Skip to main content

Cell Apoptosis and Autophagy in Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Renal fibrosis is the final common pathway of all chronic kidney diseases progressing to end-stage renal diseases. Autophagy, a highly conserved lysosomal degradation pathway, plays important roles in maintaining cellular homeostasis in all major types of kidney cells including renal tubular cells as well as podocytes, mesangial cells and endothelial cells in glomeruli. Autophagy dysfunction is implicated in the pathogenesis of various renal pathologies. Here, we analyze the pathological role and regulation of autophagy in renal fibrosis and related kidney diseases in both glomeruli and tubulointerstitial compartments. Further research is expected to gain significant mechanistic insights and discover pathway-specific and kidney-selective therapies targeting autophagy to prevent renal fibrosis and related kidney diseases.

Co-first authors with equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage. J Am Soc Nephrol 17:2974–2984

    Article  CAS  PubMed  Google Scholar 

  • Alers S, Löffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T et al (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17:1165–1167

    Article  CAS  PubMed  Google Scholar 

  • Baisantry A, Bhayana S, Rong S, Ermeling E, Wrede C, Hegermann J et al (2016) Autophagy induces prosenescent changes in proximal tubular S3 segments. J Am Soc Nephrol 27:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH et al (2016) Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol 27:687–697

    Article  CAS  PubMed  Google Scholar 

  • Beeken M, Lindenmeyer MT, Blattner SM, Radón V, Oh J, Meyer TN et al (2014) Alterations in the ubiquitin proteasome system in persistent but not reversible proteinuric diseases. J Am Soc Nephrol 25:2511–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766

    Article  PubMed  Google Scholar 

  • Brooks CR, Yeung MY, Brooks YS, Chen H, Ichimura T, Henderson JM et al (2015) KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 34:2441–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao A, Wang L, Chen X, Guo H, Chu S, Zhang X et al (2016a) Ursodeoxycholic acid ameliorated diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress. Biol Pharm Bull 39:1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Cao AL, Wang L, Chen X, Wang YM, Guo HJ, Chu S et al (2016b) Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest 96:610–622

    Article  CAS  PubMed  Google Scholar 

  • Carney EF (2015) Glomerular disease: autophagy failure and mitochondrial dysfunction in FSGS. Nat Rev Nephrol 11:66

    PubMed  Google Scholar 

  • Chen Y, Liu CP, Xu KF, Mao XD, Lu YB, Fang L et al (2008) Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol 28:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen MX, Fogo AB, Harris RC, Chen JK (2013) mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 24:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Fan X, Lawson WE, Paueksakon P, Harris RC (2015) Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int 88:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  • Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B et al (2011) Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS ONE 6:e23566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinà DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012a) MTOR regulates autophagic flux in the glomerulus. Autophagy 8:696–698

    Article  PubMed  CAS  Google Scholar 

  • Cinà DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012b) Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol 23:412–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G et al (2012) Age-related changes in the function of autophagy in rat kidneys. Age (Dordr) 34:329–339

    Article  CAS  Google Scholar 

  • D’Agati VD (2012) Pathobiology of focal segmental glomerulosclerosis: new developments. Curr Opin Nephrol Hypertens 21:243–250

    Article  PubMed  CAS  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Sl K, Lee SY, Koo JK, Wang Z, Choi ME (2014) Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 25:2835–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield JS (2014) Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 124:2299–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123:4888–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W et al (2013) Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE 8:e60546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M et al (2013) Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med 5:441–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    Article  CAS  PubMed  Google Scholar 

  • Forbes MS, Thornhill BA, Chevalier RL (2011) Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 301:F110–F117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda A, Chowdhury MA, Venkatareddy MP, Wang SQ, Nishizono R, Suzuki T et al (2012) Growth-dependent podocyte failure causes glomerulosclerosis. J Am Soc Nephrol 23:1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin LS (2018) Renal fibrosis: primacy of the proximal tubule. Matrix Biol 68–69:248–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5:e9199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S et al (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121:2197–2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S et al (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartleben B, Wanner N, Huber TB (2014) Autophagy in glomerular health and disease. Semin Nephrol 34:42–52

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K et al (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19:1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havasi A, Dong Z (2016) Autophagy and tubular cell death in the kidney. Semin Nephrol 36:174–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Livingston MJ, Dong Z (2014) Autophagy in acute kidney injury and repair. Nephron Clin Pract 127:56–60

    Article  CAS  PubMed  Google Scholar 

  • He L, Wei Q, Liu J, Yi M, Liu Y, Liu H et al (2017) AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 92:1071–1083

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z et al (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142:938–946

    Article  PubMed  Google Scholar 

  • Higgins GC, Coughlan MT (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy. Br J Pharmacol 171:1917–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D et al (2012) Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8:1009–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD (2018) Mechanisms of Renal Fibrosis. Annu Rev Physiol 80:309–326

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K (2014) mTOR signaling in autophagy regulation in the kidney. Semin Nephrol 34:2–8

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S et al (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121:2181–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176:1181–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z (2012) Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82:1271–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang XS, Chen XM, Wan JM, Gui HB, Ruan XZ, Du XG (2017) Autophagy protects against palmitic acid-induced apoptosis in podocytes in vitro. Sci Rep 7:42764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Liu S, Ma Q, Xiao D, Chen L (2017) Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol 794:106–114

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal GP, Shah SV (2016) Autophagy in acute kidney injury. Kidney Int 89:779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE et al (2015) Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol 26:1040–1052

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Shon E, Kim CS, Kim JS (2012a) Renal podocyte injury in a rat model of type 2 diabetes is prevented by metformin. Exp Diabetes Res 2012:210821

    PubMed  PubMed Central  Google Scholar 

  • Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME (2012b) Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-β1. J Biol Chem 287:11677–11688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WY, Nam SA, Song HC, Ko JS, Park SH, Kim HL et al (2012c) The role of autophagy in unilateral ureteral obstruction rat model. Nephrology (Carlton) 17:148–159

    Article  CAS  Google Scholar 

  • Kim MY, Lim JH, Youn HH, Hong YA, Yang KS, Park HS et al (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 56:204–217

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T et al (2011) Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22:902–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D (2011) Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011:908185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K et al (2016) A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia 59:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4:740–743

    Article  PubMed  Google Scholar 

  • Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM et al (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7:1273–1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo AA et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Google Scholar 

  • Koesters R, Kaissling B, Lehir M, Picard N, Theilig F, Gebhardt R et al (2010) Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol 177:632–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume S, Thomas MC, Koya D (2012) Nutrient sensing, autophagy, and diabetic nephropathy. Diabetes 61:23–29

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105:3374–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS ONE 5:e15394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lenoir O, Jasiek M, Hénique C, Guyonnet L, Hartleben B, Bork T et al (2015) Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11:1130–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB et al (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet

    Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176:1767–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang ZV, Hill JA, Lin F (2014) New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J Am Soc Nephrol 25:305–315

    Article  CAS  PubMed  Google Scholar 

  • Li H, Peng X, Wang Y, Cao S, Xiong L, Fan J et al (2016) Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 12:1472–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Du M, Wang Q, Ma X, Wu L, Guo F et al (2017) FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/parkin pathway. Endocrinology 158:2155–2167

    Article  PubMed  Google Scholar 

  • Lieberthal W, Fuhro R, Andry C, Patel V, Levine JS (2006) Rapamycin delays but does not prevent recovery from acute renal failure: role of acquired tubular resistance. Transplantation 82:17–22

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Kim HW, Kim MY, Kim TW, Kim EN, Kim Y et al (2018) Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy. Cell Death Dis 9:270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z (2014) Regulated cell death in AKI. J Am Soc Nephrol 25:2689–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N et al (2012) Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8:826–837

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Shen TT, Chen RH, Wu HL, Wang YJ, Deng JK et al (2015) Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J Biol Chem 290:20499–20510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY et al (2016) β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 7:e2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston MJ, Dong Z (2014) Autophagy in acute kidney injury. Semin Nephrol 34:17–26

    Article  CAS  PubMed  Google Scholar 

  • Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z (2016) Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12:976–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G et al (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17:1395–1404

    Article  CAS  PubMed  Google Scholar 

  • Löwik MM, Groenen PJ, Levtchenko EN, Monnens LA, van den Heuvel LP (2009) Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review. Eur J Pediatr 168:1291–1304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu X, Fan Q, Xu L, Li L, Yue Y, Xu Y et al (2015) Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression. PLoS ONE 10:e0117400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma T, Zhu J, Chen X, Zha D, Singhal PC, Ding G (2013) High glucose induces autophagy in podocytes. Exp Cell Res 319:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Fu R, Duan Z, Lu J, Gao J, Tian L et al (2016) Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol Res Pract 212:310–318

    Article  CAS  PubMed  Google Scholar 

  • Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Overview of macroautophagy regulation in mammalian cells. Cell Res 20:748–762

    Article  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Inoki K, Masutani K, Wakabayashi Y, Komai K, Nakagawa R et al (2009) The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 384:471–475

    Article  CAS  PubMed  Google Scholar 

  • Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS et al (2018) Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy. Mol Cell Neurosci 86:65–71

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Matsubara T, Mima A, Sumi E, Kanamori H, Iehara N et al (2005) Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int 68:552–561

    Article  CAS  PubMed  Google Scholar 

  • Nair S, Wilding JP (2010) Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab 95:34–42

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S et al (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332:966–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima Y, Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Bokuda K et al (2011) Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 22:2203–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    Article  PubMed  Google Scholar 

  • Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z (2008) Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74:631–640

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Mu J, Luo ZF, Zeng W, Guo YH, Pang Q et al (2011) Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism 60:594–603

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22:R29–R34

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashiwagi A (2006) Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun 340:296–301

    Article  CAS  PubMed  Google Scholar 

  • Sataranatarajan K, Mariappan MM, Lee MJ, Feliers D, Choudhury GG, Barnes JL et al (2007) Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol 171:1733–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sionov RV, Vlahopoulos SA, Granot Z (2015) Regulation of bim in health and disease. Oncotarget 6:23058–23134

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  • Stridh S, Palm F, Takahashi T, Ikegami-Kawai M, Hansell P (2015) Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan. Ups J Med Sci 120:233–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Li ZP, Zhang RQ, Zhang HM (2017) Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway. Biochem Biophys Res Commun 483:318–324

    Article  CAS  PubMed  Google Scholar 

  • Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M et al (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65:755–767

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H et al (2012) Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol 180:517–525

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Takabatake Y, Kimura T, Maejima I, Namba T, Yamamoto T et al (2017) Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules. Diabetes 66:1359–1372

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z et al (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 1–18

    Google Scholar 

  • Thoen LF, Guimarães EL, Dollé L, Mannaerts I, Najimi M, Sokal E et al (2011) A role for autophagy during hepatic stellate cell activation. J Hepatol 55:1353–1360

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H et al (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 304:F156–F167

    Article  CAS  PubMed  Google Scholar 

  • Velagapudi C, Bhandari BS, Abboud-Werner S, Simone S, Abboud HE, Habib SL (2011) The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. J Am Soc Nephrol 22:262–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zheng ZJ, Jia YJ, Yang YL, Xue YM (2018) Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease. J Transl Med 16:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R et al (2014) Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol 25:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Dong Z (2014) HDAC4 blocks autophagy to trigger podocyte injury: non-epigenetic action in diabetic nephropathy. Kidney Int 86:666–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann S, Daniel C, Stief A, Vogelbacher R, Amann K, Hugo C (2009) Long-term treatment of sirolimus but not cyclosporine ameliorates diabetic nephropathy in the rat. Transplantation 87:1290–1299

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang Y, Ma X, Zhang N, Qin G (2012) The effect of resveratrol on FoxO1 expression in kidneys of diabetic nephropathy rats. Mol Biol Rep 39:9085–9093

    Article  CAS  PubMed  Google Scholar 

  • Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A et al (2010) BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS ONE 5:e12995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao T, Guan X, Nie L, Wang S, Sun L, He T et al (2014) Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol Cell Biochem 394:145–154

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ruan S, Wu X, Chen H, Zheng K, Fu B (2013) Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int J Mol Med 31:628–636

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Yue F, Huang H, He Y, Li X, Zhao H et al (2016a) Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis. Aging (Albany NY) 8:977–985

    Article  CAS  Google Scholar 

  • Xu L, Fan Q, Wang X, Zhao X, Wang L (2016b) Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell Death Dis 7:e2445

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue X, Ren J, Sun X, Gui Y, Feng Y, Shu B et al (2018) Protein kinase Cα drives fibroblast activation and kidney fibrosis by stimulating autophagic flux. J Biol Chem 293:11119–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Song Y, Zhang L, Chen Z, Yang C, Liu S et al (2018) Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov 5:2

    Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang J, Qin L, Shou Z, Zhao J, Wang H et al (2007) Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am J Nephrol 27:495–502

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Kaushal V, Shah SV, Kaushal GP (2008) Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 294:F777–F787

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK et al (2018) Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 75:669–688

    Article  CAS  PubMed  Google Scholar 

  • Yi M, Zhang L, Liu Y, Livingston MJ, Chen JK, Nahman NS et al (2017) Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 313:F74–F84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14:207–215

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428:1714–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng C, Fan Y, Wu J, Shi S, Chen Z, Zhong Y et al (2014) Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. J Pathol 234:203–213

    CAS  PubMed  Google Scholar 

  • Zhang L, Livingston MJ, Chen JK, Dong Z (2014a) Autophagy in podocytes. Contrib Nephrol 183:83–100

    Google Scholar 

  • Zhang MZ, Wang Y, Paueksakon P, Harris RC (2014b) Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes 63:2063–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Pan J, Xiang X, Liu Y, Dong G, Livingston MJ et al (2016) Protein kinase Cδ suppresses autophagy to induce kidney cell apoptosis in cisplatin nephrotoxicity. J Am Soc Nephrol

    Google Scholar 

  • Zhao L, Sun LN, Nie HB, Wang XL, Guan GJ (2014) Berberine improves kidney function in diabetic mice via AMPK activation. PLoS ONE 9:e113398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Chen Y, Tan X, Zhang L, Zhang H, Li Z et al (2018) Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J Pathol 245:235–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

  • Zuk A, Bonventre JV (2016) Acute kidney injury. Annu Rev Med 67:293–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Ling Liang or Zheng Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, XC., Livingston, M.J., Liang, XL., Dong, Z. (2019). Cell Apoptosis and Autophagy in Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_28

Download citation

Publish with us

Policies and ethics