Complement Activation in Progression of Chronic Kidney Disease

  • Su-Fang Chen
  • Min ChenEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)


Chronic kidney disease (CKD) is a public health problem worldwide, with increasing incidence and prevalence. The mechanisms underlying the progression to end-stage renal disease (ESRD) is not fully understood. The complement system was traditionally regarded as an important part of innate immunity required for host protection against infection and for maintaining host hemostasis. However, compelling evidence from both clinical and experimental studies has strongly incriminated complement activation as a pivotal pathogenic mediator of the development of multiple renal diseases and progressive replacement of functioning nephrons by fibrosis. Both anaphylatoxins, i.e., C3a and C5a, and membrane attack complex (MAC) contribute to the damage that occurs during chronic renal progression through various mechanisms including direct proinflammatory and fibrogenic activity, chemotactic effect, activation of the renal renin–angiotensin system, and enhancement of T-cell immunity. Evolving understanding of the mechanisms of complement-mediated renal injury has led to the emergence of complement-targeting therapeutics. A variety of specific antibodies and inhibitors targeting complement components have shown efficacy in reducing disease in animal models. Moreover, building on these advances, targeting complement has gained encouraging success in treating patients with renal diseases such as atypical hemolytic uremic syndrome (aHUS). Nevertheless, it still requires a great deal of effort to develop inhibitors that can be applied to treat more patients effectively in routine clinical practice.


Complement Chronic kidney disease Glomerular diseases Renal fibrosis 


  1. Abe K, Li K, Sacks SH, Sheerin NS (2004) The membrane attack complex, C5b-9, up regulates collagen gene expression in renal tubular epithelial cells. Clin Exp Immunol 136:60–66PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzl P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77:762–767PubMedPubMedCentralCrossRefGoogle Scholar
  3. Athanasiou Y, Voskarides K, Gale DP, Damianou L, Patsias C et al (2011) Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees. Clin J Am Soc Nephrol 6:1436–1446PubMedPubMedCentralCrossRefGoogle Scholar
  4. Atkinson C, Qiao F, Song H, Gilkeson GS, Tomlinson S (2008) Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. J Immunol 180:1231–1238PubMedCrossRefGoogle Scholar
  5. Bao L, Osawe I, Puri T, Lambris JD, Haas M, Quigg RJ (2005) C5a promotes development of experimental lupus nephritis which can be blocked with a specific receptor antagonist. Eur J Immunol 35:2496–2506PubMedCrossRefGoogle Scholar
  6. Bao L, Haas M, Quigg RJ (2011) Complement factor H deficiency accelerates development of lupus nephritis. J Am Soc Nephrol 22:285–295PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barnett AH, Mijovic C, Fletcher J, Chesner I, Kulkuska-Langlands BM (1984) Low plasma C4 concentrations: association with microangiopathy in insulin dependent diabetes. Br Med J (Clin Res Ed) 289:943–945CrossRefGoogle Scholar
  8. Benzaquen LR, Nicholson-Weller A, Halperin JA (1994) Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med 179:985–992PubMedCrossRefGoogle Scholar
  9. Berthoux FC, Mohey H, Afiani A (2008) Natural history of primary IgA nephropathy. Semin Nephrol 28:4–9PubMedCrossRefGoogle Scholar
  10. Bomback AS, Smith RJ, Barile GR, Zhang Y, Heher EC et al (2012) Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol 7:748–756PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boor P, Konieczny A, Villa L, Schult AL, Bucher E et al (2007) Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol 18:1508–1515PubMedCrossRefGoogle Scholar
  12. Burger A, Wagner C, Hug F, Hansch GM (1999) Up-regulation of intracellular calcium, cyclic adenosine monophosphate and fibronectin synthesis in tubuar epithelial cells by complement. Eur J Immunol 29:1188–1193PubMedCrossRefGoogle Scholar
  13. Caprioli J, Bettinaglio P, Zipfel PF, Amadei B, Daina E et al (2001) The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol 12:297–307PubMedGoogle Scholar
  14. Challis RC, Araujo GS, Wong EK, Anderson HE, Awan A et al (2016) A De Novo deletion in the regulators of complement activation cluster producing a hybrid complement factor H/complement factor H-related 3 gene in atypical hemolytic uremic syndrome. J Am Soc Nephrol 27:1617–1624PubMedCrossRefGoogle Scholar
  15. Chen M, Xing GQ, Yu F, Liu G, Zhao MH (2009) Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol Dial Transplant 24:1247–1252PubMedCrossRefGoogle Scholar
  16. Chen Q, Wiesener M, Eberhardt HU, Hartmann A, Uzonyi B et al (2014) Complement factor H-related hybrid protein deregulates complement in dense deposit disease. J Clin Invest 124:145–155PubMedCrossRefGoogle Scholar
  17. Chevalier RL (2006) Obstructive nephropathy: towards biomarker discovery and gene therapy. Nat Clin Pract Nephrol 2:157–168PubMedCrossRefGoogle Scholar
  18. Coppo R, Peruzzi L, Amore A, Martino S, Vergano L et al (2015) Dramatic effects of eculizumab in a child with diffuse proliferative lupus nephritis resistant to conventional therapy. Pediatr Nephrol 30:167–172PubMedCrossRefGoogle Scholar
  19. Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80:1258–1270PubMedCrossRefGoogle Scholar
  20. Daina E, Noris M, Remuzzi G (2012) Eculizumab in a patient with dense-deposit disease. N Engl J Med 366:1161–1163PubMedCrossRefGoogle Scholar
  21. David S, Biancone L, Caserta C, Bussolati B, Cambi V, Camussi G (1997) Alternative pathway complement activation induces proinflammatory activity in human proximal tubular epithelial cells. Nephrol Dial Transplant 12:51–56PubMedCrossRefGoogle Scholar
  22. de Jorge EG, Macor P, Paixao-Cavalcante D, Rose KL, Tedesco F et al (2011) The development of atypical hemolytic uremic syndrome depends on complement C5. J Am Soc Nephrol 22:137–145PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dragon-Durey MA, Loirat C, Cloarec S, Macher MA, Blouin J et al (2005) Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol 16:555–563PubMedCrossRefGoogle Scholar
  24. Eitner F, Floege J (2005) Therapeutic targets for prevention and regression of progressive fibrosing renal diseases. Curr Opin Investig Drugs 6:255–261PubMedGoogle Scholar
  25. El-Husseini A, Hannan S, Awad A, Jennings S, Cornea V, Sawaya BP (2015) Thrombotic microangiopathy in systemic lupus erythematosus: efficacy of eculizumab. Am J Kidney Dis 65:127–130PubMedCrossRefGoogle Scholar
  26. Elliott MK, Jarmi T, Ruiz P, Xu Y, Holers VM, Gilkeson GS (2004) Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int 65:129–138PubMedCrossRefGoogle Scholar
  27. Eyler SJ, Meyer NC, Zhang Y, Xiao X, Nester CM, Smith RJ (2013) A novel hybrid CFHR1/CFH gene causes atypical hemolytic uremic syndrome. Pediatr Nephrol 28:2221–2225PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fakhouri F, de Jorge EG, Brune F, Azam P, Cook HT, Pickering MC (2010a) Treatment with human complement factor H rapidly reverses renal complement deposition in factor H-deficient mice. Kidney Int 78:279–286PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fakhouri F, Fremeaux-Bacchi V, Noel LH, Cook HT, Pickering MC (2010b) C3 glomerulopathy: a new classification. Nat Rev Nephrol 6:494–499PubMedCrossRefGoogle Scholar
  30. Falk RJ, Dalmasso AP, Kim Y, Tsai CH, Scheinman JI, Gewurz H, Michael AF (1983a) Neoantigen of the polymerized ninth component of complement. Characterization of a monoclonal antibody and immunohistochemical localization in renal disease. J Clin Invest 72:560–573PubMedPubMedCentralCrossRefGoogle Scholar
  31. Falk RJ, Scheinman JI, Mauer SM, Michael AF (1983b) Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes 32(Suppl 2):34–39PubMedCrossRefGoogle Scholar
  32. Flyvbjerg A (2017) The role of the complement system in diabetic nephropathy. Nat Rev Nephrol 13:311–318PubMedCrossRefGoogle Scholar
  33. Francis NJ, McNicholas B, Awan A, Waldron M, Reddan D et al (2012) A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome. Blood 119:591–601PubMedCrossRefGoogle Scholar
  34. Fremeaux-Bacchi V, Dragon-Durey MA, Blouin J, Vigneau C, Kuypers D et al (2004) Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 41:e84PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J et al (2008) Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112:4948–4952PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fujita T, Inoue T, Ogawa K, Iida K, Tamura N (1987) The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. J Exp Med 166:1221–1228PubMedCrossRefGoogle Scholar
  37. Fujita T, Hemmi S, Kajiwara M, Yabuki M, Fuke Y et al (2013) Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes Metab Res Rev 29:220–226PubMedCrossRefGoogle Scholar
  38. George JN, Nester CM (2014) Syndromes of thrombotic microangiopathy. N Engl J Med 371:654–666PubMedCrossRefGoogle Scholar
  39. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P et al (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327PubMedPubMedCentralCrossRefGoogle Scholar
  40. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA et al (2007) Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A 104:240–245PubMedCrossRefGoogle Scholar
  41. Gou SJ, Yuan J, Chen M, Yu F, Zhao MH (2013a) Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int 83:129–137PubMedCrossRefGoogle Scholar
  42. Gou SJ, Yuan J, Wang C, Zhao MH, Chen M (2013b) Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin J Am Soc Nephrol 8:1884–1891PubMedPubMedCentralCrossRefGoogle Scholar
  43. Guo WY, Zhu L, Meng SJ, Shi SF, Liu LJ et al (2017) Mannose-binding lectin levels could predict prognosis in IgA nephropathy. J Am Soc Nephrol 28:3175–3181PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gurkan S, Fyfe B, Weiss L, Xiao X, Zhang Y, Smith RJ (2013) Eculizumab and recurrent C3 glomerulonephritis. Pediatr Nephrol 28:1975–1981PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hansen TK, Thiel S, Knudsen ST, Gravholt CH, Christiansen JS et al (2003) Elevated levels of mannan-binding lectin in patients with type 1 diabetes. J Clin Endocrinol Metab 88:4857–4861PubMedCrossRefGoogle Scholar
  46. Hansen TK, Tarnow L, Thiel S, Steffensen R, Stehouwer CD et al (2004) Association between mannose-binding lectin and vascular complications in type 1 diabetes. Diabetes 53:1570–1576PubMedCrossRefGoogle Scholar
  47. Hansen TK, Forsblom C, Saraheimo M, Thorn L, Waden J et al (2010) Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes. Diabetologia 53:1517–1524PubMedCrossRefGoogle Scholar
  48. Hilhorst M, van Paassen P, van Rie H, Bijnens N, Heerings-Rewinkel P et al (2017) Complement in ANCA-associated glomerulonephritis. Nephrol Dial Transplant 32:1302–1313PubMedCrossRefGoogle Scholar
  49. Hogasen K, Jansen JH, Mollnes TE, Hovdenes J, Harboe M (1995) Hereditary porcine membranoproliferative glomerulonephritis type II is caused by factor H deficiency. J Clin Invest 95:1054–1061PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hovind P, Hansen TK, Tarnow L, Thiel S, Steffensen R et al (2005) Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes: an inception cohort study. Diabetes 54:1523–1527PubMedCrossRefGoogle Scholar
  51. Huugen D, van Esch A, Xiao H, Peutz-Kootstra CJ, Buurman WA et al (2007) Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int 71:646–654PubMedCrossRefGoogle Scholar
  52. Iatropoulos P, Noris M, Mele C, Piras R, Valoti E et al (2016) Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Mol Immunol 71:131–142PubMedCrossRefGoogle Scholar
  53. Jayne DRW, Bruchfeld AN, Harper L, Schaier M, Venning MC et al (2017) Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol 28:2756–2767PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jeong JC, Hwang YH, Kim H, Ro H, Park HC et al (2011) Association of complement 5 genetic polymorphism with renal allograft outcomes in Korea. Nephrol Dial Transplant 26:3378–3385PubMedCrossRefGoogle Scholar
  55. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382:260–272PubMedCrossRefGoogle Scholar
  56. Jozsi M, Strobel S, Dahse HM, Liu WS, Hoyer PF et al (2007) Anti factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood 110:1516–1518PubMedCrossRefGoogle Scholar
  57. Kim SJ, Koo HM, Lim BJ, Oh HJ, Yoo DE et al (2012) Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS ONE 7:e40495PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kim MG, Koo TY, Yan JJ, Lee E, Han KH et al (2013) IL-2/anti-IL-2 complex attenuates renal ischemia-reperfusion injury through expansion of regulatory T cells. J Am Soc Nephrol 24:1529–1536PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kohl J, Baelder R, Lewkowich IP, Pandey MK, Hawlisch H et al (2006) A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J Clin Invest 116:783–796PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kwan WH, van der Touw W, Paz-Artal E, Li MO, Heeger PS (2013) Signaling through C5a receptor and C3a receptor diminishes function of murine natural regulatory T cells. J Exp Med 210:257–268PubMedPubMedCentralCrossRefGoogle Scholar
  61. Le Quintrec M, Lionet A, Kandel C, Bourdon F, Gnemmi V et al (2015) Eculizumab for treatment of rapidly progressive C3 glomerulopathy. Am J Kidney Dis 65:484–489PubMedCrossRefGoogle Scholar
  62. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S et al (2013) Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 368:2169–2181PubMedCrossRefGoogle Scholar
  63. Lenderink AM, Liegel K, Ljubanovic D, Coleman KE, Gilkeson GS et al (2007) The alternative pathway of complement is activated in the glomeruli and tubulointerstitium of mice with adriamycin nephropathy. Am J Physiol Renal Physiol 293:F555–F564PubMedCrossRefGoogle Scholar
  64. Levy M, Halbwachs-Mecarelli L, Gubler MC, Kohout G, Bensenouci A et al (1986) H deficiency in two brothers with atypical dense intramembranous deposit disease. Kidney Int 30:949–956PubMedCrossRefGoogle Scholar
  65. Li XQ, Chang DY, Chen M, Zhao MH (2019) Complement activation in patients with diabetic nephropathy. Diabetes Metab 45:248–253PubMedCrossRefGoogle Scholar
  66. Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A et al (2015) Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 26:1503–1512PubMedPubMedCentralCrossRefGoogle Scholar
  67. Malik TH, Lavin PJ, Goicoechea de Jorge E, Vernon KA, Rose KL et al (2012) A hybrid CFHR3-1 gene causes familial C3 glomerulopathy. J Am Soc Nephrol 23:1155–1160PubMedPubMedCentralCrossRefGoogle Scholar
  68. Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22:431–456PubMedCrossRefGoogle Scholar
  69. Manzi S, Rairie JE, Carpenter AB, Kelly RH, Jagarlapudi SP et al (1996) Sensitivity and specificity of plasma and urine complement split products as indicators of lupus disease activity. Arthritis Rheum 39:1178–1188PubMedCrossRefGoogle Scholar
  70. Masaki T, Matsumoto M, Nakanishi I, Yasuda R, Seya T (1992) Factor I-dependent inactivation of human complement C4b of the classical pathway by C3b/C4b receptor (CR70, CD35) and membrane cofactor protein (MCP, CD46). J Biochem 111:573–578PubMedCrossRefGoogle Scholar
  71. McCoy RC, Abramowsky CR, Tisher CC (1974) IgA nephropathy. Am J Pathol 76:123–144PubMedPubMedCentralGoogle Scholar
  72. Medjeral-Thomas N, Malik TH, Patel MP, Toth T, Cook HT et al (2014) A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int 85:933–937PubMedCrossRefGoogle Scholar
  73. Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, Willicombe M, McLean AG et al (2017) Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int 92:942–952PubMedPubMedCentralCrossRefGoogle Scholar
  74. Michelfelder S, Fischer F, Waldin A, Horle KV, Pohl M et al (2018) The MFHR1 fusion protein is a novel synthetic multitarget complement inhibitor with therapeutic potential. J Am Soc Nephrol 29:1141–1153PubMedPubMedCentralCrossRefGoogle Scholar
  75. Moore I, Strain L, Pappworth I, Kavanagh D, Barlow PN et al (2010) Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood 115:379–387PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nakorchevsky A, Hewel JA, Kurian SM, Mondala TS, Campbell D et al (2010) Molecular mechanisms of chronic kidney transplant rejection via large-scale proteogenomic analysis of tissue biopsies. J Am Soc Nephrol 21:362–373PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nangaku M, Pippin J, Couser WG (1999) Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. J Am Soc Nephrol 10:2323–2331PubMedGoogle Scholar
  78. Nangaku M, Pippin J, Couser WG (2002) C6 mediates chronic progression of tubulointerstitial damage in rats with remnant kidneys. J Am Soc Nephrol 13:928–936PubMedGoogle Scholar
  79. Nangaku M, Shankland SJ, Couser WG (2005) Cellular response to injury in membranous nephropathy. J Am Soc Nephrol 16:1195–1204PubMedCrossRefGoogle Scholar
  80. Nichols EM, Barbour TD, Pappworth IY, Wong EK, Palmer JM et al (2015) An extended mini-complement factor H molecule ameliorates experimental C3 glomerulopathy. Kidney Int 88:1314–1322PubMedPubMedCentralCrossRefGoogle Scholar
  81. Noris M, Remuzzi G (2009) Atypical hemolytic-uremic syndrome. N Engl J Med 361:1676–1687PubMedCrossRefGoogle Scholar
  82. Noris M, Brioschi S, Caprioli J, Todeschini M, Bresin E et al (2003) Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362:1542–1547PubMedCrossRefGoogle Scholar
  83. Ostendorf T, Kunter U, Grone HJ, Bahlmann F, Kawachi H et al (2001) Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 12:909–918PubMedGoogle Scholar
  84. Ostendorf T, Rong S, Boor P, Wiedemann S, Kunter U et al (2006) Antagonism of PDGF-D by human antibody CR84 prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 17:1054–1062PubMedCrossRefGoogle Scholar
  85. Ostergaard J, Thiel S, Gadjeva M, Hansen TK, Rasch R, Flyvbjerg A (2007) Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice. Diabetologia 50:1541–1549PubMedCrossRefGoogle Scholar
  86. Ostergaard JA, Thiel S, Hovind P, Holt CB, Parving HH et al (2014) Association of the pattern recognition molecule H-ficolin with incident microalbuminuria in an inception cohort of newly diagnosed type 1 diabetic patients: an 18 year follow-up study. Diabetologia 57:2201–2207PubMedCrossRefGoogle Scholar
  87. Ostergaard JA, Thiel S, Lajer M, Steffensen R, Parving HH et al (2015) Increased all-cause mortality in patients with type 1 diabetes and high-expression mannan-binding lectin genotypes: a 12-year follow-up study. Diabetes Care 38:1898–1903PubMedCrossRefGoogle Scholar
  88. Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1977) Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med 146:257–270PubMedCrossRefGoogle Scholar
  89. Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J et al (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31:424–428PubMedCrossRefGoogle Scholar
  90. Pickering MC, Warren J, Rose KL, Carlucci F, Wang Y et al (2006) Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc Natl Acad Sci U S A 103:9649–9654PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A et al (2007) Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med 204:1249–1256PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pickering MC, Ismajli M, Condon MB, McKenna N, Hall AE et al (2015) Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford) 54:2286–2288Google Scholar
  93. Qiu W, Zhou J, Zhu G, Zhao D, He F et al (2014) Sublytic C5b-9 triggers glomerular mesangial cell apoptosis via XAF1 gene activation mediated by p300-dependent IRF-1 acetylation. Cell Death Dis 5:e1176PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rangan GK, Pippin JW, Couser WG (2004) C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis. Kidney Int 66:1838–1848PubMedCrossRefGoogle Scholar
  95. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N et al (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:1724–1734PubMedCrossRefGoogle Scholar
  96. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787CrossRefGoogle Scholar
  97. Schmidt BZ, Fowler NL, Hidvegi T, Perlmutter DH, Colten HR (1999) Disruption of disulfide bonds is responsible for impaired secretion in human complement factor H deficiency. J Biol Chem 274:11782–11788PubMedCrossRefGoogle Scholar
  98. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R (2009) C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 20:289–298PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sean Eardley K, Cockwell P (2005) Macrophages and progressive tubulointerstitial disease. Kidney Int 68:437–455PubMedCrossRefGoogle Scholar
  100. Servais A, Noel LH, Roumenina LT, Le Quintrec M, Ngo S et al (2012) Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 82:454–464PubMedCrossRefGoogle Scholar
  101. Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE (2007) Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 179:2600–2608PubMedCrossRefGoogle Scholar
  102. Strainic MG, Shevach EM, An F, Lin F, Medof ME (2013) Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol 14:162–171PubMedCrossRefGoogle Scholar
  103. Tang Z, Lu B, Hatch E, Sacks SH, Sheerin NS (2009) C3a mediates epithelial-to- mesenchymal transition in proteinuric nephropathy. J Am Soc Nephrol 20:593–603PubMedPubMedCentralCrossRefGoogle Scholar
  104. Togarsimalemath SK, Sethi SK, Duggal R, Le Quintrec M, Jha P et al (2017) A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy. Kidney Int 92:876–887PubMedCrossRefGoogle Scholar
  105. Torbohm I, Schonermark M, Wingen AM, Berger B, Rother K, Hansch GM (1990) C5b-8 and C5b-9 modulate the collagen release of human glomerular epithelial cells. Kidney Int 37:1098–1104PubMedCrossRefGoogle Scholar
  106. Tortajada A, Yebenes H, Abarrategui-Garrido C, Anter J, Garcia-Fernandez JM et al (2013) C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest 123:2434–2446PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tortajada A, Gutierrez E, Goicoechea de Jorge E, Anter J, Segarra A, Espinosa M, Blasco M, Roman E, Marco H, Quintana LF et al (2017) Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy. Kidney Int 92:953–963PubMedCrossRefGoogle Scholar
  108. Turnberg D, Lewis M, Moss J, Xu Y, Botto M, Cook HT (2006) Complement activation contributes to both glomerular and tubulointerstitial damage in adriamycin nephropathy in mice. J Immunol 177:4094–4102PubMedCrossRefGoogle Scholar
  109. Valoti E, Alberti M, Tortajada A, Garcia-Fernandez J, Gastoldi S et al (2015) A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J Am Soc Nephrol 26:209–219PubMedCrossRefGoogle Scholar
  110. van der Touw W, Cravedi P, Kwan WH, Paz-Artal E, Merad M, Heeger PS (2013) Cutting edge: receptors for C3a and C5a modulate stability of alloantigen-reactive induced regulatory T cells. J Immunol 190:5921–5925PubMedPubMedCentralCrossRefGoogle Scholar
  111. Venables JP, Strain L, Routledge D, Bourn D, Powell HM et al (2006) Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med 3:e431PubMedPubMedCentralCrossRefGoogle Scholar
  112. Vivarelli M, Pasini A, Emma F (2012) Eculizumab for the treatment of dense-deposit disease. N Engl J Med 366:1163–1165PubMedCrossRefGoogle Scholar
  113. Wang Y, Hu Q, Madri JA, Rollins SA, Chodera A, Matis LA (1996) Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci U S A 93:8563–8568PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wang J, Zhang L, Tang SC, Kashihara N, Kim YS et al (2018) Disease burden and challenges of chronic kidney disease in North and East Asia. Kidney Int 94:22–25PubMedCrossRefGoogle Scholar
  115. Watanabe H, Garnier G, Circolo A, Wetsel RA, Ruiz P et al (2000) Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J Immunol 164:786–794PubMedCrossRefGoogle Scholar
  116. Weiler JM, Daha MR, Austen KF, Fearon DT (1976) Control of the amplification convertase of complement by the plasma protein beta1H. Proc Natl Acad Sci U S A 73:3268–3272PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wenderfer SE, Ke B, Hollmann TJ, Wetsel RA, Lan HY, Braun MC (2005) C5a receptor deficiency attenuates T cell function and renal disease in MRLlpr mice. J Am Soc Nephrol 16:3572–3582PubMedCrossRefGoogle Scholar
  118. Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K (2011) Transcriptome analysis of human diabetic kidney disease. Diabetes 60:2354–2369PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wyatt RJ, Julian BA (1988) Activation of complement in IgA nephropathy. Am J Kidney Dis 12:437–442PubMedCrossRefGoogle Scholar
  120. Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4:583–594PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC (2007) Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol 170:52–64PubMedPubMedCentralCrossRefGoogle Scholar
  122. Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T et al (2014) C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol 25:225–231PubMedCrossRefGoogle Scholar
  123. Xiao X, Ghossein C, Tortajada A, Zhang Y, Meyer N et al (2016) Familial C3 glomerulonephritis caused by a novel CFHR5-CFHR2 fusion gene. Mol Immunol 77:89–96PubMedCrossRefGoogle Scholar
  124. Yang Y, Denton H, Davies OR, Smith-Jackson K, Kerr H et al (2018) An engineered complement factor H construct for treatment of C3 glomerulopathy. J Am Soc Nephrol 29:1649–1661PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang J, Li Y, Shan K, Wang L, Qiu W et al (2014) Sublytic C5b-9 induces IL-6 and TGF-beta1 production by glomerular mesangial cells in rat Thy-1 nephritis through p300-mediated C/EBPbeta acetylation. FASEB J 28:1511–1525Google Scholar
  126. Zhang YM, Gu QH, Huang J, Qu Z,Wang X et al (2016a) Clinical significance of IgMand C3 glomerular deposition in primary focal segmental glomerulosclerosis. Clin J AmSoc Nephrol 11:1582–1589PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhang L, Long J, Jiang W, Shi Y, He X et al (2016b) Trends in chronic kidney disease in China. N Engl J Med 375:905–906PubMedCrossRefGoogle Scholar
  128. Zhou X, Fukuda N, Matsuda H, Endo M, Wang X et al (2013) Complement 3 activates the renal renin-angiotensin system by induction of epithelial-to-mesenchymal transition of the nephrotubulus in mice. Am J Physiol Renal Physiol 305:F957–F967CrossRefGoogle Scholar
  129. Zhu L, Zhai YL, Wang FM, Hou P, Lv JC et al (2015) Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol 26:1195–1204PubMedCrossRefGoogle Scholar
  130. Zhu L, Guo WY, Shi SF, Liu LJ et al (2018) Circulating complement factor H-related protein 5 levels contribute to development and progression of IgA nephropathy. Kidney Int 94:150–158PubMedCrossRefGoogle Scholar
  131. Zwirner J, Burg M, Schulze M, Brunkhorst R, Gotze O, Koch KM, Floege J (1997) Activated complement C3: a potentially novel predictor of progressive IgA nephropathy. Kidney Int 51:1257–1264PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Renal Disease, Renal Division, Department of Medicine, Peking University First HospitalInstitute of Nephrology, Ministry of Health of China, Peking UniversityBeijingChina

Personalised recommendations