Mitochondria and Renal Fibrosis

  • Mohammed Mazheruddin Quadri
  • Syeda-Safoorah Fatima
  • Ruo-Chen Che
  • Ai-Hua ZhangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)


Mitochondria are important organelles in eukaryotic cells and perform a variety of biosynthetic and metabolic functions. Many human diseases are closely related to mitochondrial dysfunction. Kidney is an organ with high-energy requirements, which is distributed with a large number of mitochondria. Mitochondrial dysfunction plays a crucial role in the pathogenesis of kidney disease, and studies have shown that mitochondrial dysfunction is involved in the physiological process of renal fibrosis. This review introduced the biogenesis and pathophysiology of mitochondria, illustrated the involvement of mitochondrial dysfunction in renal fibrosis based on various kinds of cells, and finally summarized the latest mitochondria-targeted therapies.


Mitochondria Renal fibrosis Therapies 


  1. Akool ES, Gauer S, Osman B, Doller A, Schulz S, Geiger H et al (2012) Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. BiochemPharmacol 83:286–295Google Scholar
  2. An WS, Kim HJ, Cho KH, Vaziri ND (2009) Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol 297:F895–F903CrossRefGoogle Scholar
  3. Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG et al (2003) Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12:2693–2702CrossRefGoogle Scholar
  4. Becker T, Wagner R (2018) Mitochondrial outer membrane channels: emerging diversity in transport processes. BioEssays 40:e1800013CrossRefGoogle Scholar
  5. Boenzi S, Diodato D (2018) Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem 62:443–454CrossRefGoogle Scholar
  6. Carrozzo R, Bornstein B, Lucioli S, Campos Y, De La Pena P, Petit N et al (2003) Mutation analysis in 16 patients with mtDNA depletion. Hum Mutat 21:453–454CrossRefGoogle Scholar
  7. Casalena G, Daehn I, Bottinger E (2012) Transforming growth factor-beta, bioenergetics, and mitochondria in renal disease. SeminNephrol 32:295–303Google Scholar
  8. Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306:F367–F378CrossRefGoogle Scholar
  9. Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J et al (2012) Inhibition of MTOR disrupts autophagic flux in podocytes. J Am SocNephrol 23:412–420Google Scholar
  10. Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP (2015) Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol 5:163–168CrossRefGoogle Scholar
  11. De Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29:57–60CrossRefGoogle Scholar
  12. Deng X, Xie Y, Zhang A (2017) Advance of autophagy in chronic kidney diseases. Ren Fail 39:306–313CrossRefGoogle Scholar
  13. Dimauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668CrossRefGoogle Scholar
  14. Ding H, Bai F, Cao H, Xu J, Fang L, Wu J et al (2018) PDE/cAMP/Epac/C/EBP-beta signaling cascade regulates mitochondria biogenesis of tubular epithelial cells in renal fibrosis. Antioxid Redox Signal 29:637–652CrossRefGoogle Scholar
  15. Doleris LM, Hill GS, Chedin P, Nochy D, Bellanne-Chantelot C, Hanslik T et al (2000) Focal segmental glomerulosclerosis associated with mitochondrial cytopathy. Kidney Int 58:1851–1858CrossRefGoogle Scholar
  16. Farmer T, Naslavsky N, Caplan S (2018) Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 19:569–577CrossRefGoogle Scholar
  17. Fedulov AV, Ses TP, Gavrisheva NA, Rybakova MG, Vassilyeva JG, Tkachenko SB et al (2005) Serum TGF-beta 1 and TNF-alpha levels and cardiac fibrosis in experimental chronic renal failure. Immunol Invest 34:143–152CrossRefGoogle Scholar
  18. Galvan DL, Green NH, Danesh FR (2017) The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92:1051–1057CrossRefGoogle Scholar
  19. Gomez IG, Nakagawa N, Duffield JS (2016) MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am J Physiol Renal Physiol 310:F931–F944CrossRefGoogle Scholar
  20. Gorman GS, Chinnery PF, Dimauro S, Hirano M, Koga Y, Mcfarland R et al (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080CrossRefGoogle Scholar
  21. Gucer S, Talim B, Asan E, Korkusuz P, Ozen S, Unal S et al (2005) Focal segmental glomerulosclerosis associated with mitochondrial cytopathy: report of two cases with special emphasis on podocytes. Pediatr Dev Pathol 8(6):710–717CrossRefGoogle Scholar
  22. Guery B, Choukroun G, Noel LH, Clavel P, Rotig A, Lebon S et al (2003) The spectrum of systemic involvement in adults presenting with renal lesion and mitochondrial tRNA(Leu) gene mutation. J Am SocNephrol 14:2099–2108Google Scholar
  23. Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu X et al (2017) microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun 8:14395CrossRefGoogle Scholar
  24. Hickey FB, Corcoran JB, Docherty NG, Griffin B, Bhreathnach U, Furlong F et al (2011) IHG-1 promotes mitochondrial biogenesis by stabilizing PGC-1alpha. J Am SocNephrol 22:1475–1485Google Scholar
  25. Ireland J, Rossetti S, Haugen E, Ireland J, MichelsV Harris P (2004) Mitochondrial causes of renal insufficiency and hearing loss. Kidney Int 65:2444–2445CrossRefGoogle Scholar
  26. Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J et al (2013) Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J BiolChem 288:770–777Google Scholar
  27. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J BiolChem 276:4588–4596Google Scholar
  28. Kumar A, Chaugule VK, Condos TEC, Barber KR, Johnson C, Toth R et al (2017) Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat Struct MolBiol 24:475–483CrossRefGoogle Scholar
  29. Lagouge M, Larsson NG (2013) The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med 273:529–543CrossRefGoogle Scholar
  30. Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct MolBiol 24:800–808CrossRefGoogle Scholar
  31. Lin JR, Zheng YJ, Zhang ZB, Shen WL, Li XD, Wei T et al (2018) Suppression of endothelial-to-mesenchymal transition by SIRT (Sirtuin) 3 alleviated the development of hypertensive renal injury. Hypertension 72:350–360CrossRefGoogle Scholar
  32. Liu S, Soong Y, Seshan SV, Szeto HH (2014) Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Renal Physiol 306:F970–F980CrossRefGoogle Scholar
  33. Messmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55:2322–2337CrossRefGoogle Scholar
  34. Molino D, Nascimbeni AC, Giordano F, Codogno P, Morel E (2017) ER-driven membrane contact sites: Evolutionary conserved machineries for stress response and autophagy regulation? CommunIntegrBiol 10:e1401699Google Scholar
  35. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022CrossRefGoogle Scholar
  36. Panieri E, Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253CrossRefGoogle Scholar
  37. Reichold M, Klootwijk ED, Reinders J, Otto EA, Milani M, Broeker C et al (2018) Glycine amidinotransferase (GATM), renal fanconi syndrome, and kidney failure. J Am SocNephrol 29:1849–1858Google Scholar
  38. Rivara MB,Yeung CK, Robinson-Cohen C, Phillips BR, Ruzinski J, Rock D et al (2017) Effect of coenzyme Q10 on biomarkers of oxidative stress and cardiac function in hemodialysis patients: the CoQ10 biomarker trial. Am J Kidney Dis 69:389–399CrossRefGoogle Scholar
  39. Schiffer M, Bitzer M, Roberts IS, Kopp JB, Ten Dijke P, Mundel P et al (2001) Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 108:807–816CrossRefGoogle Scholar
  40. Schubert AF, Gladkova C, Pardon E, Wagstaff JL, Freund SMV, Steyaert J et al (2017) Structure of PINK1 in complex with its substrate ubiquitin. Nature 552:51–56CrossRefGoogle Scholar
  41. Seidowsky A, Hoffmann M, Glowacki F, Dhaenens CM, Devaux JP, De Sainte Foy CL et al (2013) Renal involvement in MELAS syndrome—a series of 5 cases and review of the literature. ClinNephrol 80:456–463Google Scholar
  42. Shoubridge EA (2001) Nuclear genetic defects of oxidative phosphorylation. Hum Mol Genet 10:2277–2284CrossRefGoogle Scholar
  43. Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K et al (2013) Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. MolNutr Food Res 57:1649–1659Google Scholar
  44. Stiles AR, Simon MT, Stover A, Eftekharian S, Khanlou N, Wang HL et al (2016) Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Mol Genet Metab 119:91–99CrossRefGoogle Scholar
  45. Sweetwyne MT, Pippin JW, Eng DG, Hudkins KL, Chiao YA, Campbell MD et al (2017) The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int 91:1126–1145CrossRefGoogle Scholar
  46. Van Vliet AR, Agostinis P (2018) Mitochondria-associated membranes and ER stress. Curr Top Microbiol Immunol 414:73–102PubMedGoogle Scholar
  47. Vincent AE, Turnbull DM, Eisner V, Hajnoczky G, Picard M (2017) Mitochondrial nanotunnels. Trends Cell Biol 27:787–799CrossRefGoogle Scholar
  48. Volobueva AS, Melnichenko AA, GrechkoAV Orekhov AN (2018) Mitochondrial genome variability: the effect on cellular functional activity. Ther Clin Risk Manag 14:237–245CrossRefGoogle Scholar
  49. Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P et al (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15:186–200CrossRefGoogle Scholar
  50. Wei Y, Chiang WC, Sumpter R Jr, Mishra P, Levine B (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168:224–238CrossRefGoogle Scholar
  51. Xu Y, Nie L, Yin YG, Tang JL, Zhou JY, Li DD et al (2012) Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 259:395–401CrossRefGoogle Scholar
  52. Yang CC, Hsu SP, Wu MS, Hsu SM, Chien CT (2006) Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress. Kidney Int 69:706–714CrossRefGoogle Scholar
  53. Yuan Y, Huang S, Wang W, Wang Y, Zhang P, Zhu C et al (2012) Activation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 82:771–789CrossRefGoogle Scholar
  54. Zhu C, Huang S, Yuan Y, Ding G, Chen R, Liu B et al (2011) Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARgamma. Am J Pathol 178:2020–2031CrossRefGoogle Scholar
  55. Zhuang Y, Ding G, Zhao M, Bai M, Yang L, Ni J et al (2014) NLRP3 inflammasome mediates albumin-induced renal tubular injury through impaired mitochondrial function. J BiolChem 289:25101–25111Google Scholar
  56. Zhuang Y, Yasinta M, Hu C, Zhao M, Ding G, Bai M et al (2015) Mitochondrial dysfunction confers albumin-induced NLRP3 inflammasome activation and renal tubular injury. Am J Physiol Renal Physiol 308:F857–F866CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohammed Mazheruddin Quadri
    • 1
  • Syeda-Safoorah Fatima
    • 1
  • Ruo-Chen Che
    • 1
  • Ai-Hua Zhang
    • 1
    Email author
  1. 1.Department of NephrologyChildren’s Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations