Skip to main content

Macrophages in Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Monocytes/macrophages are highly involved in the process of renal injury, repair and fibrosis in many aspects of experimental and human renal diseases. Monocyte-derived macrophages, characterized by high heterogeneity and plasticity, are recruited, activated, and polarized in the whole process of renal fibrotic diseases in response to local microenvironment. As classically activated M1 or CD11b+/Ly6Chigh macrophages accelerate renal injury by producing pro-inflammatory factors like tumor necrosis factor-alpha (TNFα) and interleukins, alternatively activated M2 or CD11b+/Ly6Cintermediate macrophages may contribute to kidney repair by exerting anti-inflammation and wound healing functions. However, uncontrolled M2 macrophages or CD11b+/Ly6Clow macrophages promote renal fibrosis via paracrine effects or direct transition to myofibroblast-like cells via the process of macrophage-to-myofibroblast transition (MMT). In this regard, therapeutic strategies targeting monocyte/macrophage recruitment, activation, and polarization should be emphasized in the treatment of renal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders HJ (2010) Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol 21:1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Anders HJ, Ryu M (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80:915–925

    Article  CAS  PubMed  Google Scholar 

  • Anders HJ, Frink M, Linde Y, Banas B, Wörnle M, Cohen CD et al (2003) CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration. J Immunol 170:5658–5666

    Article  CAS  PubMed  Google Scholar 

  • Baek JH, Zeng R, Weinmann-Menke J, Valerius MT, Wada Y, Ajay AK et al (2015) IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J Clin Investig 125:3198–3214

    Article  PubMed  PubMed Central  Google Scholar 

  • Belliere J, Casemayou A, Ducasse L, Zakaroff-Girard A, Martins F, Iacovoni JS et al (2015) Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J Am Soc Nephrol 26:1363–1377

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Godoy M, Semal P, Van Gansen P (1992) Transdifferentiation of macrophages into fibroblasts as a result of Schistosoma mansoni infection. Int J Develop Biol 36:179–184

    CAS  Google Scholar 

  • Border WA, Noble NA (1994) Transforming growth factor-beta in glomerular injury. Exp Nephrol 2:13–17

    CAS  PubMed  Google Scholar 

  • Braga TT, Correa-Costa M, Silva RC, Cruz MC, Hiyane MI, da Silva JS et al (2018) CCR8 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflammopharmacology 26:403–411

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee VW et al (2010) IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol 21:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q, Wang C, Zheng D, Wang Y, Lee VW, Wang YM et al (2011) IL-25 induces M2 macrophages and reduces renal injury in proteinuric kidney disease. J Am Soc Nephrol 22:1229–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q, Wang Y, Harris DC (2013) Pathogenic and protective role of macrophages in kidney disease. Am J Physiol Renal Physiol 305:F3–F11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q, Wang Y, Zheng D, Sun Y, Wang C, Wang XM et al (2014) Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int 85:794–806

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Lin SC, Chen J, He L, Dong F, Xu J et al (2011) CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J Am Soc Nephrol 22:1876–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xia Y, Lin X, Feng XH, Wang Y (2014) Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Lab Invest J Tech Methods Pathol 94:545–556

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Lovett DH (2003) Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 162:1937–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH (2006) Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J 20:1898–1900 (Official publication of the Federation of American Societies for Experimental Biology)

    Article  CAS  PubMed  Google Scholar 

  • Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER et al (2016) Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J Am Soc Nephrol 27:495–508

    Article  CAS  PubMed  Google Scholar 

  • Clauss S, Gross O, Kulkarni O, Avila-Ferrufino A, Radomska E, Segerer S et al (2009) Ccl2/Mcp-1 blockade reduces glomerular and interstitial macrophages but does not ameliorate renal pathology in collagen4A3-deficient mice with autosomal recessive Alport nephropathy. J Pathol 218:40–47

    Article  CAS  PubMed  Google Scholar 

  • Clements M, Gershenovich M, Chaber C, Campos-Rivera J, Du P, Zhang M et al (2016) Differential Ly6C expression after renal ischemia-reperfusion identifies unique macrophage populations. J Am Soc Nephrol 27:159–170

    Article  CAS  PubMed  Google Scholar 

  • Cochrane AL, Kett MM, Samuel CS, Campanale NV, Anderson WP, Hume DA et al (2005) Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. J Am Soc Nephrol 16:3623–3630

    Article  CAS  PubMed  Google Scholar 

  • Day YJ, Huang L, Ye H, Linden J, Okusa MD (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol 288:F722–F731

    Article  CAS  PubMed  Google Scholar 

  • Dessing MC, Tammaro A, Pulskens WP, Teske GJ, Butter LM, Claessen N et al (2015) The calcium-binding protein complex S100A8/A9 has a crucial role in controlling macrophage-mediated renal repair following ischemia/reperfusion. Kidney Int 87:85–94

    Article  CAS  PubMed  Google Scholar 

  • D’Souza MJ, Oettinger CW, Shah A, Tipping PG, Huang XR, Milton GV (1999) Macrophage depletion by albumin microencapsulated clodronate: attenuation of cytokine release in macrophage-dependent glomerulonephritis. Drug Dev Ind Pharm 25:591–596

    Article  PubMed  Google Scholar 

  • Duffield JS (2010) Macrophages and immunologic inflammation of the kidney. Semin Nephrol 30:234–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S et al (2005a) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Investig 115:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield JS, Tipping PG, Kipari T, Cailhier JF, Clay S, Lang R et al (2005b) Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am J Pathol 167:1207–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11:233–244

    Article  CAS  PubMed  Google Scholar 

  • Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS et al (2007) Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 178:5288–5295

    Article  CAS  PubMed  Google Scholar 

  • Fan D, Takawale A, Basu R, Patel V, Lee J, Kandalam V et al (2014) Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovasc Res 103:268–280

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Chen S, Garcia GE, Xia Y, Siani MA, Botti P et al (1999) Prevention of crescentic glomerulonephritis by immunoneutralization of the fractalkine receptor CX3CR30 rapid communication. Kidney Int 56:612–620

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Liang Y, Ren J, Dai C (2018a) Canonical Wnt signaling promotes macrophage proliferation during kidney fibrosis. Kidney Dis (Basel) 4:95–103

    Article  Google Scholar 

  • Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q et al (2018b) Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol 29:182–193

    Article  CAS  PubMed  Google Scholar 

  • Ferenbach DA, Ramdas V, Spencer N, Marson L, Anegon I, Hughes J et al (2010) Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury. Mol Therapy J Am Soc Gene Therapy 18:1706–1713

    Article  CAS  Google Scholar 

  • Ferenbach DA, Nkejabega NC, McKay J, Choudhary AK, Vernon MA, Beesley MF et al (2011) The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney Int 79:966–976

    Article  CAS  PubMed  Google Scholar 

  • Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867–872

    Article  CAS  PubMed  Google Scholar 

  • Floege J, Eitner F, Alpers CE (2008) A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 19:12–23

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Zhang L, Fu B, Zhang J, Hong Q, Hu J et al (2014) Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Res Therapy 5:80

    Article  CAS  Google Scholar 

  • Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K et al (2001) Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol 53:386–392

    Article  CAS  PubMed  Google Scholar 

  • Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Ma FY, Tesch GH, Manthey CL, Nikolic-Paterson DJ (2011) c-fms blockade reverses glomerular macrophage infiltration and halts development of crescentic anti-GBM glomerulonephritis in the rat. Lab Invest J Tech Methods Pathol 91:978–991

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Ma FY, Tesch GH, Manthey CL, Nikolic-Paterson DJ (2013) Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. Am J Physiol Renal Physiol 304:F1043–F1053

    Article  CAS  PubMed  Google Scholar 

  • Han H, Zhu J, Wang Y, Zhu Z, Chen Y, Lu L et al (2017) Renal recruitment of B lymphocytes exacerbates tubulointerstitial fibrosis by promoting monocyte mobilization and infiltration after unilateral ureteral obstruction. J Pathol 241:80–90

    Article  CAS  PubMed  Google Scholar 

  • Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP et al (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth SR, Neale TJ, Wilson CB (1981) Abrogation of macrophage-dependent injury in experimental glomerulonephritis in the rabbit. Use of an antimacrophage serum. J Clin Investig 68:686–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Wang A, Hao Y, Li W, Liu C, Yang Z et al (2018) Macrophage depletion lowered blood pressure and attenuated hypertensive renal injury and fibrosis. Front Physiol 9:473

    Article  PubMed  PubMed Central  Google Scholar 

  • Huen SC, Cantley LG (2015) Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol 30:199–209

    Article  PubMed  Google Scholar 

  • Huen SC, Moeckel GW, Cantley LG (2013) Macrophage-specific deletion of transforming growth factor-beta1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am J Physiol Renal Physiol 305:F477–F484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG (2015) GM-CSF Promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 26:1334–1345

    Article  CAS  PubMed  Google Scholar 

  • Ikezumi Y, Hurst LA, Masaki T, Atkins RC, Nikolic-Paterson DJ (2003) Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation. Kidney Int 63:83–95

    Article  CAS  PubMed  Google Scholar 

  • Ikezumi Y, Suzuki T, Karasawa T, Hasegawa H, Kawachi H, Nikolic-Paterson DJ et al (2010) Contrasting effects of steroids and mizoribine on macrophage activation and glomerular lesions in rat thy-1 mesangial proliferative glomerulonephritis. Am J Nephrol 31:273–282

    Article  CAS  PubMed  Google Scholar 

  • Ikezumi Y, Suzuki T, Karasawa T, Hasegawa H, Yamada T, Imai N et al (2011) Identification of alternatively activated macrophages in new-onset paediatric and adult immunoglobulin A nephropathy: potential role in mesangial matrix expansion. Histopathology 58:198–210

    Article  PubMed  Google Scholar 

  • Jiang Y, Wang Y, Ma P, An D, Zhao J, Liang S et al (2018) Myeloid-specific targeting of Notch ameliorates murine renal fibrosis via reduced infiltration and activation of bone marrow-derived macrophage. Protein Cell 10:196–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jo SK, Sung SA, Cho WY, Go KJ, Kim HK (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dialysis Transplant 21:1231–1239 (Official publication of the European Dialysis and Transplant Association–European Renal Association)

    Article  CAS  Google Scholar 

  • Kapoor N, Niu J, Saad Y, Kumar S, Sirakova T, Becerra E et al (2015) Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol 194:6011–6023

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki K, Yaoita E, Yamamoto T, Tamatani T, Miyasaka M, Kihara I (1993) Antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 prevent glomerular injury in rat experimental crescentic glomerulonephritis. J Immunol 150:1074–1083

    CAS  PubMed  Google Scholar 

  • Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y, Asano M et al (2004) Blockade of CCR58 ameliorates progressive fibrosis in kidney. Am J Pathol 165:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamoto K, Machida Y, Uchida J, Izumi Y, Shiota M, Nakao T et al (2009) Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci 111:285–292

    Article  CAS  PubMed  Google Scholar 

  • Kluth DC, Erwig LP, Rees AJ (2004) Multiple facets of macrophages in renal injury. Kidney Int 66:542–557

    Article  CAS  PubMed  Google Scholar 

  • Ko GJ, Boo CS, Jo SK, Cho WY, Kim HK (2008) Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dialysis Transplant 23:842–852 (Official publication of the European Dialysis and Transplant Association–European Renal Association)

    Article  CAS  Google Scholar 

  • Kramann R, Machado F, Wu H, Kusaba T, Hoeft K, Schneider RK et al (2018) Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis. JCI Insight 3

    Google Scholar 

  • Le Meur Y, Tesch GH, Hill PA, Mu W, Foti R, Nikolic-Paterson DJ et al (2002) Macrophage accumulation at a site of renal inflammation is dependent on the M-CSF/c-fms pathway. J Leukoc Biol 72:530–537

    PubMed  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lech M, Gröbmayr R, Ryu M, Lorenz G, Hartter I, Mulay SR et al (2014) Macrophage phenotype controls long-term AKI outcomes-kidney regeneration versus atrophy. J Am Soc Nephrol 25:292–304

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS et al (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenzo JC, Turner AL, Cook AD, Vlahos R, Anderson GP, Reynolds EC et al (2012) Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol 90:429–440

    Article  CAS  PubMed  Google Scholar 

  • Lim AK, Ma FY, Nikolic-Paterson DJ, Thomas MC, Hurst LA, Tesch GH (2009) Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia 52:1669–1679

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SL, Castaño AP, Nowlin BT, Lupher ML Jr, Duffield JS (2009) Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol 183:6733–6743

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT et al (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci USA 107:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd CM, Dorf ME, Proudfoot A, Salant DJ, Gutierrez-Ramos JC (1997) Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis. J Leukoc Biol 62:676–680

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Cao Q, Zheng D, Sun Y, Wang C, Yu X et al (2013) Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int 84:745–755

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Wu L, Liu L, Ruan Q, Zhang X, Hong W et al (2018) Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol 154:203–212

    Article  PubMed  CAS  Google Scholar 

  • Ma FY, Flanc RS, Tesch GH, Bennett BL, Friedman GC, Nikolic-Paterson DJ (2009) Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Lab Invest 89:470–484

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Rep 6:13

    Google Scholar 

  • Meng XM, Chung AC, Lan HY (2013) Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254

    Article  CAS  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2014) Inflammatory processes in renal fibrosis. Nat Rev Nephrol 10:493–503

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Tang PM, Li J, Lan HY (2015) Macrophage phenotype in kidney injury and repair. Kidney Dis (Basel) 1:138–146

    Article  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2016a) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y et al (2016b) Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis 7:e2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD et al (2009) CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Investig 119:2330–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney JE, Rolfe BE, Osborne GW, Sester DP, van Rooijen N, Campbell GR et al (2010) Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. Am J Pathol 176:369–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu W, Ouyang X, Agarwal A, Zhang L, Long DA, Cruz PE et al (2005) IL-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease. J Am Soc Nephrol 16:3651–3660

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolic-Paterson DJ, Wang S, Lan HY (2014) Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl 4:34–38

    Article  CAS  Google Scholar 

  • Nishida M, Fujinaka H, Matsusaka T, Price J, Kon V, Fogo AB et al (2002) Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Investig 110:1859–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida M, Okumura Y, Fujimoto S, Shiraishi I, Itoi T, Hamaoka K (2005) Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem Biophys Res Commun 332:11–16

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Okumura Y, Ozawa S, Shiraishi I, Itoi T, Hamaoka K (2007) MMP-2 inhibition reduces renal macrophage infiltration with increased fibrosis in UUO. Biochem Biophys Res Commun 354:133–139

    Article  CAS  PubMed  Google Scholar 

  • Noh H, Yu MR, Kim HJ, Lee JH, Park BW, Wu IH et al (2017) Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications. Kidney Int 92:101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsa R, Andresen P, Gillett A, Mia S, Zhang XM, Mayans S et al (2012) Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in NOD mice. Diabetes 61:2881–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Zhang J, Xiao Z, Dong Y, Du J (2015) CX3CL1-CX3CR94 interaction increases the population of Ly6C(-)CX3CR94(hi) macrophages contributing to unilateral ureteral obstruction-induced fibrosis. J Immunol 195:2797–2805

    Article  CAS  PubMed  Google Scholar 

  • Piccolo V, Curina A, Genua M, Ghisletti S, Simonatto M, Sabò A et al (2017) Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat Immunol 18:530–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilling D, Gomer RH (2012) Differentiation of circulating monocytes into fibroblast-like cells. Methods Mol Biol 904:191–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganathan PV, Jayakumar C, Ramesh G (2013) Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am J Physiol Renal Physiol 304:F948–F957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao VH, Meehan DT, Delimont D, Nakajima M, Wada T, Gratton MA et al (2006) Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol 169:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Investig 118:3522–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronco P, Chatziantoniou C (2008) Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: therapeutic perspectives. Kidney Int 74:873–878

    Article  CAS  PubMed  Google Scholar 

  • Ronco P, Lelongt B, Piedagnel R, Chatziantoniou C (2007) Matrix metalloproteinases in kidney disease progression and repair: a case of flipping the coin. Semin Nephrol 27:352–362

    Article  CAS  PubMed  Google Scholar 

  • Roufosse C, Bou-Gharios G, Prodromidi E, Alexakis C, Jeffery R, Khan S et al (2006) Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J Am Soc Nephrol 17:775–782

    Article  CAS  PubMed  Google Scholar 

  • Schmidt IM, Hall IE, Kale S, Lee S, He CH, Lee Y et al (2013) Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function. J Am Soc Nephrol 24:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnoor M, Cullen P, Lorkowski J, Stolle K, Robenek H, Troyer D et al (2008) Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J Immunol 180:5707–5719

    Article  CAS  PubMed  Google Scholar 

  • Sunderkötter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA et al (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417

    Article  PubMed  Google Scholar 

  • Sung SA, Jo SK, Cho WY, Won NH, Kim HK (2007) Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron Experiment Nephrol 105:e1–e9

    Article  CAS  Google Scholar 

  • Susnik N, Sörensen-Zender I, Rong S, von Vietinghoff S, Lu X, Rubera I et al (2014) Ablation of proximal tubular suppressor of cytokine signaling 3 enhances tubular cell cycling and modifies macrophage phenotype during acute kidney injury. Kidney Int 85:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Sutton TA, Hato T, Mai E, Yoshimoto M, Kuehl S, Anderson M et al (2013) p53 is renoprotective after ischemic kidney injury by reducing inflammation. J Am Soc Nephrol 24:113–124

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S, Griffin MD (2008) First responders: understanding monocyte-lineage traffic in the acutely injured kidney. Kidney Int 74:1509–1511

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Okada A, Kitamura H, Yasui T, Naiki T, Hamamoto S et al (2014) Colony-stimulating factor-1 signaling suppresses renal crystal formation. J Am Soc Nephrol 25:1680–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S et al (1996) Essential role of Stat6 in IL-4 signalling. Nature 380:627–630

    Article  CAS  PubMed  Google Scholar 

  • Tang WW, Qi M, Warren JS (1996) Monocyte chemoattractant protein 1 mediates glomerular macrophage infiltration in anti-GBM Ab GN. Kidney Int 50:665–671

    Article  CAS  PubMed  Google Scholar 

  • Tang PM, Zhou S, Li CJ, Liao J, Xiao J, Wang QM et al (2018) The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int 93:173–187

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S et al (2011) Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53:2003–2015

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Zhang L, Tang J, Guo X, Dong K, Chen SY (2015) HMGB1 exacerbates renal tubulointerstitial fibrosis through facilitating M1 macrophage phenotype at the early stage of obstructive injury. Am J Physiol Renal Physiol 308:F69–F75

    Article  CAS  PubMed  Google Scholar 

  • Tomita N, Morishita R, Lan HY, Yamamoto K, Hashizume M, Notake M et al (2000) In vivo administration of a nuclear transcription factor-kappaB decoy suppresses experimental crescentic glomerulonephritis. J Am Soc Nephrol 11:1244–1252

    CAS  PubMed  Google Scholar 

  • Vernon MA, Mylonas KJ, Hughes J (2010) Macrophages and renal fibrosis. Semin Nephrol 30:302–317

    Article  CAS  PubMed  Google Scholar 

  • Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J, Sola A (2008) Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J Pathol 214:104–113

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Yokoyama H, Furuichi K, Kobayashi KI, Harada K, Naruto M et al (1996) Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB journal 10:1418–1425

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Furuichi K, Sakai N, Iwata Y, Kitagawa K, Ishida Y et al (2004) Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol 15:940–948

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Harris DC (2011) Macrophages in renal disease. J Am Soc Nephrol 22:21–27

    Article  PubMed  Google Scholar 

  • Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L, Chang DH et al (2007) Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 72:290–299

    Article  CAS  PubMed  Google Scholar 

  • Wang JC, Lai S, Guo X, Zhang X, de Crombrugghe B, Sonnylal S et al (2010) Attenuation of fibrosis in vitro and in vivo with SPARC siRNA. Arthritis Res Therapy 12:R60

    Article  CAS  Google Scholar 

  • Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y et al (2016) TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 7:8809–8822

    PubMed  Google Scholar 

  • Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF et al (2017) Macrophage- to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol 28:2053–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir MR (2015) CCR126 inhibition: a panacea for diabetic kidney disease? Lancet Diabetes Endocrinol 3:666–667

    Article  PubMed  Google Scholar 

  • Wenzel U, Schneider A, Valente AJ, Abboud HE, Thaiss F, Helmchen UM et al (1997) Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney Int 51:770–776

    Article  CAS  PubMed  Google Scholar 

  • Wermuth PJ, Jimenez SA (2015) The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med 4:1–19

    Article  Google Scholar 

  • Wilson HM, Walbaum D, Rees AJ (2004) Macrophages and the kidney. Curr Opin Nephrol Hypertens 13:285–290

    Article  CAS  PubMed  Google Scholar 

  • Wilson HM, Chettibi S, Jobin C, Walbaum D, Rees AJ, Kluth DC (2005) Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo. Am J Pathol 167:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise AF, Williams TM, Kiewiet MB, Payne NL, Siatskas C, Samuel CS et al (2014) Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. Am J Physiol Renal Physiol 306:F1222–F1235

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang Y, Tay YC, Zheng G, Zhang C, Alexander SI et al (2005) DNA vaccination with naked DNA encoding MCP-1 and RANTES protects against renal injury in adriamycin nephropathy. Kidney Int 67:2178–2186

    Article  CAS  PubMed  Google Scholar 

  • Wynes MW, Frankel SK, Riches DW (2004) IL-4-induced macrophage-derived IGF-I protects myofibroblasts from apoptosis following growth factor withdrawal. J Leukoc Biol 76:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Entman ML, Wang Y (2013) Critical role of CXCL16 in hypertensive kidney injury and fibrosis. Hypertension 62:1129–1137

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Jin X, Yan J, Entman ML, Wang Y (2014a) CXCR136 plays a critical role in angiotensin II-induced renal injury and fibrosis. Arterioscler Thromb Vasc Biol 34:1422–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Yan J, Jin X, Entman ML, Wang Y (2014b) The chemokine receptor CXCR137 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis. Kidney Int 86:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253

    Article  PubMed  Google Scholar 

  • Zhang G, Kim H, Cai X, Lopez-Guisa JM, Carmeliet P, Eddy AA (2003) Urokinase receptor modulates cellular and angiogenic responses in obstructive nephropathy. J Am Soc Nephrol 14:1234–1253

    Article  CAS  PubMed  Google Scholar 

  • Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X et al (2012) CSF-1 signaling mediates recovery from acute kidney injury. J Clin Investig 122:4519–4532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XL, Guo YF, Song ZX, Zhou M (2014) Vitamin D prevents podocyte injury via regulation of macrophage M1/M2 phenotype in diabetic nephropathy rats. Endocrinology 155:4939–4950

    Article  PubMed  CAS  Google Scholar 

  • Zhang MZ, Wang X, Wang Y, Niu A, Wang S, Zou C et al (2017) IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int 91:375–386

    Article  CAS  PubMed  Google Scholar 

  • Zheng G, Wang Y, Xiang SH, Tay YC, Wu H, Watson D et al (2006) DNA vaccination with CCL2 DNA modified by the addition of an adjuvant epitope protects against “nonimmune” toxic renal injury. J Am Soc Nephrol 17:465–474

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C et al (2014) Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26:192–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from National Natural Science Foundation of China (National Science Foundation of China 81300580 and 81570623), Science and Technological Fund of Anhui Province for Outstanding Youth of China (Grant number: 1608085J07), Lui Chi Woo Institute of Innovative Medicine, and the Research Grants Council of Hong Kong (GRF 14121816, 14163317, C7018-16G, TRS T12-402/13N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Yao Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meng, XM., Mak, T.SK., Lan, HY. (2019). Macrophages in Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_13

Download citation

Publish with us

Policies and ethics