Targeting Bone Marrow-Derived Fibroblasts for Renal Fibrosis

  • Changlong An
  • Li Jia
  • Jia Wen
  • Yanlin WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)


Renal fibrosis is a major pathological feature of chronic kidney disease, which is characterized by massive fibroblast activation and excessive production and deposition of extracellular matrix (ECM). Renal fibrosis results in progressive loss of kidney function; however, there is currently no effective therapy available clinically to treat or even reverse renal fibrosis. Although activated fibroblasts/myofibroblasts are responsible for the production and deposition of ECM, their origin has been debatable. Recent studies have provided compelling evidence that bone marrow-derived fibroblast precursors contribute significantly to the population of myofibroblasts and the development of renal fibrosis. Therefore, targeting the molecular signaling mechanisms underlying the recruitment and activation of the bone marrow-derived fibroblast precursors may serve as novel therapeutic strategy for chronic kidney disease. In this review, we appraise recent advances in our understanding of the recruitment and activation of bone marrow-derived fibroblast precursors in the kidney and the development of renal fibrosis and highlight novel molecular signaling pathways that may lead to the development of new therapies for chronic kidney disease.


Chemokine Cytokine Bone marrow-derived fibroblast precursors Fibroblasts Renal fibrosis Extracellular matrix Chronic kidney disease Monocyte-to-fibroblast transition 



This work was supported by grants from the National Institutes of Health grant (R01DK95835) and the US Department of Veterans Administration grant (I01BX02650) to YW. This chapter was modified from an article authored by our group in Frontiers in Physiology (Yan et al. 2016). The related contents are reused with permission.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be considered as a potential conflict of interest.


  1. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout TA, Broadway N et al (2004) The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol 172:6362–6372PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alkhatib G, Liao F, Berger EA, Farber JM, Peden KW (1997) A new SIV co-receptor, STRL33. Nature 388:238PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A, Ahn S et al (2010) Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 120:4040–4054PubMedPubMedCentralCrossRefGoogle Scholar
  5. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292PubMedCrossRefPubMedCentralGoogle Scholar
  6. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 346:371–374PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bottinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610PubMedCrossRefPubMedCentralGoogle Scholar
  8. Broekema M, Harmsen MC, van Luyn MJ, Koerts JA, Petersen AH, van Kooten TG et al (2007) Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol 18:165–175PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81PubMedPubMedCentralCrossRefGoogle Scholar
  10. Buchtler S, Grill A, Hofmarksrichter S, Stöckert P, Schiechl-Brachner G, Rodriguez Gomez M et al (2018) Cellular origin and functional relevance of collagen I production in the kidney. J Am Soc Nephrol 29:1859–1873PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen G, Lin SC, Chen J, He L, Dong F, Xu J et al (2011) CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J Am Soc Nephrol 22:1876–1886PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen J, Xia Y, Lin X, Feng XH, Wang Y (2014) Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Lab Invest 94:545–556PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chesney J, Bacher M, Bender A, Bucala R (1997) The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci U S A 94:6307–6312PubMedPubMedCentralCrossRefGoogle Scholar
  14. Conway B, Hughes J (2012) Cellular orchestrators of renal fibrosis. QJM: Mon J Assoc Physicians 105:611–615CrossRefGoogle Scholar
  15. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565PubMedCrossRefGoogle Scholar
  16. Deng HK, Unutmaz D, KewalRamani VN, Littman DR (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dong Y, Yang M, Zhang J, Peng X, Cheng J, Cui T et al (2016) Depletion of CD8+ T cells exacerbates CD4+ T cell-induced monocyte-to-fibroblast transition in renal fibrosis. J Immunol 196:1874–1881PubMedCrossRefPubMedCentralGoogle Scholar
  18. Duerrschmid C, Trial J, Wang Y, Entman ML, Haudek SB (2015) Tumor necrosis factor: a mechanistic link between angiotensin-II-induced cardiac inflammation and fibrosis. Circ Heart Fail 8:352–361PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ebert LM, Schaerli P, Moser B (2005) Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 42:799–809PubMedCrossRefPubMedCentralGoogle Scholar
  20. Eddy AA (2005) Progression in chronic kidney disease. Adv Chronic Kidney Dis 12:353–365PubMedCrossRefGoogle Scholar
  21. Eddy AA (2013) The origin of scar-forming kidney myofibroblasts. Nat Med 19:964–966PubMedCrossRefGoogle Scholar
  22. Elewa U, Sanchez-Nino MD, Mahillo-Fernandez I, Martin-Cleary C, Belen Sanz A, Perez-Gomez MV et al (2016) Circulating CXCL16 in diabetic kidney disease. Kidney Blood Press Res 41:663–671PubMedCrossRefGoogle Scholar
  23. Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, Shortland J, Brown CB, el Nahas AM (1997) Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 12:43–50Google Scholar
  24. Farris AB, Colvin RB (2012) Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens 21:289–300PubMedPubMedCentralCrossRefGoogle Scholar
  25. Forster R, Davalos-Misslitz AC, Rot A (2008) CCR25 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371PubMedCrossRefGoogle Scholar
  26. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604PubMedCrossRefGoogle Scholar
  27. Gough PJ, Garton KJ, Wille PT, Rychlewski M, Dempsey PJ, Raines EW (2004) A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16. J Immunol 172:3678–3685PubMedCrossRefGoogle Scholar
  28. Grimm PC, Nickerson P, Jeffery J, Savani RC, Gough J, McKenna RM et al (2001) Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection. N Engl J Med 345:93–97PubMedCrossRefPubMedCentralGoogle Scholar
  29. Haudek SB, Cheng J, Du J, Wang Y, Hermosillo-Rodriguez J, Trial J et al (2010) Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J Mol Cell Cardiol 49:499–507PubMedPubMedCentralCrossRefGoogle Scholar
  30. Herzog EL, Bucala R (2010) Fibrocytes in health and disease. Exp Hematol 38:548–556PubMedPubMedCentralCrossRefGoogle Scholar
  31. Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP et al (2010) Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension 55:1165–1171PubMedCrossRefPubMedCentralGoogle Scholar
  32. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedPubMedCentralCrossRefGoogle Scholar
  33. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350PubMedPubMedCentralCrossRefGoogle Scholar
  34. Iwashima Y, Horio T, Kumada M, Suzuki Y, Kihara S, Rakugi H et al (2006) Adiponectin and renal function, and implication as a risk of cardiovascular disease. Am J Cardiol 98:1603–1608PubMedCrossRefGoogle Scholar
  35. Izquierdo MC, Sanz AB, Mezzano S, Blanco J, Carrasco S, Sanchez-Niño MD et al (2012) TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney Int 81:1098–1107PubMedCrossRefPubMedCentralGoogle Scholar
  36. Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B, Elewa U, Sanchez-Niño MD, Carrero JJ et al (2014) CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev 25:317–325PubMedCrossRefGoogle Scholar
  37. Lan HY (2011) Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci 7:1056–1067PubMedPubMedCentralCrossRefGoogle Scholar
  38. Latella G, Vetuschi A, Sferra R, Catitti V, D’Angelo A, Zanninelli G et al (2009) Targeted disruption of Smad3 confers resistance to the development of dimethylnitrosamine-induced hepatic fibrosis in mice. Liver Int 29:997–1009PubMedCrossRefGoogle Scholar
  39. Lebleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS et al (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22:317–326PubMedPubMedCentralCrossRefGoogle Scholar
  41. Li J, Deane JA, Campanale NV, Bertram JF, Ricardo SD et al (2007) The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells 25:697–706PubMedCrossRefPubMedCentralGoogle Scholar
  42. Liang H, Ma Z, Peng H, He L, Hu Z, Wang Y (2016) CXCL16 deficiency attenuates renal injury and fibrosis in salt-sensitive hypertension. Sci Rep 6:28715PubMedPubMedCentralCrossRefGoogle Scholar
  43. Liang H, Zhang Z, Yan J, Wang Y, Hu Z, Mitch WE et al (2017) The IL-4 receptor alpha has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int 92:1433–1443PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lin Z, Gong Q, Zhou Z, Zhang W, Liao S, Liu Y et al (2011) Increased plasma CXCL16 levels in patients with chronic kidney diseases. Eur J Clin Invest 41:836–845PubMedCrossRefPubMedCentralGoogle Scholar
  46. Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222PubMedCrossRefGoogle Scholar
  47. Loetscher M, Amara A, Oberlin E, Brass N, Legler D, Loetscher P et al (1997) TYMSTR, a putative chemokine receptor selectively expressed in activated T cells, exhibits HIV-1 coreceptor function. Curr Biol 7:652–660PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ludwig A, Weber C (2007) Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Haemost 97:694–703PubMedCrossRefGoogle Scholar
  49. Ludwig A, Hundhausen C, Lambert MH, Broadway N, Andrews RC, Bickett DM et al (2005) Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 8:161–171PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ma Z, Jin X, He L, Wang Y (2016) CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis. Am J Physiol Heart Circ Physiol 311:H815–H821PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mackay CR (2001) Chemokines: immunology’s high impact factors. Nat Immunol 2:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  52. Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298–304PubMedCrossRefPubMedCentralGoogle Scholar
  53. Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  54. Meran S, Steadman R (2011) Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 92:158–167PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mills KT, Hamm LL, Alper AB, Miller C, Hudaihed A, Balamuthusamy S et al (2013) Circulating adipocytokines and chronic kidney disease. PLoS ONE 8:e76902PubMedPubMedCentralCrossRefGoogle Scholar
  56. Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J et al (2009) Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:588–594PubMedCrossRefPubMedCentralGoogle Scholar
  57. Moore BB, Kolodsick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C et al (2005) CCR57-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 166:675–684PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304:81–90PubMedCrossRefPubMedCentralGoogle Scholar
  59. Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17PubMedCrossRefGoogle Scholar
  60. Neilson EG (2006) Mechanisms of disease: Fibroblasts–a new look at an old problem. Nat Clin Pract Nephrol 2:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  61. Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K, Göbel N et al (2009) CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci U S A 106:17892–17897PubMedPubMedCentralCrossRefGoogle Scholar
  62. Okamura DM, Lopez-Guisa JM, Koelsch K, Collins S, Eddy AA (2007) Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol 293:F575–F585PubMedCrossRefPubMedCentralGoogle Scholar
  63. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY et al (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114:438–446PubMedPubMedCentralCrossRefGoogle Scholar
  64. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C9PubMedCrossRefPubMedCentralGoogle Scholar
  65. Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Göbel N, Brühl H et al (2013) Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int 84:78–89PubMedCrossRefPubMedCentralGoogle Scholar
  66. Roberts IS, Burrows C, Shanks JH, Venning M, McWilliam LJ (1997) Interstitial myofibroblasts: predictors of progression in membranous nephropathy. J Clin Pathol 50:123–127PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rollins BJ (1997) Chemokines. Blood 90:909–928PubMedPubMedCentralGoogle Scholar
  68. Roufosse C, Bou-Gharios G, Prodromidi E, Alexakis C, Jeffery R, Khan S et al (2006) Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J Am Soc Nephrol 17:775–782PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K et al (2006) Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR69 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A 103:14098–14103PubMedPubMedCentralCrossRefGoogle Scholar
  70. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494PubMedPubMedCentralCrossRefGoogle Scholar
  71. Schulte A, Schulz B, Andrzejewski MG, Hundhausen C, Mletzko S, Achilles J et al (2007) Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by alpha- and gamma-secretases. Biochem Biophys Res Commun 358:233–240PubMedCrossRefPubMedCentralGoogle Scholar
  72. Shachar I (2017) An essential MIF-CD74 signaling axis in kidney tubular regeneration, with prospects for precision medicine and pharmacological augmentation. Am J Physiol Renal Physiol 313:F1084–F1086PubMedCrossRefPubMedCentralGoogle Scholar
  73. Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D (2008) Pivotal Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83:1323–1333PubMedPubMedCentralCrossRefGoogle Scholar
  74. Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T et al (2000) Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 275:40663–40666PubMedCrossRefPubMedCentralGoogle Scholar
  75. Shimaoka T, Nakayama T, Fukumoto N, Kume N, Takahashi S, Yamaguchi J et al (2004) Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells. J Leukoc Biol 75:267–274PubMedCrossRefPubMedCentralGoogle Scholar
  76. Shimotomai T, Kakei M, Narita T, Koshimura J, Hosoba M, Kato M et al (2005) Enhanced urinary adiponectin excretion in IgA-nephropathy patients with proteinuria. Ren Fail 27:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  77. Strutz F, Zeisberg M (2006) Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol 17:2992–2998PubMedCrossRefPubMedCentralGoogle Scholar
  78. Tapmeier TT, Fearn A, Brown K, Chowdhury P, Sacks SH, Sheerin NS et al (2010) Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int 78:351–362PubMedCrossRefPubMedCentralGoogle Scholar
  79. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363PubMedCrossRefPubMedCentralGoogle Scholar
  80. Verrecchia F, Chu ML, Mauviel A (2001) Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 276:17058–17062PubMedCrossRefPubMedCentralGoogle Scholar
  81. Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y et al (2016) TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 7:8809–8822PubMedPubMedCentralGoogle Scholar
  82. Wang Y, Jia L, Hu Z, Entman ML, Mitch WE, Wang Y (2018) AMP-activated protein kinase/myocardin-related transcription factor-A signaling regulates fibroblast activation and renal fibrosis. Kidney Int 93:81–94PubMedCrossRefPubMedCentralGoogle Scholar
  83. Wilbanks A, Zondlo SC, Murphy K, Mak S, Soler D, Langdon P et al (2001) Expression cloning of the STRL33/BONZO/TYMSTRligand reveals elements of CC, CXC, and CX3C chemokines. J Immunol 166:5145–5154PubMedCrossRefPubMedCentralGoogle Scholar
  84. Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4:583–594PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30:245–257PubMedPubMedCentralCrossRefGoogle Scholar
  86. Xia Y, Entman ML, Wang Y (2013a) CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis. PLoS ONE 8:e77493PubMedPubMedCentralCrossRefGoogle Scholar
  87. Xia Y, Entman ML, Wang Y (2013b) Critical role of CXCL16 in hypertensive kidney injury and fibrosis. Hypertension 62:1129–1137PubMedPubMedCentralCrossRefGoogle Scholar
  88. Xia Y, Jin X, Yan J, Entman ML, Wang Y (2014a) CXCR88 plays a critical role in angiotensin II-induced renal injury and fibrosis. Arterioscler Thromb Vasc Biol 34:1422–1428PubMedPubMedCentralCrossRefGoogle Scholar
  89. Xia Y, Yan J, Jin X, Entman ML, Wang Y (2014b) The chemokine receptor CXCR89 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis. Kidney Int 86:327–337PubMedPubMedCentralCrossRefGoogle Scholar
  90. Xu J, Lin SC, Chen J, Miao Y, Taffet GE, Entman ML et al (2011) CCR90 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis. Am J Physiol Heart Circ Physiol 301:H538–H547PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yan J, Zhang Z, Yang J, Mitch WE, Wang Y (2015) JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. J Am Soc Nephrol 26:3060–3071PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yan J, Zhang Z, Jia L, Wang Y (2016) Role of bone marrow-derived fibroblasts in renal fibrosis. Front Physiol 7:61PubMedPubMedCentralGoogle Scholar
  93. Yang J, Lin SC, Chen G, He L, Hu Z, Chan L et al (2013) Adiponectin promotes monocyte-to-fibroblast transition in renal fibrosis. J Am Soc Nephrol 24:1644–1659PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  95. Zeisberg M, Kalluri R (2015) Physiology of the renal interstitium. Clin J Am Soc Nephrol 10:1831–1840PubMedPubMedCentralCrossRefGoogle Scholar
  96. Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21:1819–1834PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287PubMedPubMedCentralCrossRefGoogle Scholar
  98. Zhang G, Moorhead PJ, el Nahas AM (1995) Myofibroblasts and the progression of experimental glomerulonephritis. Exp Nephrol 3:308–318PubMedPubMedCentralGoogle Scholar
  99. Zhao J, Shi W, Wang YL, Chen H, Bringas P Jr, Datto MB et al (2002) Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 282:L585–L593PubMedCrossRefPubMedCentralGoogle Scholar
  100. Zhao L, Wu F, Jin L, Lu T, Yang L, Pan X et al (2014) Serum CXCL16 as a novel marker of renal injury in type 2 diabetes mellitus. PLoS ONE 9:e87786PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36:705–716PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zoccali C, Mallamaci F (2011) Adiponectin and leptin in chronic kidney disease: causal factors or mere risk markers? J Ren Nutr 21:87–91PubMedCrossRefGoogle Scholar
  103. Zoccali C, Mallamaci F, Panuccio V, Tripepi G, Cutrupi S, Parlongo S et al (2003) Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int Suppl 84:S98–S102CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Changlong An
    • 1
    • 2
    • 3
  • Li Jia
    • 3
  • Jia Wen
    • 1
    • 3
  • Yanlin Wang
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of Nephrology, Department of MedicineUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Renal SectionVeterans Affairs Connecticut Healthcare SystemWest HavenUSA
  3. 3.Selzman Institute for Kidney Health and Section of Nephrology, Department of MedicineBaylor College of MedicineHoustonUSA

Personalised recommendations