Advertisement

Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies

  • Hua Su
  • Cheng Wan
  • Anni Song
  • Yang Qiu
  • Wei Xiong
  • Chun ZhangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Oxidative stress results from the disruption of the redox system marked by a notable overproduction of reactive oxygen species. There are four major sources of reactive oxygen species, including NADPH oxidases, mitochondria, nitric oxide synthases, and xanthine oxidases. It is well known that renal abnormalities trigger the production of reactive oxygen species by diverse mechanisms under various pathologic stimuli, such as acute kidney injury, chronic kidney disease, nephrotic syndrome, and metabolic disturbances. Mutually, accumulating evidences have identified that oxidative stress plays an essential role in tubulointerstitial fibrosis by myofibroblast activation as well as in glomerulosclerosis by mesangial sclerosis, podocyte abnormality, and parietal epithelial cell injury. Given the involvement of oxidative stress in renal fibrosis, therapies targeting oxidative stress seem promising in renal fibrosis management. In this review, we sketch the updated knowledge of the mechanisms of oxidative stress generation during renal diseases, the pathogenic processes of oxidative stress elicited renal fibrosis and treatments targeting oxidative stress during tubulointerstitial fibrosis and glomerulosclerosis.

Keywords

Oxidative stress Tubulointerstitial fibrosis Glomerulosclerosis 

References

  1. Andersson-Sjoland A, Karlsson JC, Rydell-Tormanen K (2016) ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling. Lab Invest 96:206–217PubMedCrossRefGoogle Scholar
  2. Andrades ME, Morina A, Spasic S, Spasojevic I (2011) Bench-to-bedside review: sepsis-from the redox point of view. Critical care (London, England) 15:230CrossRefGoogle Scholar
  3. Araujo M, Welch WJ (2006) Oxidative stress and nitric oxide in kidney function. Curr Opin Nephrol Hypertens 15:72–77PubMedCrossRefGoogle Scholar
  4. Baines RJ, Chana RS, Hall M, Febbraio M, Kennedy D, Brunskill NJ (2012) CD36 mediates proximal tubular binding and uptake of albumin and is upregulated in proteinuric nephropathies. Am J Physiol Renal Physiol 303:F1006–F1014PubMedCrossRefGoogle Scholar
  5. Baliga R, Ueda N, Walker PD, Shah SV (1999) Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 31:971–997PubMedCrossRefGoogle Scholar
  6. Baltanas A, Miguel-Carrasco JL, San Jose G, Cebrian C, Moreno MU, Dotor J et al (2013) A synthetic peptide from transforming growth factor-beta(1) type III receptor inhibits NADPH oxidase and prevents oxidative stress in the kidney of spontaneously hypertensive rats. Antioxid Redox Signal 19:1607–1618PubMedCrossRefGoogle Scholar
  7. Bas M, Tugcu V, Kemahli E, Ozbek E, Uhri M, Altug T et al (2009) Curcumin prevents shock-wave lithotripsy-induced renal injury through inhibition of nuclear factor kappa-B and inducible nitric oxide synthase activity in rats. Urol Res 37:159–164PubMedCrossRefGoogle Scholar
  8. Basile DP, Anderson MD, Sutton TA (2012) Pathophysiology of acute kidney injury. Compr. Physiol. 2:1303–1353PubMedPubMedCentralGoogle Scholar
  9. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE et al (2010) NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21:93–102PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Investig 121:4210–4221PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brown GE, Stewart MQ, Liu H, Ha VL, Yaffe MB (2003) A novel assay system implicates PtdIns(3,4)P(2), PtdIns(3)P, and PKC delta in intracellular production of reactive oxygen species by the NADPH oxidase. Mol Cell 11:35–47PubMedCrossRefPubMedCentralGoogle Scholar
  13. Carlos CP, Mendes GEF, Miquelin AR, Luz MAM, da Silva CGA, van Rooijen N et al (2010) Macrophage depletion attenuates chronic cyclosporine a nephrotoxicity. Transplantation 89:1362–1370PubMedCrossRefPubMedCentralGoogle Scholar
  14. Catherwood MA, Powell LA, Anderson P, McMaster D, Sharpe PC, Trimble ER (2002) Glucose-induced oxidative stress in mesangial cells. Kidney Int 61:599–608PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cha JJ, Min HS, Kim KT, Kim JE, Ghee JY, Kim HW et al (2017) APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab Invest 97:419PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen J, Chen JK, Harris RC (2012a) Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 32:981–991PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF et al (2012b) Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J Nephrol 25:566–576PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen JF, Liu H, Ni HF, Lv LL, Zhang MH, Zhang AH et al (2013) Improved mitochondrial function underlies the protective effect of pirfenidone against tubulointerstitial fibrosis in 5/6 nephrectomized rats. PLoS ONE 8:e83593PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol: Off J Ges Fur Toxikol Pathol 61:223–242CrossRefGoogle Scholar
  20. Choi BH, Kang KS, Kwak MK (2014) Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules (Basel, Switzerland) 19:12727–12759CrossRefGoogle Scholar
  21. Civantos E, Bosch E, Ramirez E, Zhenyukh O, Egido J, Lorenzo O et al (2017) Sitagliptin ameliorates oxidative stress in experimental diabetic nephropathy by diminishing the miR-200a/Keap-1/Nrf2 antioxidant pathway. Diabetes, MetabIc Syndr Obes: Targets Ther 10:207–222CrossRefGoogle Scholar
  22. De Blasio MJ, Ramalingam A, Cao AH, Prakoso D, Ye JM, Pickering R et al (2017) The superoxide dismutase mimetic tempol blunts diabetes-induced upregulation of NADPH oxidase and endoplasmic reticulum stress in a rat model of diabetic nephropathy. Eur J Pharmacol 807:12–20PubMedCrossRefPubMedCentralGoogle Scholar
  23. Decleves AE, Sharma K (2014) Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nature reviews Nephrology 10:257–267PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dendooven A, van Oostrom O, van der Giezen DM, Leeuwis JW, Snijckers C, Joles JA et al (2011) Loss of endogenous bone morphogenetic protein-6 aggravates renal fibrosis. Am J Pathol 178:1069–1079PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F et al (2007) The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost: JTH 5:1302–1308PubMedCrossRefPubMedCentralGoogle Scholar
  26. Echeverria C, Montorfano I, Sarmiento D, Becerra A, Nunez-Villena F, Figueroa XF et al (2013) Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells. J Cell Mol Med 17:800–814PubMedPubMedCentralCrossRefGoogle Scholar
  27. Eng DG, Sunseri MW, Kaverina NV, Roeder SS, Pippin JW, Shankland SJ (2015) Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int 88:999–1012PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fassett RG, Robertson IK, Ball MJ, Geraghty DP, Coombes JS (2015) Effects of atorvastatin on oxidative stress in chronic kidney disease. Nephrology (Carlton, Vic) 20:697–705CrossRefGoogle Scholar
  29. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gill PS, Wilcox CS (2006) NADPH oxidases in the kidney. Antioxid Redox Signal 8:1597–1607PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med 48:1121–1132PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S et al (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 308:F1276–F1287PubMedPubMedCentralCrossRefGoogle Scholar
  33. Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16:1323–1367PubMedPubMedCentralCrossRefGoogle Scholar
  34. He T, Guan X, Wang S, Xiao T, Yang K, Xu X et al (2015) Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway. Mol Cell Endocrinol 402:13–20PubMedCrossRefGoogle Scholar
  35. He T, Xiong J, Nie L, Yu Y, Guan X, Xu X et al (2016) Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/Nox4/ROS pathway. J Mol Med (Berl, Ger) 94:1359–1371CrossRefGoogle Scholar
  36. Hong YA, Lim JH, Kim MY, Kim EN, Koh ES, Shin SJ et al (2014) Delayed treatment with oleanolic acid attenuates tubulointerstitial fibrosis in chronic cyclosporine nephropathy through Nrf2/HO-1 signaling. J Transl Med 12:50PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jefferson JA, Shankland SJ (2014) The pathogenesis of focal segmental glomerulosclerosis. Adv Chronic Kidney Dis 21:408–416PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jha JC, Gray SP, Barit D, Okabe J, El-Osta A, Namikoshi T et al (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25:1237–1254PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jimenez-Osorio AS, Garcia-Nino WR, Gonzalez-Reyes S, Alvarez-Mejia AE, Guerra-Leon S, Salazar-Segovia J et al (2016) The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: a pilot study. J Ren Nutr: Off J Counc Ren Nutr Natl Kidney Found 26:237–244CrossRefGoogle Scholar
  40. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879PubMedCrossRefGoogle Scholar
  41. Katagiri D, Hamasaki Y, Doi K, Negishi K, Sugaya T, Nangaku M et al (2016) Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int 89:374–385PubMedCrossRefGoogle Scholar
  42. Kida Y, Tchao BN, Yamaguchi I (2014) Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease. Pediatr Nephrol 29:333–342CrossRefGoogle Scholar
  43. Kim JH, Kim BK, Moon KC, Hong HK, Lee HS (2003) Activation of the TGF-/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney Int 64:1715–1721PubMedCrossRefGoogle Scholar
  44. Kim SM, Kim YG, Jeong KH, Lee SH, Lee TW, Ihm CG et al (2012) Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS ONE 7:e39739PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kim S, Kim SJ, Yoon HE, Chung S, Choi BS, Park CW et al (2015) Fimasartan, a novel angiotensin-receptor blocker, protects against renal inflammation and fibrosis in mice with unilateral ureteral obstruction: the possible Role of Nrf2. Int J Med Sci 12:891–904PubMedPubMedCentralCrossRefGoogle Scholar
  46. Krause KH (2007) Aging: a revisited theory based on free radicals generated by Nox family NADPH oxidases. Exp Gerontol 42:256–262PubMedCrossRefGoogle Scholar
  47. Lassègue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–297PubMedCrossRefGoogle Scholar
  48. Lee DY, Wauquier F, Eid AA, Roman LJ, Ghosh-Choudhury G, Khazim K et al (2013) Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J Biol Chem 288:28668–28686PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lee WJ, Liu SH, Chiang CK, Lin SY, Liang KW, Chen CH et al (2016) Aryl hydrocarbon receptor deficiency attenuates oxidative stress-related mesangial cell activation and macrophage infiltration and extracellular matrix accumulation in diabetic nephropathy. Antioxid Redox Signal 24:217–231PubMedCrossRefGoogle Scholar
  50. Leo CH, Jelinic M, Ng HH, Marshall SA (2017) Vascular actions of relaxin: nitric oxide and beyond. Br J Pharmacol 174:1002–1014PubMedCrossRefGoogle Scholar
  51. Lichtenberg D, Pinchuk I (2015) Oxidative stress, the term and the concept. Biochem Biophys Res Commun 461:441–444PubMedCrossRefGoogle Scholar
  52. Lin EY, Bayarsengee U, Wang CC, Chiang YH, Cheng CW (2018) The natural compound 2,3,5,4’-tetrahydroxystilbene-2-O-beta-d glucoside protects against adriamycin-induced nephropathy through activating the Nrf2-Keap1 antioxidant pathway. Environ Toxicol 33:72–82PubMedCrossRefGoogle Scholar
  53. Liu G, Shi Y, Peng X, Liu H, Peng Y, He L (2015) Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology 95:193–200PubMedCrossRefGoogle Scholar
  54. Lorenz G, Darisipudi MN, Anders HJ (2014) Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrol Dial Transplant 29:41–48PubMedCrossRefGoogle Scholar
  55. Lu Q, Zhou Y, Hao M, Li C, Wang J, Shu F et al (2017) The mTOR promotes oxidative stress-induced apoptosis of mesangial cells in diabetic nephropathy. Mol Cell Endocrinol 473:31–43PubMedCrossRefGoogle Scholar
  56. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175PubMedCrossRefGoogle Scholar
  57. Lv W, Booz GW, Fan F, Wang Y, Roman RJ (2018) Oxidative stress and renal fibrosis: recent insights for the development of novel therapeutic strategies. Front Physiol 9:105PubMedPubMedCentralCrossRefGoogle Scholar
  58. Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW et al (2009) Uric acid and long-term outcomes in CKD. Am J Kidney Dis 53:796–803PubMedPubMedCentralCrossRefGoogle Scholar
  59. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241PubMedCrossRefGoogle Scholar
  60. Mason RM (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14:1358–1373CrossRefGoogle Scholar
  61. Massy ZA, Ceballos I, Chadefaux-Vekemens B, Nguyen-Khoa T, Descamps-Latscha B, Drueke TB et al (2001) Homocyst(e)ine, oxidative stress, and endothelium function in uremic patients. Kidney Int Suppl 78:S243–S245PubMedCrossRefGoogle Scholar
  62. Meotti FC, Jameson GN, Turner R, Harwood DT, Stockwell S, Rees MD et al (2011) Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J Biol Chem 286:12901–12911PubMedPubMedCentralCrossRefGoogle Scholar
  63. Montorfano I, Becerra A, Cerro R, Echeverria C, Saez E, Morales MG et al (2014) Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-beta1 and TGF-beta2-dependent pathway. Lab Invest 94:1068–1082PubMedCrossRefGoogle Scholar
  64. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMedCrossRefGoogle Scholar
  65. Nishikimi T, Matsuoka H (2006) Molecular mechanisms and therapeutic strategies of chronic renal injury: renoprotective effect of rho-kinase inhibitor in hypertensive glomerulosclerosis. J Pharmacol Sci 100:22–28PubMedCrossRefGoogle Scholar
  66. Noh H, Kim JS, Han KH, Lee GT, Song JS, Chung SH et al (2006) Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int 69:2022–2028PubMedCrossRefGoogle Scholar
  67. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA et al (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016PubMedCrossRefGoogle Scholar
  68. Okamura DM, Pennathur S (2015) The balance of powers: redox regulation of fibrogenic pathways in kidney injury. Redox biology 6:495–504PubMedPubMedCentralCrossRefGoogle Scholar
  69. Okamura DM, Bahrami NM, Ren S, Pasichnyk K, Williams JM, Gangoiti JA et al (2014) Cysteamine modulates oxidative stress and blocks myofibroblast activity in CKD. J Am Soc Nephrol 25:43–54PubMedCrossRefGoogle Scholar
  70. Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114PubMedPubMedCentralCrossRefGoogle Scholar
  71. Qiao M, Zhao Q, Lee CF, Tannock LR, Smart EJ, LeBaron RG et al (2009) Thiol oxidative stress induced by metabolic disorders amplifies macrophage chemotactic responses and accelerates atherogenesis and kidney injury in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 29:1779–1786PubMedPubMedCentralCrossRefGoogle Scholar
  72. Qiao Y, Xu L, Tao X, Yin L, Qi Y, Xu Y et al (2018) Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol Lett 284:37–45PubMedCrossRefGoogle Scholar
  73. Qin J, Xie YY, Huang L, Yuan QJ, Mei WJ, Yuan XN et al (2013) Fluorofenidone inhibits nicotinamide adenine dinucleotide phosphate oxidase via PI3 K/Akt pathway in the pathogenesis of renal interstitial fibrosis. Nephrology (Carlton, Vic) 18:690–699Google Scholar
  74. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ralto KM, Parikh SM (2016) Mitochondria in acute kidney injury. Semin Nephrol 36:8–16PubMedPubMedCentralCrossRefGoogle Scholar
  76. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS (2016) Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 25:119–146PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K et al (2006) Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR72 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci 103:14098–14103PubMedCrossRefGoogle Scholar
  78. Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, García-Arroyo F, Soto V, Cruz-Robles D et al (2012) Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol 121:e71–78PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sasser JM (2013) The emerging role of relaxin as a novel therapeutic pathway in the treatment of chronic kidney disease. Am J Physiol Regul Integr Comp Physiol 305:R559–R565PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sedeek M, Nasrallah R, Touyz RM, Hebert RL (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24:1512–1518PubMedPubMedCentralCrossRefGoogle Scholar
  81. Seifert EL, Estey C, Xuan JY, Harper ME (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285:5748–5758PubMedCrossRefPubMedCentralGoogle Scholar
  82. Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S et al (2015) Nlrp3- inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87:74–84PubMedCrossRefPubMedCentralGoogle Scholar
  83. Shankland SJ, Anders HJ, Romagnani P (2013) Glomerular parietal epithelial cells in kidney physiology, pathology, and repair. Curr Opin Nephrol Hypertens 22:302–309PubMedCrossRefGoogle Scholar
  84. Sies H (1985) Oxidative stress: introductory remarks. Oxidative stress. Academic press, London, pp 1–8CrossRefGoogle Scholar
  85. Sitar ME, Aydin S, Cakatay U (2013) Human serum albumin and its relation with oxidative stress. Clinical laboratory 59:945–952PubMedCrossRefGoogle Scholar
  86. Smeets B, Kuppe C, Sicking EM, Fuss A, Jirak P, van Kuppevelt TH et al (2011) Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol 22:1262–1274PubMedPubMedCentralCrossRefGoogle Scholar
  87. Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K et al (2013) Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res 57:1649–1659PubMedCrossRefGoogle Scholar
  88. Su H, Chen S, He FF, Wang YM, Bondzie P, Zhang C (2015) New insights into glomerular parietal epithelial cell activation and its signaling pathways in glomerular diseases. Biomed Res Int 2015:318935PubMedPubMedCentralGoogle Scholar
  89. Su H, Wan C, Lei CT, Zhang CY, Ye C, Tang H et al (2017) Lipid deposition in kidney disease: interplay among redox, lipid mediators, and renal impairment. Antioxid Redox Signal 28:1027–1043CrossRefGoogle Scholar
  90. Tang DQ, Wei YQ, Yin XX, Lu Q, Hao HH, Zhai YP et al (2011) In vitro suppression of quercetin on hypertrophy and extracellular matrix accumulation in rat glomerular mesangial cells cultured by high glucose. Fitoterapia 82:920–926PubMedCrossRefPubMedCentralGoogle Scholar
  91. Tapia E, Garcia-Arroyo F, Silverio O, Rodriguez-Alcocer AN, Jimenez-Flores AB, Cristobal M et al (2016) Mycophenolate mofetil and curcumin provide comparable therapeutic benefit in experimental chronic kidney disease: role of Nrf2-Keap1 and renal dopamine pathways. Free Radical Res 50:781–792CrossRefGoogle Scholar
  92. Tbahriti HF, Kaddous A, Bouchenak M, Mekki K (2013) Effect of different stages of chronic kidney disease and renal replacement therapies on oxidant-antioxidant balance in uremic patients. Biochem Res Int 2013:358985PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A et al (2003) Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 52:2882–2887PubMedCrossRefPubMedCentralGoogle Scholar
  94. Tsuda H, Kawada N, Kaimori J, Kitamura H, Moriyama T, Rakugi H et al (2012) Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun 427:266–272PubMedCrossRefPubMedCentralGoogle Scholar
  95. Tugcu V, Bas M, Ozbek E, Kemahli E, Arinci YV, Tuhri M et al (2008) Pyrolidium dithiocarbamate prevents shockwave lithotripsy-induced renal injury through inhibition of nuclear factor-kappa B and inducible nitric oxide synthase activity in rats. J Endourol 22:559–566PubMedCrossRefPubMedCentralGoogle Scholar
  96. Tumur Z, Shimizu H, Enomoto A, Miyazaki H, Niwa T (2010) Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am J Nephrol 31:435–441PubMedCrossRefPubMedCentralGoogle Scholar
  97. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J et al (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care 37:2864–2883PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wagner B, Tan C, Barnes JL, Ahuja S, Davis TL, Gorin Y et al (2012) Nephrogenic systemic fibrosis: evidence for oxidative stress and bone marrow-derived fibrocytes in skin, liver, and heart lesions using a 5/6 nephrectomy rodent model. Am J Pathol 181:1941–1952PubMedCrossRefPubMedCentralGoogle Scholar
  99. Wan C, Su H, Zhang C (2016) Role of NADPH oxidase in metabolic disease-related renal injury: an update. Oxid Med Cell Longev 2016:7813072PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wang JY, Yin XX, Wu YM, Tang DQ, Gao YY, Wan MR et al (2006) Ginkgo biloba extract suppresses hypertrophy and extracellular matrix accumulation in rat mesangial cells. Acta Pharmacol Sin 27:1222–1230PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ward RA, McLeish KR (2003) Oxidant stress in hemodialysis patients: what are the determining factors? Artif Organs 27:230–236PubMedCrossRefPubMedCentralGoogle Scholar
  102. Ward RA, Ouseph R, McLeish KR (2003) Effects of high-flux hemodialysis on oxidant stress. Kidney Int 63:353–359PubMedCrossRefPubMedCentralGoogle Scholar
  103. Yang Z-Z, Zou A-P (2003) Homocysteine enhances TIMP-1 expression and cell proliferation associated with NADH oxidase in rat mesangial cells. Kidney Int 63:1012–1020PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yang S, Zhao L, Han Y, Liu Y, Chen C, Zhan M et al (2017) Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox biology 13:482–497PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhao H, Liu YJ, Liu ZR, Tang DD, Chen XW, Chen YH et al (2017) Role of mitochondrial dysfunction in renal fibrosis promoted by hypochlorite-modified albumin in a remnant kidney model and protective effects of antioxidant peptide SS-31. Eur J Pharmacol 804:57–67PubMedCrossRefPubMedCentralGoogle Scholar
  106. Zschiedrich S, Bork T, Liang W, Wanner N, Eulenbruch K, Munder S et al (2017) Targeting mTOR signaling can prevent the progression of FSGS. J Am Soc Nephrol 28:2144–2157PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hua Su
    • 1
  • Cheng Wan
    • 1
  • Anni Song
    • 1
  • Yang Qiu
    • 1
  • Wei Xiong
    • 1
  • Chun Zhang
    • 1
    Email author
  1. 1.Department of NephrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations