Skip to main content

Inflammatory Mediators and Renal Fibrosis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Renal inflammation is the initial, healthy response to renal injury. However, prolonged inflammation promotes the fibrosis process, which leads to chronic pathology and eventually end-stage kidney disease. There are two major sources of inflammatory cells: first, bone marrow-derived leukocytes that include neutrophils, macrophages, fibrocytes and mast cells, and second, locally activated kidney cells such as mesangial cells, podocytes, tubular epithelial cells, endothelial cells and fibroblasts. These activated cells produce many profibrotic cytokines and growth factors that cause accumulation and activation of myofibroblasts, and enhance the production of the extracellular matrix. In particular, activated macrophages are key mediators that drive acute inflammation into chronic kidney disease. They produce large amounts of profibrotic factors and modify the microenvironment via a paracrine effect, and they also transdifferentiate to myofibroblasts directly, although the origin of myofibroblasts in the fibrosing kidney remains controversial. Collectively, understanding inflammatory cell functions and mechanisms during renal fibrosis is paramount to improving diagnosis and treatment of chronic kidney disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abboud HE (2012) Mesangial cell biology. Exp Cell Res 318:979–985

    CAS  PubMed  Google Scholar 

  • Allison SJ (2013) Fibrosis: the source of myofibroblasts in kidney fibrosis. Nat Rev Nephrol 9:494

    PubMed  Google Scholar 

  • Anders HJ, Ryu M (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80:915–925

    Article  CAS  PubMed  Google Scholar 

  • Anders HJ, Vielhauer V, Eis V, Linde Y, Kretzler M et al (2004) Activation of toll-like receptor-9 induces progression of renal disease in MRL-Fas(lpr) mice. FASEB J 18:534–536

    Article  CAS  PubMed  Google Scholar 

  • Beghdadi W, Madjene LC, Claver J, Pejler G, Beaudoin L, Lehuen A, Daugas E, Blank U (2013) Mast cell chymase protects against renal fibrosis in murine unilateral ureteral obstruction. Kidney Int 84:317–326

    Article  CAS  PubMed  Google Scholar 

  • Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A et al (2010) Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 120:4040–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojakowski K, Abramczyk P, Bojakowska M, Zwolinska A, Przybylski J, Gaciong Z (2001) Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat. J Physiol Pharmacol 52:137–143

    CAS  PubMed  Google Scholar 

  • Boor P, Floege J (2011) Chronic kidney disease growth factors in renal fibrosis. Clin Exp Pharmacol Physiol 38:441–450

    Article  PubMed  CAS  Google Scholar 

  • Boor P, Konieczny A, Villa L, Kunter U, van Roeyen CR et al (2007) PDGF-D inhibition by CR10 ameliorates tubulointerstitial fibrosis following experimental glomerulonephritis. Nephrol Dial Transplant 22:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656

    Article  PubMed  Google Scholar 

  • Boor P, Ostendorf T, Floege J (2014) PDGF and the progression of renal disease. Nephrol Dial Transplant 29(Suppl 1):i45–i54

    Article  CAS  PubMed  Google Scholar 

  • Boor P, Babickova J, Steegh F, Hautvast P, Martin IV et al (2015) Role of platelet-derived growth factor-CC in capillary rarefaction in renal fibrosis. Am J Pathol 185:2132–2142

    Article  CAS  PubMed  Google Scholar 

  • Bottinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610

    Article  PubMed  Google Scholar 

  • Brahler S, Ising C, Hagmann H, Rasmus M, Hoehne M et al (2012) Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Renal Physiol 303:F1473–F1485

    Article  PubMed  CAS  Google Scholar 

  • Broekema M, Harmsen MC, van Luyn MJ, Koerts JA, Petersen AH et al (2007) Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol 18:165–175

    Article  CAS  PubMed  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchtler S, Grill A, Hofmarksrichter S, Stockert P, Schiechl-Brachner G et al (2018) Cellular origin and functional relevance of collagen i production in the kidney. J Am Soc Nephrol 29:1859–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhl EM, Djudjaj S, Babickova J, Klinkhammer BM, Folestad E et al (2016) The role of PDGF-D in healthy and fibrotic kidneys. Kidney Int 8:848–861

    Article  CAS  Google Scholar 

  • Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA et al (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168:e61–e69

    Article  CAS  PubMed  Google Scholar 

  • Canaud G, Bienaime F, Viau A, Treins C, Baron W et al (2013) AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med 19:1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Wang Y, Harris DC (2013) Pathogenic and protective role of macrophages in kidney disease. Am J Physiol Renal Physiol 305:F3–F11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Lin SC, Chen J, He L, Dong F et al (2011a) CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J Am Soc Nephrol 22:1876–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL et al (2011b) Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 80:1170–1181

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen MX, Fogo AB, Harris RC, Chen JK (2013) mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. J Am Soc Nephrol 24:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Dong Z, Liu H, Liu Y, Duan S, Liu F, Chen H (2016) mTOR signaling regulates protective activity of transferred CD4+ Foxp3+ T Cells in repair of acute kidney injury. J Immunol 197:3917–3926

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Dong Y, Zhu F, Liu Y, Hou FF, Nie J (2013) AGE-LDL activates Toll like receptor 4 pathway and promotes inflammatory cytokines production in renal tubular epithelial cells. Int J Biol Sci 9:94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R (1998) Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 160:419–425

    CAS  PubMed  Google Scholar 

  • Chung AC, Lan HY (2011) Chemokines in renal injury. J Am Soc Nephrol 22:802–809

    Article  CAS  PubMed  Google Scholar 

  • Correa-Costa M, Braga TT, Semedo P, Hayashida CY, Bechara LR et al (2011) Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis. PLoS ONE 6:e29004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crean JK, Furlong F, Finlay D, Mitchell D, Murphy M et al (2004) Connective tissue growth factor [CTGF]/CCN2 stimulates mesangial cell migration through integrated dissolution of focal adhesion complexes and activation of cell polarization. FASEB J 18:1541–1543

    Article  CAS  PubMed  Google Scholar 

  • D’Agati V, Schmidt AM (2010) RAGE and the pathogenesis of chronic kidney disease. Nat Rev Nephrol 6:352–360

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Gu L, Yuan W, Yu Q, Ni Z et al (2013) Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis. Kidney Int 84:950–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danelli L, Madjene LC, Madera-Salcedo I, Gautier G, Pacreau E et al (2017) Early phase mast cell activation determines the chronic outcome of renal ischemia-reperfusion injury. J Immunol 198:2374–2382

    Article  CAS  PubMed  Google Scholar 

  • Daroux M, Prevost G, Maillard-Lefebvre H, Gaxatte C, D’Agati VD et al (2010) Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab 36:1–10

    Article  CAS  PubMed  Google Scholar 

  • Das R, Xu S, Quan X, Nguyen TT, Kong ID et al (2014) Upregulation of mitochondrial Nox4 mediates TGF-beta-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol 306:F155–F167

    Article  CAS  PubMed  Google Scholar 

  • Das F, Ghosh-Choudhury N, Venkatesan B, Kasinath BS, Ghosh Choudhury G (2017) PDGF receptor-beta uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (alpha2) expression. Am J Physiol Renal Physiol 313:F291–F307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deelman L, Sharma K (2009) Mechanisms of kidney fibrosis and the role of antifibrotic therapies. Curr Opin Nephrol Hypertens 18:85–90

    Article  CAS  PubMed  Google Scholar 

  • Demmers MW, Baan CC, van Beelen E, Ijzermans JN, Weimar W, Rowshani AT (2013) Differential effects of activated human renal epithelial cells on T-cell migration. PLoS ONE 8:e64916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disteldorf EM, Krebs CF, Paust HJ, Turner JE, Nouailles G et al (2015) CXCL5 drives neutrophil recruitment in TH17-mediated GN. J Am Soc Nephrol 26:55–66

    Article  CAS  PubMed  Google Scholar 

  • Djudjaj S, Boor P (2018) Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med

    Google Scholar 

  • Dong Y, Yang M, Zhang J, Peng X, Cheng J, Cui T, Du J (2016) Depletion of CD8+ T cells exacerbates CD4+ T cell-induced monocyte-to-fibroblast transition in renal fibrosis. J Immunol 196:1874–1881

    Article  CAS  PubMed  Google Scholar 

  • Duffield JS, Humphreys BD (2011) Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int 79:494–501

    Article  PubMed  Google Scholar 

  • Durvasula RV, Shankland SJ (2006) The renin-angiotensin system in glomerular podocytes: mediator of glomerulosclerosis and link to hypertensive nephropathy. Curr Hypertens Rep 8:132–138

    Article  CAS  PubMed  Google Scholar 

  • Durvasula RV, Shankland SJ (2008) Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol 294:F830–F839

    Article  CAS  PubMed  Google Scholar 

  • Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J et al (2008) The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int 74:495–504

    Article  PubMed  Google Scholar 

  • Eddy AA, Neilson EG (2006) Chronic kidney disease progression. J Am Soc Nephrol 17:2964–2966

    Article  PubMed  Google Scholar 

  • Eitner F, Bucher E, van Roeyen C, Kunter U, Rong S et al (2008) PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J Am Soc Nephrol 19:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eremina V, Cui S, Gerber H, Ferrara N, Haigh J et al (2006) Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol 17:724–735

    Article  CAS  PubMed  Google Scholar 

  • Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W et al (1999) Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56:1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Fan JM, Huang XR, Ng YY, Nikolic-Paterson DJ, Mu W et al (2001) Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-beta1-dependent mechanism in vitro. Am J Kidney Dis 37:820–831

    Article  CAS  PubMed  Google Scholar 

  • Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867–872

    Article  CAS  PubMed  Google Scholar 

  • Floege J, Burg M, Hugo C, Gordon KL, Van Goor H et al (1998) Endogenous fibroblast growth factor-2 mediates cytotoxicity in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol 9:792–801

    CAS  PubMed  Google Scholar 

  • Floege J, Eitner F, Alpers CE (2008) A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 19:12–23

    Article  CAS  PubMed  Google Scholar 

  • Fogo AB (2011) The targeted podocyte. J Clin Invest 121:2142–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu S, Zhang N, Yopp AC, Chen D, Mao M et al (2004) TGF-beta induces Foxp3+ T-regulatory cells from CD4+ CD25-precursors. Am J Transplant 4:1614–1627

    Article  CAS  PubMed  Google Scholar 

  • Fujiu K, Manabe I, Nagai R (2011) Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest 121:3425–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda K, Yoshitomi K, Yanagida T, Tokumoto M, Hirakata H (2001) Quantification of TGF-beta1 mRNA along rat nephron in obstructive nephropathy. Am J Physiol Renal Physiol 281:F513–F521

    Article  CAS  PubMed  Google Scholar 

  • Funaba M, Ikeda T, Murakami M, Ogawa K, Nishino Y et al (2006) Transcriptional regulation of mouse mast cell protease-7 by TGF-beta. Biochem Biophys Acta 1759:166–170

    CAS  PubMed  Google Scholar 

  • Gentle ME, Shi S, Daehn I, Zhang T, Qi H et al (2013) Epithelial cell TGFbeta signaling induces acute tubular injury and interstitial inflammation. J Am Soc Nephrol 24:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin LS (2018) Renal fibrosis: primacy of the proximal tubule. Matrix Biol 68–69:248–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gewin L, Bulus N, Mernaugh G, Moeckel G, Harris RC et al (2010) TGF-beta receptor deletion in the renal collecting system exacerbates fibrosis. J Am Soc Nephrol 21:1334–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin L, Vadivelu S, Neelisetty S, Srichai MB, Paueksakon P et al (2012) Deleting the TGF-beta receptor attenuates acute proximal tubule injury. J Am Soc Nephrol 23:2001–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin L, Zent R, Pozzi A (2017) Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 91:552–560

    Article  CAS  PubMed  Google Scholar 

  • Godel M, Hartleben B, Herbach N, Liu S, Zschiedrich S et al (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121:2197–2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez-Guerrero C, Hernandez-Vargas P, Lopez-Franco O, Ortiz-Munoz G, Egido J (2005) Mesangial cells and glomerular inflammation: from the pathogenesis to novel therapeutic approaches. Curr Drug Targets Inflamm Allergy 4:341–351

    Article  CAS  PubMed  Google Scholar 

  • Gorelik L, Flavell RA (2002) Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2:46–53

    Article  CAS  PubMed  Google Scholar 

  • Grahammer F, Schell C, Huber TB (2013) The podocyte slit diaphragm–from a thin grey line to a complex signalling hub. Nat Rev Nephrol 9:587–598

    Article  CAS  PubMed  Google Scholar 

  • Grande MT, Perez-Barriocanal F, Lopez-Novoa JM (2010) Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) 7:19

    Article  CAS  Google Scholar 

  • Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A et al (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997

    Article  CAS  PubMed  Google Scholar 

  • Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, Goerdt S (2001) Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol 53:386–392

    Article  CAS  PubMed  Google Scholar 

  • Gruber BL, Marchese MJ, Kew RR (1994) Transforming growth factor-beta 1 mediates mast cell chemotaxis. J Immunol 152:5860–5867

    CAS  PubMed  Google Scholar 

  • Gruden G, Perin PC, Camussi G (2005) Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr Diab Rev 1:27–40

    Article  CAS  Google Scholar 

  • Guerrot D, Dussaule JC, Kavvadas P, Boffa JJ, Chadjichristos CE, Chatziantoniou C (2012) Progression of renal fibrosis: the underestimated role of endothelial alterations. Fibrogenesis Tissue repair 5(Suppl 1):S15

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo S, Wietecha TA, Hudkins KL, Kida Y, Spencer MW et al (2011) Macrophages are essential contributors to kidney injury in murine cryoglobulinemic membranoproliferative glomerulonephritis. Kidney Int 80:946–958

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Ma FY, Tesch GH, Manthey CL, Nikolic-Paterson DJ (2011) c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Lab Invest 91:978–991

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Ma FY, Tesch GH, Manthey CL, Nikolic-Paterson DJ (2013) Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. Am J Physiol Renal Physiol 304:F1043–F1053

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Neilson EG (2006) Toward a unified theory of renal progression. Annu Rev Med 57:365–380

    Article  CAS  PubMed  Google Scholar 

  • Hathaway CK, Gasim AM, Grant R, Chang AS, Kim HS et al (2015) Low TGFbeta1 expression prevents and high expression exacerbates diabetic nephropathy in mice. Proc Natl Acad Sci USA 112:5815–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hato T, El-Achkar TM, Dagher PC (2013) Sisters in arms: myeloid and tubular epithelial cells shape renal innate immunity. Am J Physiol Renal Physiol 304:F1243–F1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20:765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C et al (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y et al (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins DF, Kimura K, Iwano M, Haase VH (2008) Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Hochane M, Raison D, Coquard C, Beraud C, Bethry A et al (2018) Parathyroid hormone-related protein modulates inflammation in mouse mesangial cells and blunts apoptosis by enhancing COX-2 expression. Am J Physiol Cell Physiol 314:C242–C253

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth SR, Summers SA (2008) Role of mast cells in progressive renal diseases. J Am Soc Nephrol 19:2254–2261

    Article  CAS  PubMed  Google Scholar 

  • Huang XR, Chung AC, Wang XJ, Lai KN, Lan HY (2008a) Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease. Am J Physiol Renal Physiol 295:F118–F127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XR, Chung AC, Zhou L, Wang XJ, Lan HY (2008b) Latent TGF-beta1 protects against crescentic glomerulonephritis. J Am Soc Nephrol 19:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Mori H, Wang J, Suzuki T, Hong S et al (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121:2181–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanasaki K, Taduri G, Koya D (2013) Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol 4:7

    Article  Google Scholar 

  • Kang DH, Kanellis J, Hugo C, Truong L, Anderson S et al (2002) Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 13:806–816

    Article  PubMed  Google Scholar 

  • Kato N, Yuzawa Y, Kosugi T, Hobo A, Sato W et al (2009) The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol 20:1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Nati Acad Sci USA 91:812–816

    Article  CAS  Google Scholar 

  • Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA et al (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly KJ, Burford JL, Dominguez JH (2009) Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy. Am J Physiol Renal Physiol 297:F923–F931

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Moon SO, Jung YJ, Lee AS, Kang KP et al (2009) Mast cells decrease renal fibrosis in unilateral ureteral obstruction. Kidney Int 75:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Lee SH, Lee A, Kim DJ, Kim YG et al (2015) Targeting T helper 17 by mycophenolate mofetil attenuates diabetic nephropathy progression. Transl Res 166:375–383

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K et al (2008) Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 295:F1023–F1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto K, Machida Y, Uchida J, Izumi Y, Shiota M et al (2009) Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci 111:285–292

    Article  CAS  PubMed  Google Scholar 

  • Kitamura M, Suto TS (1997) TGF-beta and glomerulonephritis: anti-inflammatory versus prosclerotic actions. Nephrol Dial Transplant 12:669–679

    Article  CAS  PubMed  Google Scholar 

  • Kitching AR, Holdsworth SR (2011) The emergence of TH17 cells as effectors of renal injury. J Am Soc Nephrol 22:235–238

    Article  CAS  PubMed  Google Scholar 

  • Ko GJ, Boo CS, Jo SK, Cho WY, Kim HK (2008) Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant 23:842–852

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Kagami S, Kido H, Strutz F, Muller GA, Kuroda Y (2001) Role of mast cell tryptase in renal interstitial fibrosis. J Am Soc Nephrol 12:1668–1676

    CAS  PubMed  Google Scholar 

  • Kong D, Li Y, Wang Z, Banerjee S, Ahmad A et al (2009) miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 27:1712–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku CH, White KE, Dei Cas A, Hayward A, Webster Z et al (2008) Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes 57:2824–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW et al (2008) Activation of podocytes by mesangial-derived TNF-alpha: glomerulo-podocytic communication in IgA nephropathy. Am J Physiol Renal Physiol 294:F945–F955

    Article  CAS  PubMed  Google Scholar 

  • Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW et al (2009) Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol Dial Transplant 24:62–72

    Article  CAS  PubMed  Google Scholar 

  • Lan HY (2011) Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci 7:1056–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC (1995) Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int 48:753–760

    Article  CAS  PubMed  Google Scholar 

  • Lan HY, Bacher M, Yang N, Mu W, Nikolic-Paterson DJ et al (1997) The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. J Exp Med 185:1455–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laping NJ, Olson BA, Ho T, Ziyadeh FN, Albrightson CR (2000) Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells. Biochem Pharmacol 59:847–853

    Article  CAS  PubMed  Google Scholar 

  • LeBleu VS, Kalluri R (2011) Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis. Kidney Int 80:1119–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebrin F, Deckers M, Bertolino P, Ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovascular Res 65:599–608

    Article  CAS  Google Scholar 

  • Lee SB, Kalluri R (2010) Mechanistic connection between inflammation and fibrosis. Kidney Int Suppl S22–S26

    Article  Google Scholar 

  • Li Y, Yang J, Dai C, Wu C, Liu Y (2003) Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 112:503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kang YS, Dai C, Kiss LP, Wen X, Liu Y (2008) Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol 172:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Qu X, Yao J, Caruana G, Ricardo SD et al (2010) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Tang SC (2013) Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol Dial Transplant

    Google Scholar 

  • Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SL, Castano AP, Nowlin BT, Lupher ML Jr, Duffield JS (2009) Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol 183:6733–6743

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Yiu WH, Wu HJ, Chan LY, Leung JC et al (2012) Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 23:86–102

    Article  CAS  PubMed  Google Scholar 

  • Lin JR, Zheng YJ, Zhang ZB, Shen WL, Li XD et al (2018) Suppression of endothelial-to-mesenchymal transition by SIRT (Sirtuin) 3 alleviated the development of hypertensive renal injury. Hypertension

    Google Scholar 

  • Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Chen HY, Huang XR, Chung AC, Zhou L et al (2011) C-reactive protein promotes diabetic kidney disease in a mouse model of type 1 diabetes. Diabetologia 54:2713–2723

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Kou P, Zeng Q, Pei G, Li Y et al (2012) CD4+ T Lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis. Am J Nephrol 36:386–396

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Lassen E, Nair V, Berthier CC, Suguro M et al (2017) Transcriptomic and proteomic profiling provides insight into mesangial cell function in IgA nephropathy. J Am Soc Nephrol 28:2961–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu BC, Tang TT, Lv LL, Lan HY (2018) Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 93:568–579

    Article  CAS  PubMed  Google Scholar 

  • Loeffler I, Wolf G (2013) Transforming growth factor-beta and the progression of renal disease. Nephrol Dial Transplant

    Google Scholar 

  • Lopez-Hernandez FJ, Lopez-Novoa JM (2012) Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347:141–154

    Article  CAS  PubMed  Google Scholar 

  • Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Cao Q, Zheng D, Sun Y, Wang C et al (2013) Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int 84:745–755

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Mei Y, Chen L, Wu L, Wang X et al (2018) The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis. Cell Mol Immunol

    Google Scholar 

  • Lv W, Booz GW, Wang Y, Fan F, Roman RJ (2018) Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 820:65–76

    Article  CAS  PubMed  Google Scholar 

  • Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 110:1361–1367

    Article  CAS  PubMed  Google Scholar 

  • Ma LJ, Yang H, Gaspert A, Carlesso G, Barty MM et al (2003) Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(−/−) mice. Am J Pathol 163:1261–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma FY, Flanc RS, Tesch GH, Bennett BL, Friedman GC et al (2009a) Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Lab Inves 89:470–484

    Article  CAS  Google Scholar 

  • Ma FY, Liu J, Kitching AR, Manthey CL, Nikolic-Paterson DJ (2009b) Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney. Am J Physiol Renal Physiol 296:F177–F185

    Article  CAS  PubMed  Google Scholar 

  • Ma FY, Ikezumi Y, Nikolic-Paterson DJ (2010) Macrophage signaling pathways: a novel target in renal disease. Semin Nephrol 30:334–344

    Article  CAS  PubMed  Google Scholar 

  • Mack M, Rosenkranz AR (2009) Basophils and mast cells in renal injury. Kidney Int 76:1142–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulis A, Nocka KH, Brennan AM, Deng B, Fleming M et al (2009) Mast cell-dependent contraction of human airway smooth muscle cell-containing collagen gels: influence of cytokines, matrix metalloproteases, and serine proteases. J Immunol 183:1739–1750

    Article  CAS  PubMed  Google Scholar 

  • Mathieson PW (2009) Update on the podocyte. Curr Opin Nephrol Hypertens 18:206–211

    Article  PubMed  Google Scholar 

  • Mehrotra P, Patel JB, Ivancic CM, Collett JA, Basile DP (2015) Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney Int 88:776–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meldrum KK, Zhang H, Hile KL, Moldower LL, Dong Z, Meldrum DR (2012) Profibrotic effect of interleukin-18 in HK-2 cells is dependent on stimulation of the Toll-like receptor 4 (TLR4) promoter and increased TLR4 expression. J Biol Chem 287:40391–40399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XM, Huang XR, Chung AC, Qin W, Shao X et al (2010) Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol 21:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XM, Huang XR, Xiao J, Chen HY, Zhong X, Chung AC, Lan HY (2012a) Diverse roles of TGF-beta receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol 227:175–188

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Huang XR, Xiao J, Chung AC, Qin W et al (2012b) Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int 81:266–279

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Chung AC, Lan HY (2013) Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254

    Article  CAS  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2014) Inflammatory processes in renal fibrosis. Nat Rev Nephrol 10:493–503

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2016a) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Wang S, Huang XR, Yang C, Xiao J et al (2016b) Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis 7:e2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezzano SA, Ruiz-Ortega M, Egido J (2001) Angiotensin II and renal fibrosis. Hypertension 38:635–638

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa S, Hotta O, Doi N, Natori Y, Nishikawa K (2004) Role of mast cells in the development of renal fibrosis: use of mast cell-deficient rats. Kidney Int 65: 2228–2237

    Article  PubMed  Google Scholar 

  • Mohamed R, Jayakumar C, Chen F, Fulton D, Stepp D et al (2016) Low-dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J Am Soc Nephrol 27:745–765

    Article  CAS  PubMed  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Lan HY, Zhu HJ, Kang DH, Schreiner GF, Johnson RJ (2004a) Differential regulation of VEGF by TGF-beta and hypoxia in rat proximal tubular cells. Am J Physiol Renal Physiol 287:F658–F664

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Li JH, Garcia G, Mu W, Piek E et al (2004b) TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int 66:605–613

    Article  CAS  PubMed  Google Scholar 

  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153:6–20

    Article  CAS  PubMed  Google Scholar 

  • Nguan CY, Du C (2009) Renal tubular epithelial cells as immunoregulatory cells in renal allograft rejection. Transplant Rev (Orlando) 23:129–138

    Article  Google Scholar 

  • Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K et al (2009) CD4 +T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Nati Acad Sci USA 106:17892–17897

    Article  CAS  Google Scholar 

  • Nielsen R, Mollet G, Esquivel EL, Weyer K, Nielsen PK et al (2013) Increased lysosomal proteolysis counteracts protein accumulation in the proximal tubule during focal segmental glomerulosclerosis. Kidney Int 84:902–910

    Article  CAS  PubMed  Google Scholar 

  • Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB et al (2008) The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 14:290–298

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Hamaoka K (2008) Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp Nephrol 110:e31–e36

    Article  PubMed  Google Scholar 

  • Ostendorf T, Rong S, Boor P, Wiedemann S, Kunter U et al (2006) Antagonism of PDGF-D by human antibody CR170 prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol 17:1054–1062

    Article  CAS  PubMed  Google Scholar 

  • Ostendorf T, Eitner F, Floege J (2012) The PDGF family in renal fibrosis. Pediatr Nephrol 27:1041–1050

    Article  PubMed  Google Scholar 

  • Paust HJ, Turner JE, Steinmetz OM, Peters A, Heymann F et al (2009) The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol 2:969–979

    Article  CAS  Google Scholar 

  • Peng X, Xiao Z, Zhang J, Li Y, Dong Y, Du J (2015) IL-17A produced by both gammadelta T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J Pathol 235:79–89

    Article  CAS  PubMed  Google Scholar 

  • Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  CAS  PubMed  Google Scholar 

  • Pons M, Ali L, Beghdadi W, Danelli L, Alison M et al (2017) Mast cells and MCPT4 chymase promote renal impairment after partial ureteral obstruction. Front Immunol 8:450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N et al (2010) TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 21:1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao X, Rao P, Zhang Y, Liu L, Pang M et al (2018) Redirecting TGF-beta signaling through the beta-catenin/Foxo complex prevents kidney fibrosis. J Am Soc Nephrol 29:557–570

    Article  CAS  PubMed  Google Scholar 

  • Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Gobel N et al (2013) Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int 84:78–89

    Article  CAS  PubMed  Google Scholar 

  • Reilkoff RA, Bucala R, Herzog EL (2011) Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11:427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson H, Ali S, McDonnell BJ, Burt AD, Kirby JA (2004) Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J Am Soc Nephrol 15:390–397

    Article  PubMed  Google Scholar 

  • Rutkowski JM, Wang ZV, Park AS, Zhang J, Zhang D et al (2013) Adiponectin promotes functional recovery after podocyte ablation. J Am Soc Nephrol 24:268–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S (2006) Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR182 signaling regulates fibrocytes in renal fibrosis. Proc Nati Acad Sci USA 103:14098–14103

    Article  CAS  Google Scholar 

  • Sam R, Wanna L, Gudehithlu KP, Garber SL, Dunea G et al (2006) Glomerular epithelial cells transform to myofibroblasts: early but not late removal of TGF-beta1 reverses transformation. Transl Res 148:142–148

    Article  CAS  PubMed  Google Scholar 

  • Scandiuzzi L, Beghdadi W, Daugas E, Abrink M, Tiwari N et al (2010) Mouse mast cell protease-4 deteriorates renal function by contributing to inflammation and fibrosis in immune complex-mediated glomerulonephritis. J Immunol 185:624–633

    Article  CAS  PubMed  Google Scholar 

  • Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P et al (2001) Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 108:807–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlondorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003) TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 284:F243–F252

    Article  CAS  PubMed  Google Scholar 

  • Schnoor M, Cullen P, Lorkowski J, Stolle K, Robenek H et al (2008) Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J Immunol 180:5707–5719

    Article  CAS  PubMed  Google Scholar 

  • Schwartzman M, Reginensi A, Wong JS, Basgen JM, Meliambro K et al (2016) Podocyte-specific deletion of yes-associated protein causes FSGS and progressive renal failure. J Am Soc Nephrol 27:216–226

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam N, Figarola JL, Li Y, Swiderski PM, Rahbar S, Natarajan R (2008) Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 57:879–888

    Article  CAS  PubMed  Google Scholar 

  • Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D (2008) Pivotal Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Sirin Y, Susztak K (2011) The story of Notch and chronic kidney disease. Curr Opin Nephrol Hypertens 20:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi XY, Hou FF, Niu HX, Wang GB, Xie D (2008) Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 149:1829–1839

    Article  CAS  PubMed  Google Scholar 

  • Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O et al (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286:312–315

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi FS, Advani A (2013) Endothelial-podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes 62:3647–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strutz F, Zeisberg M (2006) Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol 17:2992–2998

    Article  CAS  PubMed  Google Scholar 

  • Summers SA, Gan PY, Dewage L, Ma FT, Ooi JD et al (2012) Mast cell activation and degranulation promotes renal fibrosis in experimental unilateral ureteric obstruction. Kidney Int 82:676–685

    Article  CAS  PubMed  Google Scholar 

  • Tang WW, Ulich TR, Lacey DL, Hill DC, Qi M et al (1996) Platelet-derived growth factor-BB induces renal tubulointerstitial myofibroblast formation and tubulointerstitial fibrosis. Am J Pathol 148:1169–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi K, Xia L, Goldberg HJ, Lee KW, Shah A et al (2013) Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 62:3874–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapmeier TT, Fearn A, Brown K, Chowdhury P, Sacks SH et al (2010) Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int 78:351–362

    Article  CAS  PubMed  Google Scholar 

  • Tipping PG, Holdsworth SR (2006) T cells in crescentic glomerulonephritis. J Am Soc Nephrol 17:1253–1263

    Article  PubMed  Google Scholar 

  • Turner JE, Paust HJ, Steinmetz OM, Panzer U (2010) The Th17 immune response in renal inflammation. Kidney Int 77:1070–1075

    Article  CAS  PubMed  Google Scholar 

  • Ueno T, Kobayashi N, Nakayama M, Takashima Y, Ohse T et al (2013) Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss. Kidney Int 83:1065–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Roeyen CR, Eitner F, Boor P, Moeller MJ, Raffetseder U et al (2011) Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D. Kidney Int 80:1292–1305

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK (2010) Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 298:F1078–F1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernon MA, Mylonas KJ, Hughes J (2010) Macrophages and renal fibrosis. Semin Nephrol 30:302–317

    Article  CAS  PubMed  Google Scholar 

  • Veron D, Reidy KJ, Bertuccio C, Teichman J, Villegas G et al (2010) Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int 77:989–999

    Article  CAS  PubMed  Google Scholar 

  • Veron D, Bertuccio CA, Marlier A, Reidy K, Garcia AM et al (2011) Podocyte vascular endothelial growth factor (Vegf(1)(6)(4)) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia 54:1227–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada T, Sakai N, Matsushima K, Kaneko S (2007) Fibrocytes: a new insight into kidney fibrosis. Kidney Int 72:269–273

    Article  CAS  PubMed  Google Scholar 

  • Wang YM, Zhang GY, Wang Y, Hu M, Wu H et al (2006) Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin. J Am Soc Nephrol 17:697–706

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L et al (2007) Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 72:290–299

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deb DK, Zhang Z, Sun T, Liu W et al (2012) Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J Am Soc Nephrol 23:1977–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang J, Bai Y, Li J, Li L, Dong Y (2016a) CD11c(+) CD8(+) T Cells Reduce Renal Fibrosis Following Ureteric Obstruction by Inducing Fibroblast Apoptosis. Int J Mol Sci 18

    Article  PubMed Central  CAS  Google Scholar 

  • Wang S, Meng XM, Ng YY, Ma FY, Zhou S et al (2016b) TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 7:8809–8822

    PubMed  Google Scholar 

  • Wang X, Yao B, Wang Y, Fan X, Wang S et al (2017a) Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes 66:494–504

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Jiang H, Pan J, Huang XR, Wang YC et al (2017b) Macrophage-to- myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol 28:2053–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasse H, Naqvi N, Husain A (2012) Impact of mast cell chymase on renal disease progression. Curr Hypertens Rev 8:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson L, Gilbert T, Sipos A, Toma I, Pennisi DJ et al (2009) Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int 76:1161–1171

    Article  PubMed  Google Scholar 

  • Wynes MW, Frankel SK, Riches DW (2004) IL-4-induced macrophage-derived IGF-I protects myofibroblasts from apoptosis following growth factor withdrawal. J Leukoc Biol 76:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Xavier S, Vasko R, Matsumoto K, Zullo JA, Chen R et al (2015) Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol 26:817–829

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Iwano M, Suzuki D, Nakatani K, Kimura K et al (2009) Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis 54:653–664

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Isbel NM, Nikolic-Paterson DJ, Li Y, Ye R et al (1998a) Local macrophage proliferation in human glomerulonephritis. Kidney Int 54:143–151

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Wu LL, Nikolic-Paterson DJ, Ng YY, Yang WC et al (1998b) Local macrophage and myofibroblast proliferation in progressive renal injury in the rat remnant kidney. Nephrol Dial Transplant 13:1967–1974

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Dai C, Liu Y (2002) Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. J Am Soc Nephrol 13:2464–2477

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543, 531p following 143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoi H, Mukoyama M, Mori K, Kasahara M, Suganami T et al (2008) Overexpression of connective tissue growth factor in podocytes worsens diabetic nephropathy in mice. Kidney Int 73:446–455

    Article  CAS  PubMed  Google Scholar 

  • You H, Gao T, Cooper TK, Brian Reeves W, Awad AS (2013) Macrophages directly mediate diabetic renal injury. Am J Physiol Renal Physiol 305:F1719–F1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You H, Gao T, Raup-Konsavage WM, Cooper TK, Bronson SK et al (2017) Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice. Kidney Int 91:671–682

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21:1819–1834

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng F, Kloepfer LA, Finney C, Diedrich A, Harris RC (2016) Specific endothelial heparin-binding EGF-like growth factor deletion ameliorates renal injury induced by chronic angiotensin II infusion. Am J Physiol Renal Physiol 311:F695–F707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19:923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C et al (2009) Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem 284:17564–17574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Wang Y, Mahajan D, Qin X, Alexander SI, Harris DC (2005) The role of tubulointerstitial inflammation. Kidney Int Suppl S96–S100

    Article  Google Scholar 

  • Zhou LL, Hou FF, Wang GB, Yang F, Xie D, Wang YP, Tian JW (2009) Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney Int 76:1148–1160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This laboratory is supported by grants from National Natural Science Foundation of China (National Science Foundation of China 81300580 and 81570623) and by Science and Technological Fund of Anhui Province for Outstanding Youth of China (Grant number: 1608085J07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meng, XM. (2019). Inflammatory Mediators and Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_18

Download citation

Publish with us

Policies and ethics