Skip to main content

New Understanding on the Role of Proteinuria in Progression of Chronic Kidney Disease

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Proteinuria is identified as an important marker and risk factor of progression in chronic kidney disease. However, the precise mechanism of action in the progress of chronic kidney disease is still unclear. Mesangial toxicity from specific filtered compounds such as albumin-bound fatty acids and transferrin/iron, tubular overload and hyperplasia, and induction of proinflammatory molecules such as MCP-1 and inflammatory cytokines are some of the proposed mechanisms. Reversing intraglomerular hypertension with protein restriction or antihypertensive therapy may be beneficial both by diminishing hemodynamic injury to the glomeruli and by reducing protein filtration. Therefore, understanding proteinuria and its role in renal tubular interstitial inflammation and fibrosis is of great significance for the study of renal protective therapy, such as antiproteinuric treatments, and delaying the progression of chronic renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage? J Am Soc Nephrol 17:2974–2984

    Article  CAS  Google Scholar 

  • Alvarez V, Quiroz Y, Nava M, Pons H, Rodriguez-Iturbe B (2002) Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. Am J Physiol Renal Physiol 283:F1132–F1141

    Article  Google Scholar 

  • Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O et al (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21:1859–1867

    Article  CAS  Google Scholar 

  • Anders HJ, Muruve DA (2011) The inflammasomes in kidney disease. J Am Soc Nephrol 22:1007–1018

    CAS  PubMed  Google Scholar 

  • Atkins RC, Briganti EM, Lewis JB, Hunsicker LG, Braden G, Champion de Crespigny PJ et al (2005) Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am J Kidney Dis 45:281–287

    Article  Google Scholar 

  • Baines RJ, Brunskill NJ (2011) Tubular toxicity of proteinuria. Nat Rev Nephrol 7:177–180

    Article  CAS  Google Scholar 

  • Biemesderfer D (2006) Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule? Kidney Int 69:1717–1721

    Article  CAS  Google Scholar 

  • Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656

    Article  Google Scholar 

  • Borges FT, Melo SA, Ozdemir BC, Kato N, Revuelta I, Miller CA et al (2013) TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392

    Article  CAS  Google Scholar 

  • Burton C, Harris KP (1996) The role of proteinuria in the progression of chronic renal failure. Am J Kidney Dis 27:765–775

    Article  CAS  Google Scholar 

  • Cao W, Zhou QG, Nie J, Wang GB, Liu Y, Zhou ZM et al (2011) Albumin overload activates intrarenal renin-angiotensin system through protein kinase C and NADPH oxidase-dependent pathway. J Hypertens 29:1411–1421

    Article  CAS  Google Scholar 

  • Caruso-Neves C, Pinheiro AA, Cai H, Souza-Menezes J, Guggino WB (2006) PKB and megalin determine the survival or death of renal proximal tubule cells. Proc Natl Acad Sci U S A 103:18810–18815

    Article  CAS  Google Scholar 

  • Chang A, Ko K, Clark MR (2014) The emerging role of the inflammasome in kidney diseases. Curr Opin Nephrol Hypertens 23:204–210

    Article  CAS  Google Scholar 

  • Cravedi P, Ruggenenti P, Remuzzi G (2012) Proteinuria should be used as a surrogate in CKD. Nat Rev Nephrol 8:301–306

    Article  CAS  Google Scholar 

  • de Zeeuw D, Ramjit D, Zhang Z, Ribeiro AB, Kurokawa K, Lash JP et al (2006) Renal risk and renoprotection among ethnic groups with type 2 diabetic nephropathy: a post hoc analysis of RENAAL. Kidney Int 69:1675–1682

    Article  Google Scholar 

  • Eardley KS, Zehnder D, Quinkler M, Lepenies J, Bates RL, Savage CO et al (2006) The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int 69:1189–1197

    Article  CAS  Google Scholar 

  • Fernandez-Fernandez B, Izquierdo MC, Valino-Rivas L, Nastou D, Sanz AB, Ortiz A et al (2018) Albumin Downregulates Klotho in tubular cells. Nephrol Dial Transplant 33:1712–1722

    Article  CAS  Google Scholar 

  • Gorriz JL, Martinez-Castelao A (2012) Proteinuria: detection and role in native renal disease progression. Transplant Rev (Orlando) 26:3–13

    Article  Google Scholar 

  • Greka A, Mundel P (2012) Cell biology and pathology of podocytes. Annu Rev Physiol 74:299–323

    Article  CAS  Google Scholar 

  • Huxley VH, Williams DA (2000) Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol 278:H1177–H1185

    Article  CAS  Google Scholar 

  • Iseki K, Iseki C, Ikemiya Y, Fukiyama K (1996) Risk of developing end-stage renal disease in a cohort of mass screening. Kidney Int 49:800–805

    Article  CAS  Google Scholar 

  • Iwao Y, Nakajou K, Nagai R, Kitamura K, Anraku M, Maruyama T et al (2008) CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am J Physiol Renal Physiol 295:F1871–F1880

    Article  CAS  Google Scholar 

  • Jefferson JA, Shankland SJ, Pichler RH (2008) Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 74:22–36

    Article  CAS  Google Scholar 

  • Keane WF, Zhang Z, Lyle PA, Cooper ME, de Zeeuw D, Grunfeld JP et al (2006) Risk scores for predicting outcomes in patients with type 2 diabetes and nephropathy: the RENAAL study. Clin J Am Soc Nephrol 1:761–767

    Article  Google Scholar 

  • Kim JH, Xie J, Hwang KH, Wu YL, Oliver N, Eom M et al (2017) Klotho may ameliorate proteinuria by targeting TRPC6 channels in podocytes. J Am Soc Nephrol 28:140–151

    Article  CAS  Google Scholar 

  • Ku E, Johansen KL, McCulloch CE (2018) Time-centered approach to understanding risk factors for the progression of CKD. Clin J Am Soc Nephrol 13:693–701

    Article  Google Scholar 

  • Lee D, Gleich K, Fraser SA, Katerelos M, Mount PF, Power DA (2013) Limited capacity of proximal tubular proteolysis in mice with proteinuria. Am J Physiol Renal Physiol 304:F1009–F1019

    Article  CAS  Google Scholar 

  • Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860

    Article  CAS  Google Scholar 

  • Li X, Pabla N, Wei Q, Dong G, Messing RO, Wang CY et al (2010) PKC-delta promotes renal tubular cell apoptosis associated with proteinuria. J Am Soc Nephrol 21:1115–1124

    Article  Google Scholar 

  • Liu BC, Gao J, Li Q, Xu LM (2009) Albumin caused the increasing production of angiotensin II due to the dysregulation of ACE/ACE2 expression in HK2 cells. Clin Chim Acta 403:23–30

    Article  CAS  Google Scholar 

  • Liu BC, Tang TT, Lv LL, Lan HY (2018) Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 93:568–579

    Article  CAS  Google Scholar 

  • Liu D, Wen Y, Tang TT, Lv LL, Tang RN, Liu H et al (2015) Megalin/cubulin-lysosome-mediated albumin reabsorption is involved in the tubular cell activation of NLRP3 inflammasome and tubulointerstitial inflammation. J Biol Chem 290:18018–18028

    Article  CAS  Google Scholar 

  • Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL et al (2014) Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 57:7–19

    Article  CAS  Google Scholar 

  • Luo S, Coresh J, Tin A, Rebholz CM, Appel LJ, Chen J et al (2019) Serum metabolomic alterations associated with proteinuria in CKD. Clin J Am Soc Nephrol 14:342–353

    Article  Google Scholar 

  • Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF, Li ZL et al (2018) Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol 29:919–935

    Article  CAS  Google Scholar 

  • Macconi D, Chiabrando C, Schiarea S, Aiello S, Cassis L, Gagliardini E et al (2009) Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J Am Soc Nephrol 20:123–130

    Article  CAS  Google Scholar 

  • Morigi M, Macconi D, Zoja C, Donadelli R, Buelli S, Zanchi C et al (2002) Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. J Am Soc Nephrol 13:1179–1189

    CAS  PubMed  Google Scholar 

  • Motoyoshi Y, Matsusaka T, Saito A, Pastan I, Willnow TE, Mizutani S et al (2008) Megalin contributes to the early injury of proximal tubule cells during nonselective proteinuria. Kidney Int 74:1262–1269

    Article  CAS  Google Scholar 

  • Nakajima H, Takenaka M, Kaimori JY, Hamano T, Iwatani H, Sugaya T et al (2004) Activation of the signal transducer and activator of transcription signaling pathway in renal proximal tubular cells by albumin. J Am Soc Nephrol 15:276–285

    Article  CAS  Google Scholar 

  • Nijenhuis T, Sloan AJ, Hoenderop JG, Flesche J, van Goor H, Kistler AD et al (2011) Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol 179:1719–1732

    Article  CAS  Google Scholar 

  • Nishi Y, Satoh M, Nagasu H, Kadoya H, Ihoriya C, Kidokoro K et al (2013) Selective estrogen receptor modulation attenuates proteinuria-induced renal tubular damage by modulating mitochondrial oxidative status. Kidney Int 83:662–673

    Article  CAS  Google Scholar 

  • Peired A, Angelotti ML, Ronconi E, la Marca G, Mazzinghi B, Sisti A et al (2013) Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J Am Soc Nephrol 24:1756–1768

    Article  CAS  Google Scholar 

  • Pitt JM, Kroemer G, Zitvogel L (2016) Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 126:1139–1143

    Article  Google Scholar 

  • Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116:288–296

    Article  CAS  Google Scholar 

  • Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M et al (1999) Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 354:359–364

    Article  CAS  Google Scholar 

  • Ruggenenti P, Perna A, Mosconi L, Matalone M, Pisoni R, Gaspari F et al (1997) Proteinuria predicts end-stage renal failure in non-diabetic chronic nephropathies. The “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int 63(Suppl):S54–S57

    CAS  Google Scholar 

  • Ruggenenti P, Perna A, Mosconi L, Pisoni R, Remuzzi G (1998) Urinary protein excretion rate is the best independent predictor of ESRF in non-diabetic proteinuric chronic nephropathies. “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int 53:1209–1216

    Article  CAS  Google Scholar 

  • Ruggenenti P, Perna A, Remuzzi G, Investigators GG (2003) Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int 63:2254–2261

    Article  CAS  Google Scholar 

  • Shimizu H, Maruyama S, Yuzawa Y, Kato T, Miki Y, Suzuki S et al (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. J Am Soc Nephrol 14:1496–1505

    Article  CAS  Google Scholar 

  • Souma T, Abe M, Moriguchi T, Takai J, Yanagisawa-Miyazawa N, Shibata E et al (2011) Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells. J Am Soc Nephrol 22:635–648

    Article  CAS  Google Scholar 

  • Storm T, Tranebjaerg L, Frykholm C, Birn H, Verroust PJ, Neveus T et al (2013) Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin filtration. Nephrol Dial Transplant 28:585–591

    Article  CAS  Google Scholar 

  • Strutz FM (2009) EMT and proteinuria as progression factors. Kidney Int 75:475–481

    Article  CAS  Google Scholar 

  • Thrailkill KM, Nimmo T, Bunn RC, Cockrell GE, Moreau CS, Mackintosh S et al (2009) Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin. Diab Care 32:1266–1268

    Article  CAS  Google Scholar 

  • Toblli JE, Bevione P, Di Gennaro F, Madalena L, Cao G, Angerosa M (2012) Understanding the mechanisms of proteinuria: therapeutic implications. Int J Nephrol 2012:546039

    Article  Google Scholar 

  • Tojo A, Onozato ML, Kitiyakara C, Kinugasa S, Fukuda S, Sakai T et al (2008) Glomerular albumin filtration through podocyte cell body in puromycin aminonucleoside nephrotic rat. Med Mol Morphol 41:92–98

    Article  Google Scholar 

  • Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389:1238–1252

    Article  Google Scholar 

  • Weyer K, Storm T, Shan J, Vainio S, Kozyraki R, Verroust PJ et al (2011) Mouse model of proximal tubule endocytic dysfunction. Nephrol Dial Transplant 26:3446–3451

    Article  Google Scholar 

  • Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J et al (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379:815–822

    Article  Google Scholar 

  • Zoja C, Abbate M, Remuzzi G (2015) Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant 30:706–712

    Article  CAS  Google Scholar 

  • Zou Z, Chung B, Nguyen T, Mentone S, Thomson B, Biemesderfer D (2004) Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J Biol Chem 279:34302–34310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Key Research and Development Program of China (2018YFC1314004), the National Natural Science Foundation of China (No. 81720108007, 81670696, 81470922, 81600513 and 31671194), the Clinic Research Center of Jiangsu Province (No. BL2014080), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX18_0171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Li Lv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, D., Lv, LL. (2019). New Understanding on the Role of Proteinuria in Progression of Chronic Kidney Disease. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_24

Download citation

Publish with us

Policies and ethics