Advertisement

Morphology and Evaluation of Renal Fibrosis

  • Ping-Sheng ChenEmail author
  • Yi-Ping Li
  • Hai-Feng Ni
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

With continuing damage, both the indigenous cells of the cortex and medulla, and inflammatory cells are involved in the formation and development of renal fibrosis. Furthermore, interactions among the glomerular, tubular, and interstitial cells contribute to the process by excessive synthesis and decreased degradation of extracellular matrix. The morphology of kidney is different from pathological stages of diseases and changes with various causes. At the end stage of the disease, the kidneys are symmetrically contracted with diffuse granules. Most glomeruli show diffuse fibrosis and hyaline degeneration, and intervening tubules become atrophied. Renal interstitium shows obvious hyperplasia of fibrous tissues with marked infiltration of lymphocytes, mononuclear cells, and plasma cells. The renal arterioles are wall thickening frequently because of hyaline degeneration. Morphologic analysis based on Masson staining of the kidney tissues has been regarded as the golden standard to evaluate the visual fibrosis. However, the present studies have found that the evaluation system has poor repeatability. Several computer-aided image analysis techniques have been used to assess interstitial fibrosis. It is possible that the evaluation of renal fibrosis is carried out by the artificial intelligence renal biopsy pathological diagnosis system in the near future.

Keywords

Morphology Renal fibrosis Evaluation 

References

  1. Anders HJ, Ryu M (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80:915–925CrossRefGoogle Scholar
  2. Bob FR, Gluhovschi G, Herman D, Potencz E, Gluhovschi C, Trandafirescu V et al (2008) Histological, immunohistochemical and biological data in assessing interstitial fibrosis in patients with chronic glomerulonephritis. Acta Histochem 110:196–203CrossRefGoogle Scholar
  3. Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR et al (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168:e61–e69CrossRefGoogle Scholar
  4. Chen P (2017) Pathology, 2nd edn. Southeast University Publisher Co., NanjingGoogle Scholar
  5. Chen T, Li X, Li Y, Xia E, Qin Y, Liang S et al (2019) Prediction and risk stratification of kidney outcomes in IgA nephropathy. Am J Kidney Dis pii S0272–6386(19):30618–3Google Scholar
  6. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D et al (2018) Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 24:1559–1567CrossRefGoogle Scholar
  7. Dussaule JC, Guerrot D, Huby AC, Chadjichristos C, Shweke N, Boffa JJ et al (2011) The role of cell plasticity in progression and reversal of renal fibrosis. Int J Exp Pathol 92:151–157CrossRefGoogle Scholar
  8. Eardley KS, Zehnder D, Quinkler M, Lepenies L, Bates RL, Savage CO et al (2006) The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int 69:1189–1197CrossRefGoogle Scholar
  9. Farris AB, Colvin RB (2012) Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens 21:289–300CrossRefGoogle Scholar
  10. Haj-Hassan H, Chaddad A, Harkouss Y, Desrosiers C, Toews M, Tanougast C (2017) Classifications of multispectral colorectal cancer tissues using convolution neural network. J Pathol Inform 8:1–7CrossRefGoogle Scholar
  11. Hakroush S, Moeller MJ, Theilig F, Kaissling B, Sijmonsma TP, Jugold M et al (2009) Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am J Pathol 175:1883–1895CrossRefGoogle Scholar
  12. Higgins DF, Kimura K, Iwano M, Haase VH (2008) Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7:1128–1132CrossRefGoogle Scholar
  13. Hueso M, Vellido A, Montero N, Barbieri C, Ramos R, Angoso M et al (2018) Artificial tntelligence for the artificial kidney: pointers to the future of a personalized hemodialysis therapy. Kidney Dis 4:1–9CrossRefGoogle Scholar
  14. Kaissling B, Le Hir M (2008) The renal cortical interstitium: morphological and functional aspects. Histochem Cell Biol 130:247–262CrossRefGoogle Scholar
  15. Kim DH, Moon SO, Jung YJ, Lee AS, Kang KP, Lee TH et al (2009) Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int 75:1031–1038CrossRefGoogle Scholar
  16. Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K et al (2008) Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 295:F1023–F1029CrossRefGoogle Scholar
  17. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436CrossRefGoogle Scholar
  18. Lian YG, Zhou QG, Zhang YJ, Zheng FL (2011) VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelialmesenchymal transition. Acta Pharmacol Sin 32:1513–1521CrossRefGoogle Scholar
  19. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagenproducing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627CrossRefGoogle Scholar
  20. Meran S, Steadman R (2011) Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92:158–167CrossRefGoogle Scholar
  21. Miller DD, Brown EW (2018) Artificial intelligence in medical practice: the question to the answer? Am J Med 131:129–133CrossRefGoogle Scholar
  22. Nikolic-Paterson DJ (2010) CD4+ T cells: A potential player in renal fibrosis. Kidney Int 78:333–335CrossRefGoogle Scholar
  23. Norman J (2011) Fibrosis and progression of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Biochim Biophys Acta 1812:1327–1336CrossRefGoogle Scholar
  24. Olsen TG, Jackson BH, Feeser TA, Kent MN, Moad JC, Krishnamurthy S et al (2018) Diagnostic performance of deep learning algorithms applied to three common diagnoses in dermatopathology. J Pathol Inform 9:32CrossRefGoogle Scholar
  25. Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080CrossRefGoogle Scholar
  26. Qaiser T, Mukherjee A, Reddy PC, Munugoti SD, Tallam V, Pitkäaho T et al (2017) Her2 challenge contest: a detailed assessment of automated Her2 scoring algorithms in whole slide images of breast cancer tissues. Histopathol 72:227CrossRefGoogle Scholar
  27. Robertsa ISD, Furness PN, Cook HT (2004) Beyond diagnosis: stage and grade in inflammatory renal disease. Current Diagnostic Pathology 10:22–35CrossRefGoogle Scholar
  28. Rosenberg AZ, Palmer M, Merlino L, Troost JP, Gasim A, Bagnasco S et al (2016) The Application of digital pathology to improve accuracy in glomerular enumeration in renal biopsies. PLoS ONE 11:e0156441CrossRefGoogle Scholar
  29. Rubin R, Strayer DS (2012) Rubin’s pathology: clinicopathologic foundations of medicine, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  30. Russell S (2017) Artificial intelligence: The future is superintelligent. Nature 548:520–521CrossRefGoogle Scholar
  31. Sakai N, Furuichi K, Shinozaki Y, Yamauchi H, Toyama T, Kitajima S et al (2010) Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Human Pathol 41:672–678CrossRefGoogle Scholar
  32. Satirapoj B, Nast CC, Adler SG (2012) Novel insights into the relationship between glomerular pathology and progressive kidney disease. Adv Chronic Kidney Dis 19:93–100CrossRefGoogle Scholar
  33. Savala R, Dey P, Gupta N (2018) Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid. Diagn Cytopathol 46:244–249CrossRefGoogle Scholar
  34. Scolari F, Ravani P (2010) Atheroembolic renal disease. Lancet 375:1650–1660CrossRefGoogle Scholar
  35. Snelgrove SL, Kausman JY, Lo C, Lo C, Ooi JD, Coates PT et al (2012) Renal dendritic cells adopt a proinflammatory phenotype in obstructive uropathy to activate T cells, but do not directly contribute to fibrosis. Am J Pathol 180:91–103CrossRefGoogle Scholar
  36. Stuht S, Gwinner W, Franz I, Schwarz A, Jonigk D, Kreipe H et al (2007) Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am J Transplant 7:377–384CrossRefGoogle Scholar
  37. Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080CrossRefGoogle Scholar
  38. Tizhoosh HR, Pantanowitz L (2018) Artificial intelligence and digital pathology: challenges and opportunities. J Pathol Inform 9:38CrossRefGoogle Scholar
  39. Vernon MA, Mylonas KJ, Hughes J (2010) Macrophages and renal fibrosis. Semin Nephrol 30:302–317CrossRefGoogle Scholar
  40. Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K (2011) Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol 15:8–13CrossRefGoogle Scholar
  41. Yamaguchi Y, Kanetsuna Y, Honda K, Yamanaka N, Kawano M, Nagata M (2012) Japanese study group on IgG4-related nephropathy: Characteristic tubulointerstitial nephritis in IgG4-related disease. Hum Pathol 43:536–549CrossRefGoogle Scholar
  42. Yan W, Tang Y, Chang EI-C, Lai M, Xu Y (2018) Deep learning in digital pathology analysis. Chin J Biomed Eng 37:95–105Google Scholar
  43. Yang XY, Du GH (2004) Microvolume assay method of hydroxyproline in animal tissues and application. Chin Pharmacol Bull 20:836–837Google Scholar
  44. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 6:535–543CrossRefGoogle Scholar
  45. Yoshida H, Shimazu T, Kiyuna T, Marugame A, Yamashita Y, Cosatto E et al (2017) Automated histological classification of whole-slide images of gastric biopsy specimens. Gastric Cancer 8:1–9Google Scholar
  46. Yu G, Wei P, Chen Y, Zhu M (2017) Artificial Intelligence in pathological diagnosis and assessment of human solid tumor: application and thinking. Acad J Sec Mil Med Univ 38:1349–1354Google Scholar
  47. Zee J, Hodgin JB, Mariani LH, Gaut JP, Palmer MB, Bagnasco SM et al (2018) Reproducibility and feasibility of strategies for morphologic assessment of renal biopsies using the nephrotic syndrome study network digital pathology scoring system. Arch Pathol Lab Med 142:613–625CrossRefGoogle Scholar
  48. Zhou W (2013) Real biopsy pathology, 3rd edn. Peiking University Publisher Co., BeijingGoogle Scholar
  49. Zhou LT, Qiu S, Lv LL, Li ZL, Liu H, Tang RN et al (2018) Integrative bioinformatics analysis provides insight into the molecular mechanisms of chronic kidney disease. Kidney Blood Press Res 43:568–581CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pathology and PathophysiologySchool of Medicine, Southeast UniversityNanjingChina
  2. 2.Institute of NephrologyZhong Da Hospital, School of Medicine, Southeast UniversityNanjingChina

Personalised recommendations