Advertisement

How Tubular Epithelial Cell Injury Contributes to Renal Fibrosis

  • Bi-Cheng LiuEmail author
  • Tao-Tao Tang
  • Lin-Li Lv
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

The renal tubules are the major component of the kidney and are vulnerable to a variety of injuries including ischemia, proteinuria, toxins, and metabolic disorders. It has long been believed that tubules are the victim of injury. In this review, we shift this concept to renal tubules as a driving force in the progression of kidney disease. In response to injury, tubular epithelial cells (TECs) can synthesize and secrete varieties of bioactive molecules that drive interstitial inflammation and fibrosis. Innate immune-sensing receptors on the TECs also aggravate immune responses. Necroinflammation, an auto-amplification loop between tubular cell death and interstitial inflammation, leads to the exacerbation of renal injury. Furthermore, TECs also play an active role in progressive renal injury via mechanisms associated with the conversion into collagen-producing fibroblast phenotype, cell cycle arrest at both G1/S and G2/M checkpoints, and metabolic disorder. Thus, a better understanding the mechanisms by which tubular injury drives AKI and CKD is necessary for the development of therapeutics to halt the progression of CKD.

Keywords

Tubular epithelial cells Renal fibrosis Renal inflammation Chronic kidney disease Acute kidney injury 

Notes

Acknowledgements

This chapter was modified from a paper reported by our group in Kidney Int (Liu et al. 2018). The related contents are reused with permission.

This study was supported by grants from the National Key Research and Development Program of China (2018YFC1314004), the National Natural Scientific Foundation (No. 81720108007, 81130010, 81470997, and 81670696), and the Clinic Research Center of Jiangsu Province (No. BL2014080).

References

  1. Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hägele H, Lichtnekert J et al (2012) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 23:1375–1388PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anders HJ (2010) Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol 21:1270–1274PubMedCrossRefGoogle Scholar
  3. Anders HJ (2016) Of Inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. J Am Soc Nephrol 27:2564–2575PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anders HJ, Muruve DA (2011) The inflammasomes in kidney disease. J Am Soc Nephrol 22:1007–1018PubMedCrossRefGoogle Scholar
  5. Anders HJ, Schaefer L (2014) Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 25:1387–1400PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anders HJ, Banas B, Schlöndorff D (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15:854–867PubMedCrossRefGoogle Scholar
  7. Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477PubMedCrossRefGoogle Scholar
  8. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia-reperfusion injury. Shock 32:4–16PubMedCrossRefGoogle Scholar
  9. Baek JH, Zeng R, Weinmann-Menke J, Valerius MT, Wada Y, Ajay AK et al (2015) IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J Clin Invest 125:3198–3214PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bohle A, Christ H, Grund KE, Mackensen S (1979) The role of the interstitium of the renal cortex in renal disease. Contrib Nephrol 16:109–114PubMedCrossRefGoogle Scholar
  12. Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA et al (2013) TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cain JE, Rosenblum ND (2011) Control of mammalian kidney development by the Hedgehog signaling pathway. Pediatr Nephrol 26:1365–1371PubMedCrossRefGoogle Scholar
  14. Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR et al (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168:e61–e69PubMedCrossRefGoogle Scholar
  15. Canaud G, Bonventre JV (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30:575–583PubMedCrossRefGoogle Scholar
  16. Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S et al (2019) Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci Transl Med 11PubMedCrossRefGoogle Scholar
  17. Casarini DE, Boim MA, Stella RC, Krieger-Azzolini MH, Krieger JE, Schor N (1997) Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron. Am J Physiol 272:F405–F409PubMedCrossRefGoogle Scholar
  18. Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR, Flavell RA et al (2013) Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc Natl Acad Sci U S A 110:1851–1856PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chang A, Ko K, Clark MR (2014) The emerging role of the inflammasome in kidney diseases. Curr Opin Nephrol Hypertens 23:204–210PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:121ra18PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen L, Liu BC, Zhang XL, Zhang JD, Liu H, Li MX (2006) Influence of connective tissue growth factor antisense oligonucleotide on angiotensin II-induced epithelial mesenchymal transition in HK2 cells. Acta Pharmacol Sin 27:1029–1036PubMedCrossRefGoogle Scholar
  22. Chung AC, Lan HY (2011) Chemokines in renal injury. J Am Soc Nephrol 22:802–809PubMedCrossRefGoogle Scholar
  23. Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C et al (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953PubMedPubMedCentralCrossRefGoogle Scholar
  24. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205PubMedCrossRefGoogle Scholar
  25. Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448CrossRefGoogle Scholar
  26. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dear JW, Yasuda H, Hu X, Hieny S, Yuen PS, Hewitt SM et al (2006) Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney Int 69:832–836PubMedPubMedCentralCrossRefGoogle Scholar
  28. Devaraj S, Tobias P, Kasinath BS, Ramsamooj R, Afify A, Jialal I (2011) Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler Thromb Vasc Biol 31:1796–1804PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ding H, Zhou D, Hao S, Zhou L, He W, Nie J et al (2012) Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 23:801–813PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ding LH, Liu D, Xu M, Wu M, Liu H, Tang RN et al (2015) TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria. Int J Biochem Cell Biol 69:114–120PubMedCrossRefGoogle Scholar
  31. DiRocco DP, Bisi J, Roberts P, Strum J, Wong KK, Sharpless N et al (2014) CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am J Physiol Renal Physiol 306:F379–F388PubMedCrossRefGoogle Scholar
  32. Disteldorf EM, Krebs CF, Paust HJ, Turner JE, Nouailles G, Tittel A et al (2015) CXCL5 drives neutrophil recruitment in TH17-mediated GN. J Am Soc Nephrol 26:55–66PubMedCrossRefGoogle Scholar
  33. Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12:426–439PubMedPubMedCentralCrossRefGoogle Scholar
  34. El-Achkar TM, Dagher PC (2006) Renal Toll-like receptors: recent advances and implications for disease. Nat Clin Pract Nephrol 2:568–581PubMedCrossRefGoogle Scholar
  35. El-Achkar TM, Huang X, Plotkin Z, Sandoval RM, Rhodes GJ, Dagher PC (2006) Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 290:F1034–F1043PubMedCrossRefGoogle Scholar
  36. Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipilä P, West KA et al (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453PubMedPubMedCentralGoogle Scholar
  37. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC et al (1999) Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56:1455–1467PubMedCrossRefGoogle Scholar
  38. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276PubMedPubMedCentralGoogle Scholar
  39. Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H et al (2003) CCR39 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14:2503–2515PubMedCrossRefGoogle Scholar
  40. Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM et al (2012) Lysophosphatidic acid increases proximal tubule cell secretion of profibrotic cytokines PDGF-B and CTGF through LPA2- and Gαq-mediated Rho and αvβ6 integrin-dependent activation of TGF-β. Am J Pathol 181:1236–1249PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gewin L, Zent R, Pozzi A (2017) Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 91:552–560CrossRefGoogle Scholar
  42. Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J (2010) The role of Toll-like receptors in renal diseases. Nat Rev Nephrol 6:224–235PubMedCrossRefGoogle Scholar
  43. Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S et al (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125:141–156PubMedCrossRefGoogle Scholar
  44. Grande MT, Sánchez-Laorden B, López-Blau C, De Frutos CA, Boutet A, Arévalo M et al (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997PubMedCrossRefGoogle Scholar
  45. Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T et al (2012) Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82:172–183PubMedPubMedCentralCrossRefGoogle Scholar
  46. He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20:765–776PubMedPubMedCentralCrossRefGoogle Scholar
  47. Henrich WL, McAllister EA, Eskue A, Miller T, Moe OW (1996) Renin regulation in cultured proximal tubular cells. Hypertension 27:1337–1340PubMedCrossRefGoogle Scholar
  48. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U (2014) Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 55:561–572PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR et al (2006) Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med 354:131–140PubMedCrossRefGoogle Scholar
  50. Hsu CY (2012) Yes, AKI truly leads to CKD. J Am Soc Nephrol 23:967–969CrossRefGoogle Scholar
  51. Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG (2015) GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 26:1334–1345CrossRefGoogle Scholar
  52. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97PubMedPubMedCentralCrossRefGoogle Scholar
  53. Humphreys BD, Xu F, Sabbisetti V, Grgic I, Movahedi Naini S, Wang N et al (2013) Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 123:4023–4035PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ignotz RA, Endo T, Massagué J (1987) Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J Biol Chem 262:6443–6446PubMedGoogle Scholar
  55. Jenkins RH, Davies LC, Taylor PR, Akiyama H, Cumbes B, Beltrami C et al (2014) miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am J Pathol 184:996–1009PubMedCrossRefGoogle Scholar
  56. Jevnikar AM, Brennan DC, Singer GG, Heng JE, Maslinski W, Wuthrich RP et al (1991) Stimulated kidney tubular epithelial cells express membrane associated and secreted TNF alpha. Kidney Int 40:203–211PubMedCrossRefGoogle Scholar
  57. Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hase H, Kaneko T et al (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62:1628–1637PubMedCrossRefGoogle Scholar
  58. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F et al (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kang HM, Huang S, Reidy K, Han SH, Chinga F, Susztak K (2016) Sox9-Positive progenitor cells play a key role in renal tubule epithelial regeneration in mice. Cell Rep 14:861–871PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kawakami T, Ren S, Duffield JS (2013) Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol 229:221–231PubMedCrossRefGoogle Scholar
  61. Kimmelstiel P, Wilson C (1936) Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 12:83–98PubMedPubMedCentralGoogle Scholar
  62. Kobori H, Urushihara M (2013) Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflugers Arch 465:3–12PubMedGoogle Scholar
  63. Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287PubMedPubMedCentralCrossRefGoogle Scholar
  64. Krause M, Samoylenko A, Vainio SJ (2015) Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front Cell Dev Biol 3:65PubMedPubMedCentralCrossRefGoogle Scholar
  65. Krautwald S, Linkermann A (2014) The fire within: pyroptosis in the kidney. Am J Physiol Renal Physiol 306:F168–F169PubMedCrossRefGoogle Scholar
  66. Lai W, Tang Y, Huang XR, Ming-Kuen Tang P, Xu A, Szalai AJ et al (2016) C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E. Kidney Int 90:610–626PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG et al (2012) PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol 302:F1210–F1223PubMedPubMedCentralCrossRefGoogle Scholar
  68. Leelahavanichkul A, Huang Y, Hu X, Zhou H, Tsuji T, Chen R et al (2011) Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int 80:1198–1211PubMedPubMedCentralCrossRefGoogle Scholar
  69. Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ et al (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–2903PubMedPubMedCentralCrossRefGoogle Scholar
  70. Leemans JC, Butter LM, Pulskens WP, Teske GJ, Claessen N, van der Poll T et al (2009) The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury. PLoS ONE 4:e5704PubMedPubMedCentralCrossRefGoogle Scholar
  71. Leemans JC, Kors L, Anders HJ, Florquin S (2014) Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol 10:398–414PubMedCrossRefGoogle Scholar
  72. Leung JC, Chan LY, Tang SC, Lam MF, Chow CW, Lim AI et al (2011) Oxidative damages in tubular epithelial cells in IgA nephropathy: role of crosstalk between angiotensin II and aldosterone. J Transl Med 9:169PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li H, Nord EP (2002) CD40 ligation stimulates MCP-1 and IL-8 production, TRAF6 recruitment, and MAPK activation in proximal tubule cells. Am J Physiol Renal Physiol 282:F1020–F1033PubMedCrossRefGoogle Scholar
  74. Li H, Nord EP (2009) IL-8 amplifies CD40/CD154-mediated ICAM-1 production via the CXCR-1 receptor and p38-MAPK pathway in human renal proximal tubule cells. Am J Physiol Renal Physiol 296:F438–F445PubMedCrossRefGoogle Scholar
  75. Li ZI, Chung AC, Zhou L, Huang XR, Liu F, Fu P et al (2011) C-reactive protein promotes acute renal inflammation and fibrosis in unilateral ureteral obstructive nephropathy in mice. Lab Invest 91:837–851PubMedCrossRefGoogle Scholar
  76. Li ZL, Lv LL, Tang TT, Wang B, Feng Y, Zhou LT et al (2019) HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int 95:388–404PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lin M, Yiu WH, Wu HJ, Chan LY, Leung JC, Au WS et al (2012) Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 23:86–102PubMedCrossRefGoogle Scholar
  78. Lin M, Yiu WH, Li RX, Wu HJ, Wong DW, Chan LY et al (2013) The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney Int 83:887–900PubMedCrossRefGoogle Scholar
  79. Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14:759–767PubMedCrossRefGoogle Scholar
  80. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12PubMedCrossRefGoogle Scholar
  81. Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222CrossRefGoogle Scholar
  82. Liu BC, Chen L, Sun J, Huang HQ, Ma KL, Liu H et al (2006) Connective tissue growth factor-mediated angiotensin II-induced hypertrophy of proximal tubular cells. Nephron Exp Nephrol 103:e16–e26PubMedCrossRefGoogle Scholar
  83. Liu XC, Liu BC, Zhang XL, Li MX, Zhang JD (2007) Role of ERK1/2 and PI3-K in the regulation of CTGF-induced ILK expression in HK-2 cells. Clin Chim Acta 382:89–94PubMedCrossRefGoogle Scholar
  84. Liu BC, Gao J, Li Q, Xu LM (2009) Albumin caused the increasing production of angiotensin II due to the dysregulation of ACE/ACE2 expression in HK2 cells. Clin Chim Acta 403:23–30PubMedCrossRefGoogle Scholar
  85. Liu F, Chen HY, Huang XR, Chung AC, Zhou L, Fu P et al (2011) C-reactive protein promotes diabetic kidney disease in a mouse model of type 1 diabetes. Diabetologia 54:2713–2723PubMedCrossRefGoogle Scholar
  86. Liu J, Yang JR, He YN, Cai GY, Zhang JG, Lin LR et al (2012) Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl Res 159:454–463PubMedCrossRefGoogle Scholar
  87. Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL et al (2014) Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 57:7–19PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liu D, Wen Y, Tang TT, Lv LL, Tang RN, Liu H et al (2015) Megalin/cubulin-lysosome-mediated albumin reabsorption is involved in the tubular cell activation of NLRP3 inflammasome and tubulointerstitial inflammation. J Biol Chem 290:18018–18028PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu BC, Tang TT, Lv LL, Lan HY (2018) Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 93:568–579PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF, Li ZL et al (2018) Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol 29:919–935PubMedPubMedCentralCrossRefGoogle Scholar
  92. Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V, Welborn J et al (2016) Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J Am Soc Nephrol 27:781–790PubMedCrossRefGoogle Scholar
  93. Macconi D, Remuzzi G, Benigni A (2014) Key fibrogenic mediators: old players. Renin-angiotensin system. Kidney Int Suppl 4:58–64CrossRefGoogle Scholar
  94. Mackensen-Haen S, Bader R, Grund KE, Bohle A (1981) Correlations between renal cortical interstitial fibrosis, atrophy of the proximal tubules and impairment of the glomerular filtration rate. Clin Nephrol 15:167–171PubMedGoogle Scholar
  95. Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP (2010) Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137:1721–1729PubMedPubMedCentralCrossRefGoogle Scholar
  96. Massy ZA, Stenvinkel P, Drueke TB (2009) The role of oxidative stress in chronic kidney disease. Semin Dial 22:405–408PubMedCrossRefGoogle Scholar
  97. Megyesi J, Tarcsafalvi A, Li S, Hodeify R, Seng NS, Portilla D et al (2015) Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis. Am J Physiol Renal Physiol 308:F122–F130PubMedCrossRefGoogle Scholar
  98. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338PubMedPubMedCentralCrossRefGoogle Scholar
  99. Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD et al (2009) CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest 119:2330–2342PubMedPubMedCentralCrossRefGoogle Scholar
  100. Morrison EE, Bailey MA, Dear JW (2016) Renal extracellular vesicles: from physiology to clinical application. J Physiol 594:5735–5748PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mudaliar H, Pollock C, Komala MG, Chadban S, Wu H, Panchapakesan U (2013) The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol 305:F143–F154PubMedCrossRefGoogle Scholar
  102. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S et al (2016a) Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun 7:10274PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mulay SR, Linkermann A, Anders HJ (2016b) Necroinflammation in kidney disease. J Am Soc Nephrol 27:27–39PubMedCrossRefGoogle Scholar
  104. Nie J, Hou FF (2012) Role of reactive oxygen species in the renal fibrosis. Chin Med J (Engl) 125:2598–2602Google Scholar
  105. Okusa MD, Chertow GM, Portilla D, Acute Kidney Injury Advisory Group of the American Society of Nephrology (2009) The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. Clin J Am Soc Nephrol 4:520–522Google Scholar
  106. Oliver J, MacDowell M, Lee YC (1954) Cellular mechanisms of protein metabolism in the nephron. I. The structural aspects of proteinuria; tubular absorption, droplet formation, and the disposal of proteins. J Exp Med 99:589–604PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ovadya Y, Krizhanovsky V (2015) A new twist in kidney fibrosis. Nat Med 21:975–977PubMedCrossRefGoogle Scholar
  108. Pegues MA, McCrory MA, Zarjou A, Szalai AJ (2013) C-reactive protein exacerbates renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 304:F1358–F1365PubMedPubMedCentralCrossRefGoogle Scholar
  109. Prunotto M, Budd DC, Gabbiani G, Meier M, Formentini I, Hartmann G et al (2012) Epithelial-mesenchymal crosstalk alteration in kidney fibrosis. J Pathol 228:131–147PubMedCrossRefGoogle Scholar
  110. Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N, Luirink IK et al (2010) TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 21:1299–1308PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB (2012) HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol 303:F873–F885PubMedPubMedCentralCrossRefGoogle Scholar
  112. Reich H, Tritchler D, Herzenberg AM, Kassiri Z, Zhou X, Gao W et al (2005) Albumin activates ERK via EGF receptor in human renal epithelial cells. J Am Soc Nephrol 16:1266–1278PubMedCrossRefGoogle Scholar
  113. Risdon RA, Sloper JC, De Wardener HE (1968) Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 2:363–366PubMedCrossRefGoogle Scholar
  114. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171PubMedCrossRefGoogle Scholar
  115. Schelling JR (2016) Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr Nephrol 31:693–706PubMedCrossRefGoogle Scholar
  116. Sedeek M, Nasrallah R, Touyz RM, Hébert RL (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24:1512–1518PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shigeoka AA, Kambo A, Mathison JC, King AJ, Hall WF, da Silva Correia J et al (2010) Nod1 and nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury. J Immunol 184:2297–2304PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sibony M, Gasc JM, Soubrier F, Alhenc-Gelas F, Corvol P (1993) Gene expression and tissue localization of the two isoforms of angiotensin I converting enzyme. Hypertension 21:827–835PubMedCrossRefGoogle Scholar
  119. Skuginna V, Lech M, Allam R, Ryu M, Clauss S, Susanti HE et al (2011) Toll-like receptor signaling and SIGIRR in renal fibrosis upon unilateral ureteral obstruction. PLoS ONE 6:e19204PubMedPubMedCentralCrossRefGoogle Scholar
  120. Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC (2012) Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton) 17:311–321CrossRefGoogle Scholar
  121. Strutz FM (2009) EMT and proteinuria as progression factors. Kidney Int 75:475–481PubMedCrossRefGoogle Scholar
  122. Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99PubMedCrossRefGoogle Scholar
  123. Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M et al (2016) Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol 27:2393–2406PubMedCrossRefGoogle Scholar
  124. Tan RJ, Zhou D, Zhou L, Liu Y (2014) Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 4:84–90CrossRefGoogle Scholar
  125. Tan RJ, Zhou D, Liu Y (2016) Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis (Basel) 2:136–144CrossRefGoogle Scholar
  126. Tang SC, Lai KN (2012) The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant 27:3049–3056PubMedCrossRefGoogle Scholar
  127. Tang J, Liu N, Tolbert E, Ponnusamy M, Ma L, Gong R et al (2013) Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Am J Pathol 183:160–172PubMedPubMedCentralCrossRefGoogle Scholar
  128. Tang Y, Huang XR, Lv J, Chung AC, Zhang Y, Chen JZ et al (2014) C-reactive protein promotes acute kidney injury by impairing G1/S-dependent tubular epithelium cell regeneration. Clin Sci (Lond) 126:645–659CrossRefGoogle Scholar
  129. Terada Y, Tanaka H, Okado T, Shimamura H, Inoshita S, Kuwahara M et al (2003) Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J Am Soc Nephrol 14:1223–1233PubMedCrossRefGoogle Scholar
  130. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. New Engl J Med 334:1448–1460PubMedCrossRefGoogle Scholar
  131. Thomas ME, Harris KP, Walls J, Furness PN, Brunskill NJ (2002) Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am J Physiol Renal Physiol 283:F640–F647PubMedCrossRefGoogle Scholar
  132. Trionfini P, Benigni A, Remuzzi G (2015) MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 11:23–33PubMedCrossRefGoogle Scholar
  133. Urushihara M, Kagami S (2017) Role of the intrarenal renin-angiotensin system in the progression of renal disease. Pediatr Nephrol 32:1471–1479PubMedCrossRefGoogle Scholar
  134. van Timmeren MM, Bakker SJ, Stegeman CA, Gans RO, van Goor H (2005) Addition of oleic acid to delipidated bovine serum albumin aggravates renal damage in experimental protein-overload nephrosis. Nephrol Dial Transplant 20:2349–2357PubMedCrossRefGoogle Scholar
  135. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147PubMedCrossRefGoogle Scholar
  136. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776PubMedPubMedCentralCrossRefGoogle Scholar
  137. Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F et al (2008) Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol 295:F1563–F1573PubMedCrossRefGoogle Scholar
  138. Vío CP, Jeanneret VA (2003) Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. Kidney Int Suppl 86:S57–S63CrossRefGoogle Scholar
  139. Waikar SS, Winkelmayer WC (2009) Chronic on acute renal failure: long-term implications of severe acute kidney injury. JAMA 302:1227–1229PubMedCrossRefGoogle Scholar
  140. Wallach D, Kang TB, Kovalenko A (2014) Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol 14:51–59PubMedCrossRefGoogle Scholar
  141. Wang Y, Chen J, Chen L, Tay YC, Rangan GK, Harris DC (1997) Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 8:1537–1545PubMedGoogle Scholar
  142. Wang Y, Rangan GK, Goodwin B, Tay YC, Harris DC (2000) Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-kappaB dependent. Kidney Int 57:2011–2022PubMedCrossRefGoogle Scholar
  143. Wang J, Wen Y, Lv LL, Liu H, Tang RN, Ma KL et al (2015a) Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol Sin 36:821–830PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wang Y, Chang J, Yao B, Niu A, Kelly E, Breeggemann MC et al (2015b) Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int 88:1274–1282PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K et al (2016) NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget 7:54290–54302PubMedPubMedCentralGoogle Scholar
  146. Wolf G, Mueller E, Stahl RA, Ziyadeh FN (1993) Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta. J Clin Invest 92:1366–1372PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wolf G, Ziyadeh FN, Stahl RA (1999) Angiotensin II stimulates expression of transforming growth factor beta receptor type II in cultured mouse proximal tubular cells. J Mol Med (Berl) 77:556–564CrossRefGoogle Scholar
  148. Wolf G, Wenzel U, Hannken T, Stahl RA (2001) Angiotensin II induces p27(Kip1) expression in renal tubules in vivo: role of reactive oxygen species. J Mol Med (Berl) 79:382–389CrossRefGoogle Scholar
  149. Wolfs TG, Buurman WA, van Schadewijk A, de Vries B, Daemen MA, Hiemstra PS et al (2002) In vivo expression of Toll- like receptor 2 and 4 by renal epithelial cells: IFN-γ and TNF-α mediated up-regulation during inflammation. J Immunol 168:1286–1293PubMedCrossRefGoogle Scholar
  150. Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR et al (2010) HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol 21:1878–1890PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH et al (2013) Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 182:118–131PubMedPubMedCentralCrossRefGoogle Scholar
  152. Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF et al (2016) Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol 27:1727–1740PubMedCrossRefGoogle Scholar
  153. Yang H, Fogo AB (2010) Cell senescence in the aging kidney. J Am Soc Nephrol 21:1436–1439PubMedCrossRefGoogle Scholar
  154. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yang JR, Yao FH, Zhang JG, Ji ZY, Li KL, Zhan J et al (2014) Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal Physiol 306:F75–F84PubMedCrossRefGoogle Scholar
  156. Yard BA, Daha MR, Kooymans-Couthino M, Bruijn JA, Paape ME, Schrama E et al (1992) IL-1 alpha stimulated TNF alpha production by cultured human proximal tubular epithelial cells. Kidney Int 42:383–389CrossRefGoogle Scholar
  157. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968PubMedCrossRefGoogle Scholar
  158. Zhang JD, Liu BC (2011) Angiotensin II, a missing node in new pathogenic glomerulotubular feedback loop. Med Hypotheses 77:595–597PubMedCrossRefGoogle Scholar
  159. Zhang W, Zhou X, Zhang H, Yao Q, Liu Y, Dong Z (2016) Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Renal Physiol 311:F844–F851PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhou D, Liu Y (2016) Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol 12:68–70PubMedCrossRefPubMedCentralGoogle Scholar
  161. Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol 21:31–41PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y (2012) Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int 82:537–547PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhou D, Li Y, Zhou L, Tan RJ, Xiao L, Liang M et al (2014) Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 25:2187–2200PubMedPubMedCentralCrossRefGoogle Scholar
  164. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J et al (2015) Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol 26:107–120CrossRefGoogle Scholar
  165. Zhou D, Tan RJ, Fu H, Liu Y (2016) Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 96:156–167CrossRefGoogle Scholar
  166. Zuk A, Gershenovich M, Ivanova Y, MacFarland RT, Fricker SP, Ledbetter S (2014) CXCR4 antagonism as a therapeutic approach to prevent acute kidney injury. Am J Physiol Renal Physiol 307:F783–F797PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina

Personalised recommendations