Advertisement

Cell Apoptosis and Autophagy in Renal Fibrosis

  • Xing-Chen Zhao
  • Man J. Livingston
  • Xin-Ling LiangEmail author
  • Zheng DongEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Renal fibrosis is the final common pathway of all chronic kidney diseases progressing to end-stage renal diseases. Autophagy, a highly conserved lysosomal degradation pathway, plays important roles in maintaining cellular homeostasis in all major types of kidney cells including renal tubular cells as well as podocytes, mesangial cells and endothelial cells in glomeruli. Autophagy dysfunction is implicated in the pathogenesis of various renal pathologies. Here, we analyze the pathological role and regulation of autophagy in renal fibrosis and related kidney diseases in both glomeruli and tubulointerstitial compartments. Further research is expected to gain significant mechanistic insights and discover pathway-specific and kidney-selective therapies targeting autophagy to prevent renal fibrosis and related kidney diseases.

Keywords

Autophagy Renal fibrosis Focal segmental glomerulosclerosis Diabetic kidney disease Acute kidney injury Podocytes Proximal tubular epithelial cells 

References

  1. Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage. J Am Soc Nephrol 17:2974–2984CrossRefGoogle Scholar
  2. Alers S, Löffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T et al (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17:1165–1167PubMedCrossRefGoogle Scholar
  4. Baisantry A, Bhayana S, Rong S, Ermeling E, Wrede C, Hegermann J et al (2016) Autophagy induces prosenescent changes in proximal tubular S3 segments. J Am Soc Nephrol 27:1609–1616PubMedCrossRefGoogle Scholar
  5. Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH et al (2016) Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol 27:687–697PubMedCrossRefGoogle Scholar
  6. Beeken M, Lindenmeyer MT, Blattner SM, Radón V, Oh J, Meyer TN et al (2014) Alterations in the ubiquitin proteasome system in persistent but not reversible proteinuric diseases. J Am Soc Nephrol 25:2511–2525PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766PubMedCrossRefGoogle Scholar
  8. Brooks CR, Yeung MY, Brooks YS, Chen H, Ichimura T, Henderson JM et al (2015) KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 34:2441–2464PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMedCrossRefGoogle Scholar
  10. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cao A, Wang L, Chen X, Guo H, Chu S, Zhang X et al (2016a) Ursodeoxycholic acid ameliorated diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress. Biol Pharm Bull 39:1300–1308PubMedCrossRefGoogle Scholar
  12. Cao AL, Wang L, Chen X, Wang YM, Guo HJ, Chu S et al (2016b) Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest 96:610–622PubMedCrossRefGoogle Scholar
  13. Carney EF (2015) Glomerular disease: autophagy failure and mitochondrial dysfunction in FSGS. Nat Rev Nephrol 11:66PubMedGoogle Scholar
  14. Chen Y, Liu CP, Xu KF, Mao XD, Lu YB, Fang L et al (2008) Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol 28:1014–1022PubMedCrossRefGoogle Scholar
  15. Chen J, Chen MX, Fogo AB, Harris RC, Chen JK (2013) mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 24:198–207PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cheng H, Fan X, Lawson WE, Paueksakon P, Harris RC (2015) Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int 88:85–94PubMedPubMedCentralCrossRefGoogle Scholar
  17. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662PubMedCrossRefGoogle Scholar
  18. Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B et al (2011) Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS ONE 6:e23566PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cinà DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012a) MTOR regulates autophagic flux in the glomerulus. Autophagy 8:696–698PubMedCrossRefGoogle Scholar
  20. Cinà DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012b) Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol 23:412–420PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G et al (2012) Age-related changes in the function of autophagy in rat kidneys. Age (Dordr) 34:329–339CrossRefGoogle Scholar
  22. D’Agati VD (2012) Pathobiology of focal segmental glomerulosclerosis: new developments. Curr Opin Nephrol Hypertens 21:243–250PubMedCrossRefGoogle Scholar
  23. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364PubMedCrossRefGoogle Scholar
  24. Ding Y, Sl K, Lee SY, Koo JK, Wang Z, Choi ME (2014) Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 25:2835–2846PubMedPubMedCentralCrossRefGoogle Scholar
  25. Duffield JS (2014) Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 124:2299–2306PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123:4888–4899PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W et al (2013) Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE 8:e60546PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M et al (2013) Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med 5:441–455PubMedPubMedCentralCrossRefGoogle Scholar
  30. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188PubMedCrossRefGoogle Scholar
  31. Forbes MS, Thornhill BA, Chevalier RL (2011) Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 301:F110–F117PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fukuda A, Chowdhury MA, Venkatareddy MP, Wang SQ, Nishizono R, Suzuki T et al (2012) Growth-dependent podocyte failure causes glomerulosclerosis. J Am Soc Nephrol 23:1351–1363PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gewin LS (2018) Renal fibrosis: primacy of the proximal tubule. Matrix Biol 68–69:248–262PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5:e9199PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S et al (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121:2197–2209PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S et al (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120:1084–1096PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hartleben B, Wanner N, Huber TB (2014) Autophagy in glomerular health and disease. Semin Nephrol 34:42–52PubMedCrossRefGoogle Scholar
  38. Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K et al (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19:1496–1504PubMedPubMedCentralCrossRefGoogle Scholar
  39. Havasi A, Dong Z (2016) Autophagy and tubular cell death in the kidney. Semin Nephrol 36:174–188PubMedPubMedCentralCrossRefGoogle Scholar
  40. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93PubMedPubMedCentralCrossRefGoogle Scholar
  41. He L, Livingston MJ, Dong Z (2014) Autophagy in acute kidney injury and repair. Nephron Clin Pract 127:56–60PubMedPubMedCentralCrossRefGoogle Scholar
  42. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H et al (2017) AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 92:1071–1083PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z et al (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142:938–946PubMedPubMedCentralCrossRefGoogle Scholar
  44. Higgins GC, Coughlan MT (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy. Br J Pharmacol 171:1917–1942PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991PubMedPubMedCentralCrossRefGoogle Scholar
  46. Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D et al (2012) Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8:1009–1031PubMedPubMedCentralCrossRefGoogle Scholar
  47. Humphreys BD (2018) Mechanisms of Renal Fibrosis. Annu Rev Physiol 80:309–326PubMedCrossRefGoogle Scholar
  48. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291PubMedCrossRefGoogle Scholar
  49. Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244PubMedPubMedCentralCrossRefGoogle Scholar
  50. Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31:212–220PubMedPubMedCentralCrossRefGoogle Scholar
  51. Inoki K (2014) mTOR signaling in autophagy regulation in the kidney. Semin Nephrol 34:2–8PubMedCrossRefGoogle Scholar
  52. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S et al (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121:2181–2196PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176:1181–1192PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z (2012) Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82:1271–1283PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jiang XS, Chen XM, Wan JM, Gui HB, Ruan XZ, Du XG (2017) Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro. Sci Rep 7:42764PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jin Y, Liu S, Ma Q, Xiao D, Chen L (2017) Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol 794:106–114PubMedCrossRefGoogle Scholar
  57. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kaushal GP, Shah SV (2016) Autophagy in acute kidney injury. Kidney Int 89:779–791PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE et al (2015) Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol 26:1040–1052PubMedCrossRefGoogle Scholar
  60. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kim J, Shon E, Kim CS, Kim JS (2012a) Renal podocyte injury in a rat model of type 2 diabetes is prevented by metformin. Exp Diabetes Res 2012:210821PubMedPubMedCentralGoogle Scholar
  62. Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME (2012b) Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-β1. J Biol Chem 287:11677–11688PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kim WY, Nam SA, Song HC, Ko JS, Park SH, Kim HL et al (2012c) The role of autophagy in unilateral ureteral obstruction rat model. Nephrology (Carlton) 17:148–159CrossRefGoogle Scholar
  64. Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS et al (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 56:204–217PubMedCrossRefGoogle Scholar
  65. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T et al (2011) Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22:902–913PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D (2011) Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011:908185PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K et al (2016) A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia 59:1307–1317PubMedCrossRefGoogle Scholar
  68. Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4:740–743PubMedCrossRefGoogle Scholar
  69. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM et al (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7:1273–1294PubMedPubMedCentralCrossRefGoogle Scholar
  70. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo AA et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222Google Scholar
  71. Koesters R, Kaissling B, Lehir M, Picard N, Theilig F, Gebhardt R et al (2010) Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol 177:632–643PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kume S, Thomas MC, Koya D (2012) Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes 61:23–29PubMedCrossRefGoogle Scholar
  74. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105:3374–3379PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS ONE 5:e15394PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T et al (2015) Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11:1130–1145PubMedPubMedCentralCrossRefGoogle Scholar
  77. Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB et al (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. LancetGoogle Scholar
  78. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedPubMedCentralCrossRefGoogle Scholar
  79. Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176:1767–1778PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li L, Wang ZV, Hill JA, Lin F (2014) New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J Am Soc Nephrol 25:305–315PubMedCrossRefGoogle Scholar
  81. Li H, Peng X, Wang Y, Cao S, Xiong L, Fan J et al (2016) Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 12:1472–1486PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li W, Du M, Wang Q, Ma X, Wu L, Guo F et al (2017) FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/parkin pathway. Endocrinology 158:2155–2167PubMedCrossRefGoogle Scholar
  83. Lieberthal W, Fuhro R, Andry C, Patel V, Levine JS (2006) Rapamycin delays but does not prevent recovery from acute renal failure: role of acquired tubular resistance. Transplantation 82:17–22PubMedCrossRefGoogle Scholar
  84. Lim JH, Kim HW, Kim MY, Kim TW, Kim EN, Kim Y et al (2018) Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy. Cell Death Dis 9:270PubMedPubMedCentralCrossRefGoogle Scholar
  85. Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z (2014) Regulated cell death in AKI. J Am Soc Nephrol 25:2689–2701PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696PubMedPubMedCentralCrossRefGoogle Scholar
  87. Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N et al (2012) Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8:826–837PubMedCrossRefGoogle Scholar
  88. Liu WJ, Shen TT, Chen RH, Wu HL, Wang YJ, Deng JK et al (2015) Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J Biol Chem 290:20499–20510PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY et al (2016) β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 7:e2183PubMedPubMedCentralCrossRefGoogle Scholar
  90. Livingston MJ, Dong Z (2014) Autophagy in acute kidney injury. Semin Nephrol 34:17–26PubMedCrossRefGoogle Scholar
  91. Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z (2016) Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12:976–998PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G et al (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17:1395–1404PubMedCrossRefGoogle Scholar
  93. Löwik MM, Groenen PJ, Levtchenko EN, Monnens LA, van den Heuvel LP (2009) Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review. Eur J Pediatr 168:1291–1304PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lu X, Fan Q, Xu L, Li L, Yue Y, Xu Y et al (2015) Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression. PLoS ONE 10:e0117400PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ma T, Zhu J, Chen X, Zha D, Singhal PC, Ding G (2013) High glucose induces autophagy in podocytes. Exp Cell Res 319:779–789PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ma L, Fu R, Duan Z, Lu J, Gao J, Tian L et al (2016) Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol Res Pract 212:310–318PubMedCrossRefGoogle Scholar
  97. Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Overview of macroautophagy regulation in mammalian cells. Cell Res 20:748–762PubMedCrossRefGoogle Scholar
  98. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741PubMedCrossRefGoogle Scholar
  99. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132PubMedCrossRefGoogle Scholar
  102. Mori H, Inoki K, Masutani K, Wakabayashi Y, Komai K, Nakagawa R et al (2009) The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 384:471–475PubMedCrossRefGoogle Scholar
  103. Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS et al (2018) Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol Cell Neurosci 86:65–71PubMedCrossRefGoogle Scholar
  104. Nagai K, Matsubara T, Mima A, Sumi E, Kanamori H, Iehara N et al (2005) Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int 68:552–561PubMedCrossRefGoogle Scholar
  105. Nair S, Wilding JP (2010) Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab 95:34–42PubMedCrossRefGoogle Scholar
  106. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S et al (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332:966–970PubMedPubMedCentralCrossRefGoogle Scholar
  107. Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K et al (2011) Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 22:2203–2212PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307PubMedCrossRefGoogle Scholar
  109. Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74:631–640PubMedCrossRefGoogle Scholar
  110. Qi W, Mu J, Luo ZF, Zeng W, Guo YH, Pang Q et al (2011) Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism 60:594–603PubMedCrossRefGoogle Scholar
  111. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435PubMedCrossRefGoogle Scholar
  112. Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22:R29–R34PubMedCrossRefGoogle Scholar
  113. Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashiwagi A (2006) Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun 340:296–301PubMedCrossRefGoogle Scholar
  114. Sataranatarajan K, Mariappan MM, Lee MJ, Feliers D, Choudhury GG, Barnes JL et al (2007) Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol 171:1733–1742PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sionov RV, Vlahopoulos SA, Granot Z (2015) Regulation of bim in health and disease. Oncotarget 6:23058–23134PubMedPubMedCentralCrossRefGoogle Scholar
  116. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078PubMedCrossRefGoogle Scholar
  117. Stridh S, Palm F, Takahashi T, Ikegami-Kawai M, Hansell P (2015) Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan. Ups J Med Sci 120:233–240PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sun J, Li ZP, Zhang RQ, Zhang HM (2017) Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway. Biochem Biophys Res Commun 483:318–324PubMedCrossRefGoogle Scholar
  119. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M et al (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65:755–767PubMedCrossRefGoogle Scholar
  120. Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H et al (2012) Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 180:517–525PubMedCrossRefGoogle Scholar
  121. Takahashi A, Takabatake Y, Kimura T, Maejima I, Namba T, Yamamoto T et al (2017) Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules. Diabetes 66:1359–1372CrossRefGoogle Scholar
  122. Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z et al (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 1–18Google Scholar
  123. Thoen LF, Guimarães EL, Dollé L, Mannaerts I, Najimi M, Sokal E et al (2011) A role for autophagy during hepatic stellate cell activation. J Hepatol 55:1353–1360PubMedCrossRefGoogle Scholar
  124. Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H et al (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 304:F156–F167PubMedCrossRefGoogle Scholar
  125. Velagapudi C, Bhandari BS, Abboud-Werner S, Simone S, Abboud HE, Habib SL (2011) The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. J Am Soc Nephrol 22:262–273PubMedPubMedCentralCrossRefGoogle Scholar
  126. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang Y, Zheng ZJ, Jia YJ, Yang YL, Xue YM (2018) Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease. J Transl Med 16:146PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R et al (2014) Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol 25:707–716PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wei Q, Dong Z (2014) HDAC4 blocks autophagy to trigger podocyte injury: non-epigenetic action in diabetic nephropathy. Kidney Int 86:666–668PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40:323–332PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wittmann S, Daniel C, Stief A, Vogelbacher R, Amann K, Hugo C (2009) Long-term treatment of sirolimus but not cyclosporine ameliorates diabetic nephropathy in the rat. Transplantation 87:1290–1299PubMedCrossRefGoogle Scholar
  132. Wu L, Zhang Y, Ma X, Zhang N, Qin G (2012) The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 39:9085–9093PubMedCrossRefGoogle Scholar
  133. Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A et al (2010) BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS ONE 5:e12995PubMedPubMedCentralCrossRefGoogle Scholar
  134. Xiao T, Guan X, Nie L, Wang S, Sun L, He T et al (2014) Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol Cell Biochem 394:145–154PubMedCrossRefGoogle Scholar
  135. Xu Y, Ruan S, Wu X, Chen H, Zheng K, Fu B (2013) Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int J Mol Med 31:628–636PubMedCrossRefGoogle Scholar
  136. Xu G, Yue F, Huang H, He Y, Li X, Zhao H et al (2016a) Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis. Aging (Albany NY) 8:977–985CrossRefGoogle Scholar
  137. Xu L, Fan Q, Wang X, Zhao X, Wang L (2016b) Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell Death Dis 7:e2445PubMedPubMedCentralCrossRefGoogle Scholar
  138. Xue X, Ren J, Sun X, Gui Y, Feng Y, Shu B et al (2018) Protein kinase Cα drives fibroblast activation and kidney fibrosis by stimulating autophagic flux. J Biol Chem 293:11119–11130PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yan Q, Song Y, Zhang L, Chen Z, Yang C, Liu S et al (2018) Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov 5:2Google Scholar
  140. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131PubMedCrossRefGoogle Scholar
  141. Yang Y, Wang J, Qin L, Shou Z, Zhao J, Wang H et al (2007) Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol 27:495–502PubMedCrossRefGoogle Scholar
  142. Yang C, Kaushal V, Shah SV, Kaushal GP (2008) Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 294:F777–F787PubMedCrossRefGoogle Scholar
  143. Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK et al (2018) Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 75:669–688PubMedCrossRefGoogle Scholar
  144. Yi M, Zhang L, Liu Y, Livingston MJ, Chen JK, Nahman NS et al (2017) Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 313:F74–F84PubMedPubMedCentralCrossRefGoogle Scholar
  145. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14:207–215PubMedCrossRefGoogle Scholar
  147. Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428:1714–1724PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zeng C, Fan Y, Wu J, Shi S, Chen Z, Zhong Y et al (2014) Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. J Pathol 234:203–213PubMedGoogle Scholar
  149. Zhang L, Livingston MJ, Chen JK, Dong Z (2014a) Autophagy in podocytes. Contrib Nephrol 183:83–100Google Scholar
  150. Zhang MZ, Wang Y, Paueksakon P, Harris RC (2014b) Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes 63:2063–2072PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhang D, Pan J, Xiang X, Liu Y, Dong G, Livingston MJ et al (2016) Protein kinase Cδ suppresses autophagy to induce kidney cell apoptosis in cisplatin nephrotoxicity. J Am Soc NephrolGoogle Scholar
  152. Zhao L, Sun LN, Nie HB, Wang XL, Guan GJ (2014) Berberine improves kidney function in diabetic mice via AMPK activation. PLoS ONE 9:e113398PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zhao X, Chen Y, Tan X, Zhang L, Zhang H, Li Z et al (2018) Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J Pathol 245:235–248PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35PubMedCrossRefGoogle Scholar
  155. Zuk A, Bonventre JV (2016) Acute kidney injury. Annu Rev Med 67:293–307PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of NephrologyGuangdong Provincial People’s Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
  2. 2.Department of Cellular Biology and Anatomy, Medical College of GeorgiaAugusta University and Charlie Norwood VA Medical CenterAugustaUSA

Personalised recommendations