fibrosis: a two-stage study. Sci Rep 7:39832PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zhou LT, Qiu S, Lv LL, Li ZL, Liu H, Tang RN et al (2018) Integrative bioinformatics analysis provides insight into the molecular mechanisms of chronic kidney disease. Kidney Blood Press Res 43:568–581CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina

Personalised recommendations