TGF-β/Smad and Renal Fibrosis

  • Tao-Tao Ma
  • Xiao-Ming MengEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)


Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM) that disrupts and replaces functional parenchyma, which leads to organ failure. It is known as the major pathological mechanism of chronic kidney disease (CKD). Although CKD has an impact on no less than 10% of the world population, therapeutic options are still limited. Regardless of etiology, elevated TGF-β levels are highly correlated with the activated pro-fibrotic pathways and disease progression. TGF-β, the key driver of renal fibrosis, is involved in a dynamic pathophysiological process that leads to CKD and end-stage renal disease (ESRD). It is becoming clear that epigenetics regulates renal programming, and therefore, the development and progression of renal disease. Indeed, recent evidence shows TGF-β1/Smad signaling regulates renal fibrosis via epigenetic-correlated mechanisms. This review focuses on the function of TGF-β/Smads in renal fibrogenesis, and the role of epigenetics as a regulator of pro-fibrotic gene expression.


TGF-β Renal fibrosis Smad Non-coding RNA Epigenetic modification 



The laboratory is supported by grants from National Natural Science Foundation of China (National Science Foundation of China 81300580 and 81570623), and by Science and Technological Fund of Anhui Province for Outstanding Youth of China (Grant number: 1608085J07)


  1. Ai J, Nie J, He J, Guo Q, Li M, Lei Y et al (2015) GQ5 hinders renal fibrosis in obstructive nephropathy by selectively inhibiting TGF-beta-Induced Smad3 phosphorylation. J Am Soc Nephrol 26:1827–1838PubMedPubMedCentralGoogle Scholar
  2. Alvarez ML, Khosroheidari M, Eddy E, Kiefer J (2013) Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS ONE 8:e77468PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL (2002) p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115:3193–3206PubMedGoogle Scholar
  4. Barnes JL, Gorin Y (2011) Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int 79:944–956PubMedPubMedCentralCrossRefGoogle Scholar
  5. Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148PubMedCrossRefGoogle Scholar
  6. Bestor TH, Gundersen G, Kolsto AB, Prydz H (1992) CpG islands in mammalian gene promoters are inherently resistant to de novo methylation. Genet Anal Tech Appl 9:48–53PubMedCrossRefGoogle Scholar
  7. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW et al (2014) Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 224:175–185PubMedCrossRefGoogle Scholar
  9. Border WA, Noble NA (1998) Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy. Kidney Int 54:1390–1391PubMedCrossRefGoogle Scholar
  10. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 346:371–374PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bottinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:121ra118CrossRefGoogle Scholar
  14. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol 112:49–57PubMedCrossRefGoogle Scholar
  15. Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC et al (2011) The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60:590–601PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen HY, Zhong X, Huang XR, Meng XM, You Y, Chung AC et al (2014) MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 22:842–853PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cho ME, Smith DC, Branton MH, Penzak SR, Kopp JB (2007) Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2:906–913PubMedCrossRefGoogle Scholar
  18. Choi SY, Ryu Y, Kee HJ, Cho SN, Kim GR, Cho JY et al (2015) Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul Pharmacol 72:130–140PubMedCrossRefGoogle Scholar
  19. Chung AC, Lan HY (2015) MicroRNAs in renal fibrosis. Front Physiol 6:50PubMedGoogle Scholar
  20. Chung AC, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY (2009) Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol Dial Transplant 24:1443–1454PubMedCrossRefGoogle Scholar
  21. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100PubMedPubMedCentralCrossRefGoogle Scholar
  22. Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol 8:241–276PubMedCrossRefGoogle Scholar
  23. Eddy AA, Neilson EG (2006) Chronic kidney disease progression. J Am Soc Nephrol 17:2964–2966PubMedCrossRefGoogle Scholar
  24. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721PubMedPubMedCentralCrossRefGoogle Scholar
  25. Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11:233–244PubMedCrossRefGoogle Scholar
  26. Feng M, Tang PM, Huang XR, Sun SF, You YK, Xiao J et al (2018) TGF-beta mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis. Mol Ther 26:148–161PubMedCrossRefGoogle Scholar
  27. Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H et al (2003) Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun 305:1002–1007PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T et al (2004) Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci U S A 101:8687–8692PubMedPubMedCentralCrossRefGoogle Scholar
  29. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638PubMedCrossRefGoogle Scholar
  30. Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253–265PubMedGoogle Scholar
  31. Grande MT, Lopez-Novoa JM (2009) Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 5:319–328PubMedCrossRefGoogle Scholar
  32. Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M et al (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997PubMedCrossRefGoogle Scholar
  33. Grgic I, Duffield JS, Humphreys BD (2012) The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol 27:183–193PubMedCrossRefGoogle Scholar
  34. He Y, Wu YT, Huang C, Meng XM, Ma TT, Wu BM et al (2014) Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 1842:2204–2215PubMedCrossRefGoogle Scholar
  35. Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D et al (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 166:761–771PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hsieh CL (1999) Evidence that protein binding specifies sites of DNA demethylation. Mol Cell Biol 19:46–56PubMedPubMedCentralCrossRefGoogle Scholar
  37. Huang XR, Chung AC, Wang XJ, Lai KN, Lan HY (2008a) Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease. Am J Physiol Renal Physiol 295:F118–F127PubMedPubMedCentralCrossRefGoogle Scholar
  38. Huang XR, Chung AC, Zhou L, Wang XJ, Lan HY (2008b) Latent TGF-beta1 protects against crescentic glomerulonephritis. J Am Soc Nephrol 19:233–242PubMedPubMedCentralCrossRefGoogle Scholar
  39. Huang XZ, Wen D, Zhang M, Xie Q, Ma L, Guan Y et al (2014) Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-beta/Smad3 pathway. J Cell Biochem 115:996–1005PubMedCrossRefGoogle Scholar
  40. Inazaki K, Kanamaru Y, Kojima Y, Sueyoshi N, Okumura K, Kaneko K et al (2004) Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int 66:597–604PubMedCrossRefGoogle Scholar
  41. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A et al (2007) Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26:500–508PubMedCrossRefGoogle Scholar
  42. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  43. Jinde K, Nikolic-Paterson DJ, Huang XR, Sakai H, Kurokawa K, Atkins RC et al (2001) Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am J Kidney Dis 38:761–769PubMedCrossRefGoogle Scholar
  44. Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA et al (2007) Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol 18:1777–1788PubMedCrossRefGoogle Scholar
  45. Ka SM, Yeh YC, Huang XR, Chao TK, Hung YJ, Yu CP et al (2012) Kidney-targeting Smad7 gene transfer inhibits renal TGF-beta/MAD homologue (SMAD) and nuclear factor kappaB (NF-kappaB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 55:509–519PubMedCrossRefGoogle Scholar
  46. Kato M, Natarajan R (2014) Diabetic nephropathy–emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I et al (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kim JH, Kim BK, Moon KC, Hong HK, Lee HS (2003) Activation of the TGF-beta/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney Int 64:1715–1721PubMedCrossRefGoogle Scholar
  49. Kolling M, Kaucsar T, Schauerte C, Hubner A, Dettling A, Park JK et al (2017) Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol Ther 25:165–180PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Bottinger EP et al (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74:991–1003PubMedGoogle Scholar
  51. Kriegel AJ, Fang Y, Liu Y, Tian Z, Mladinov D, Matus IR et al (2010) MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res 38:8338–8347PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lakner AM, Steuerwald NM, Walling TL, Ghosh S, Li T, McKillop IH et al (2012) Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 56:300–310PubMedPubMedCentralCrossRefGoogle Scholar
  53. LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25:601–610PubMedPubMedCentralCrossRefGoogle Scholar
  55. Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME et al (2004) Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol 164:1389–1397PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ (2010a) Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol 177:1065–1071PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y et al (2010b) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–2624PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY (2013) The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway. Kidney Int 84:1129–1144PubMedCrossRefGoogle Scholar
  59. Liang H, Xu C, Pan Z, Zhang Y, Xu Z, Chen Y et al (2014) The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther 22:1122–1133PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E et al (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS ONE 8:e54001PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu GX, Li YQ, Huang XR, Wei LH, Zhang Y, Feng M et al (2014) Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clin Sci (Lond) 127:195–208CrossRefGoogle Scholar
  62. Lopez-Hernandez FJ, Lopez-Novoa JM (2012) Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347:141–154PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009PubMedPubMedCentralCrossRefGoogle Scholar
  64. Luczak MW, Jagodzinski PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154PubMedGoogle Scholar
  65. Ma J, Xue M (2018) LINK-A lncRNA promotes migration and invasion of ovarian carcinoma cells by activating TGF-beta pathway. Biosci Rep 38:pii: BSR20180936CrossRefGoogle Scholar
  66. Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87:297–307PubMedPubMedCentralCrossRefGoogle Scholar
  67. Manickam N, Patel M, Griendling KK, Gorin Y, Barnes JL (2014) RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307:F159–F171PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mariasegaram M, Tesch GH, Verhardt S, Hurst L, Lan HY, Nikolic-Paterson DJ (2010) Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells. Biochem Biophys Res Commun 393:855–859PubMedCrossRefGoogle Scholar
  69. Marquardt P, Muller-Hermelink HK (1990) Characteristics of T-lymphocytes infiltrating human B-cell lymphomas. Environ Health Perspect 88:233–235PubMedPubMedCentralCrossRefGoogle Scholar
  70. Meng XM, Huang XR, Chung AC, Qin W, Shao X, Igarashi P et al (2010) Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol 21:1477–1487PubMedPubMedCentralCrossRefGoogle Scholar
  71. Meng XM, Huang XR, Xiao J, Chen HY, Zhong X, Chung AC et al (2012a) Diverse roles of TGF-beta receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol 227:175–188PubMedCrossRefGoogle Scholar
  72. Meng XM, Huang XR, Xiao J, Chung AC, Qin W, Chen HY et al (2012b) Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int 81:266–279PubMedCrossRefGoogle Scholar
  73. Meng XM, Chung AC, Lan HY (2013) Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254CrossRefGoogle Scholar
  74. Meng XM, Tang PM, Li J, Lan HY (2015a) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  75. Meng XM, Zhang Y, Huang XR, Ren GL, Li J, Lan HY (2015b) Treatment of renal fibrosis by rebalancing TGF-beta/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 6:36984–36997PubMedPubMedCentralGoogle Scholar
  76. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338CrossRefGoogle Scholar
  77. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307CrossRefGoogle Scholar
  78. Mishra R, Cool BL, Laderoute KR, Foretz M, Viollet B, Simonson MS (2008) AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J Biol Chem 283:10461–10469PubMedCrossRefGoogle Scholar
  79. Moon JA, Kim HT, Cho IS, Sheen YY, Kim DK (2006) IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int 70:1234–1243PubMedCrossRefGoogle Scholar
  80. Murakami K, Takemura T, Hino S, Yoshioka K (1997) Urinary transforming growth factor-beta in patients with glomerular diseases. Pediatr Nephrol 11:334–336PubMedCrossRefGoogle Scholar
  81. Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W et al (1998) Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54:864–876PubMedCrossRefGoogle Scholar
  82. Ng YY, Fan JM, Mu W, Nikolic-Paterson DJ, Yang WC, Huang TP et al (1999) Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol Dial Transplant 14:2860–2872PubMedCrossRefGoogle Scholar
  83. Nikolic-Paterson DJ, Wang S (2011) Lan HY (2014) Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl 4:34–38CrossRefGoogle Scholar
  84. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H et al (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol 297:F729–F739PubMedCrossRefGoogle Scholar
  85. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220PubMedCrossRefGoogle Scholar
  86. Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V et al (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863PubMedPubMedCentralCrossRefGoogle Scholar
  87. Palumbo-Zerr K, Zerr P, Distler A, Fliehr J, Mancuso R, Huang J et al (2015) Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat Med 21:150–158PubMedCrossRefGoogle Scholar
  88. Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J et al (2012) MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:840–850PubMedCrossRefGoogle Scholar
  89. Park JT, Kato M, Lanting L, Castro N, Nam BY, Wang M et al (2014) Repression of let-7 by transforming growth factor-beta1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. Am J Physiol Renal Physiol 307:F1390–F1403PubMedPubMedCentralCrossRefGoogle Scholar
  90. Petersen M, Thorikay M, Deckers M, van Dinther M, Grygielko ET, Gellibert F et al (2008) Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int 73:705–715PubMedCrossRefGoogle Scholar
  91. Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M et al (2001) Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276:19945–19953PubMedPubMedCentralCrossRefGoogle Scholar
  92. Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ponnusamy M, Zhuang MA, Zhou X, Tolbert E, Bayliss G, Zhao TC et al (2015) Activation of Sirtuin-1 promotes renal fibroblast activation and aggravates renal fibrogenesis. J Pharmacol Exp Ther 354:142–151PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pradhan S, Bacolla A, Wells RD, Roberts RJ (1999) Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 274:33002–33010PubMedCrossRefGoogle Scholar
  95. Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM et al (2011) TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol 22:1462–1474PubMedPubMedCentralCrossRefGoogle Scholar
  96. Qiu C, Hanson RL, Fufaa G, Kobes S, Gluck C, Huang J et al (2018) Cytosine methylation predicts renal function decline in American Indians. Kidney Int 93:1417–1431PubMedPubMedCentralCrossRefGoogle Scholar
  97. Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Gobel N, Bruhl H et al (2013) Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int 84:78–89PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rius M, Lyko F (2012) Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31:4257–4265PubMedCrossRefGoogle Scholar
  99. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494PubMedPubMedCentralCrossRefGoogle Scholar
  100. Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003) TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 284:F243–F252CrossRefGoogle Scholar
  101. Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR et al (2011) Pirfenidone for diabetic nephropathy. J Am Soc Nephrol 22:1144–1151PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700CrossRefGoogle Scholar
  103. Shi S, Srivastava SP, Kanasaki M, He J, Kitada M, Nagai T et al (2015) Interactions of DPP-4 and integrin beta1 influences endothelial-to-mesenchymal transition. Kidney Int 88:479–489PubMedCrossRefGoogle Scholar
  104. Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15:272–286PubMedCrossRefGoogle Scholar
  105. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B (2009) The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 86:1111–1118PubMedPubMedCentralCrossRefGoogle Scholar
  106. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE et al (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405PubMedCrossRefGoogle Scholar
  107. Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sun SF, Tang PMK, Feng M, Xiao J, Huang XR, Li P et al (2018) Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b. Diabetes 67:731–744PubMedCrossRefGoogle Scholar
  109. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tampe D, Zeisberg M (2014) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10:226–237PubMedCrossRefGoogle Scholar
  111. Tampe B, Tampe D, Muller CA, Sugimoto H, LeBleu V, Xu X et al (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 25:905–912PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tang PM, Tang PC, Chung JY, Lan HY (2017) TGF-beta1 signaling in kidney disease: from Smads to long non-coding RNAs. Noncoding RNA Res 2:68–73PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tsuchida K, Zhu Y, Siva S, Dunn SR, Sharma K (2003) Role of Smad4 on TGF-beta-induced extracellular matrix stimulation in mesangial cells. Kidney Int 63:2000–2009PubMedCrossRefGoogle Scholar
  114. Tu X, Zhang H, Zhang J, Zhao S, Zheng X, Zhang Z et al (2014) MicroRNA-101 suppresses liver fibrosis by targeting the TGFbeta signalling pathway. J Pathol 234:46–59PubMedCrossRefGoogle Scholar
  115. van Meeteren LA, ten Dijke P (2012) Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res 347:177–186PubMedCrossRefGoogle Scholar
  116. Voelker J, Berg PH, Sheetz M, Duffin K, Shen T, Moser B et al (2017) Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol 28:953–962PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wada T, Sakai N, Matsushima K, Kaneko S (2007) Fibrocytes: a new insight into kidney fibrosis. Kidney Int 72:269–273PubMedCrossRefGoogle Scholar
  118. Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A et al (2010) E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59:1794–1802PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang D, Dai C, Li Y, Liu Y (2011) Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int 80:1159–1169PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wang B, Jha JC, Hagiwara S, McClelland AD, Jandeleit-Dahm K, Thomas MC et al (2014) Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int 85:352–361PubMedCrossRefGoogle Scholar
  121. Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y et al (2016) TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 7:8809–8822PubMedPubMedCentralGoogle Scholar
  122. Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH et al (2013) Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 182:118–131PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wu W, Chen F, Cui X, Yang L, Chen J, Zhao J et al (2018) LncRNA NKILA suppresses TGF-beta-induced epithelial-mesenchymal transition by blocking NF-kappaB signaling in breast cancer. Int J Cancer 43:2213–2224CrossRefGoogle Scholar
  124. Xavier S, Vasko R, Matsumoto K, Zullo JA, Chen R, Maizel J et al (2015) Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol 26:817–829PubMedCrossRefPubMedCentralGoogle Scholar
  125. Xiao X, Tang W, Yuan Q, Peng L, Yu P (2015) Epigenetic repression of Kruppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis. Int J Mol Med 35:1596–1602PubMedPubMedCentralCrossRefGoogle Scholar
  126. Xie H, Xue JD, Chao F, Jin YF, Fu Q (2016) Long non-coding RNA-H19 antagonism protects against renal fibrosis. Oncotarget 7:51473–51481PubMedPubMedCentralGoogle Scholar
  127. Xue R, Li Y, Li X, Ma J, An C, Ma Z (2018) miR-185 affected the EMT, cell viability and proliferation via DNMT1/MEG3 pathway in TGF-beta1-induced renal fibrosis. Cell Biol Int, 2018 Aug 10. [Epub ahead of print]
  128. Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI et al (1996) Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int 49:461–469PubMedCrossRefGoogle Scholar
  129. Yan X, Chen YG (2011) Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J 434:1–10PubMedCrossRefGoogle Scholar
  130. Yoshikawa M, Hishikawa K, Marumo T, Fujita T (2007) Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol 18:58–65PubMedCrossRefGoogle Scholar
  131. Yu F, Guo Y, Chen B, Dong P, Zheng J (2015) MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Invest 95:781–789PubMedCrossRefGoogle Scholar
  132. Yuan W, Varga J (2001) Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 276:38502–38510PubMedCrossRefGoogle Scholar
  133. Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M et al (2013) Involvement of p300/CBP and epigenetic histone acetylation in TGF-beta1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 304:F601–F613PubMedCrossRefGoogle Scholar
  134. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968PubMedCrossRefGoogle Scholar
  135. Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O et al (2016) Sirt1 regulates canonical TGF-beta signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis 75:226–233PubMedCrossRefGoogle Scholar
  136. Zhang Y, Meng XM, Huang XR, Lan HY (2018) The preventive and therapeutic implication for renal fibrosis by targeting TGF-beta/Smad3 signaling. Clin Sci (Lond) 132:1403–1415CrossRefGoogle Scholar
  137. Zhao Y, Yin Z, Li H, Fan J, Yang S, Chen C et al (2017) MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell 16:387–400PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhong X, Chung AC, Chen HY, Meng XM, Lan HY (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22:1668–1681PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R et al (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674PubMedCrossRefGoogle Scholar
  140. Zhou L, Fu P, Huang XR, Liu F, Chung AC, Lai KN et al (2010) Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am J Physiol Renal Physiol 298:F1006–F1017PubMedCrossRefGoogle Scholar
  141. Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18PubMedCrossRefGoogle Scholar
  142. Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY (2014) Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol 184:409–417PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina

Personalised recommendations