Advertisement

Role of Podocyte Injury in Glomerulosclerosis

  • Chen-Chen Lu
  • Gui-Hua Wang
  • Jian Lu
  • Pei-Pei Chen
  • Yang Zhang
  • Ze-Bo Hu
  • Kun-Ling MaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1165)

Abstract

Finding new therapeutic targets of glomerulosclerosis treatment is an ongoing quest. Due to a living environment of various stresses and pathological stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus, sufficient understanding of factors and underlying mechanisms of podocyte injury facilitates the advancement of treating and prevention of glomerulosclerosis. The clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney functions progressing to glomerulosclerosis. Injury-induced changes in podocyte physiology and function are actually not a simple passive process, but a complex interaction of proteins that comprise the anatomical structure of podocytes at molecular levels. This chapter lists several aspects of podocyte injuries along with potential mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS activation, micro-inflammation, immune disorder, and other factors. These aspects are not technically separated items, but intertwined with each other in the pathogenesis of podocyte injuries.

Keywords

Podocyte injury Glomerular sclerosis 

Notes

Acknowledgements

This study was supported by grants from the National Key Research and Development Program of China (2018YFC1314004).

References

  1. Advani A (2014) Vascular endothelial growth factor and the kidney: something of the marvellous. Curr Opin Nephrol Hypertens 23:87–92PubMedCrossRefGoogle Scholar
  2. Alexander JJ, Wang Y, Chang A, Jacob A, Minto AW, Karmegam M et al (2007) Mouse podocyte complement factor H: the functional analog to human complement receptor 1. J Am Soc Nephrol 18:1157–1166PubMedCrossRefGoogle Scholar
  3. Ando K, Ohtsu H, Uchida S, Kaname S, Arakawa Y, Fujita T et al (2014) Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2:944–953PubMedCrossRefGoogle Scholar
  4. Anil Kumar P, Welsh GI, Saleem MA, Menon RK (2014) Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne) 5:151CrossRefGoogle Scholar
  5. Awad AS, You H, Gao T, Cooper TK, Nedospasov SA, Vacher J et al (2015) Macrophage-derived tumor necrosis factor-alpha mediates diabetic renal injury. Kidney Int 88:722–733PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bai C, Liang S, Wang Y, Jiao B (2017) Knocking down TCF8 inhibits high glucose- and angiotensin II-induced epithelial to mesenchymal transition in podocytes. Biosci Trends 11:77–84PubMedCrossRefGoogle Scholar
  7. Banas MC, Banas B, Hudkins KL, Wietecha TA, Iyoda M, Bock E et al (2008) TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 19:704–713PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bao L, Haas M, Pippin J, Wang Y, Miwa T, Chang A et al (2009) Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells. J Clin Invest 119:1264–1274PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baye E, Gallazzini M, Delville M, Legendre C, Terzi F, Canaud G (2016) The costimulatory receptor B7-1 is not induced in injured podocytes. Kidney Int 90:1037–1044PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bhimma R, Coovadia HM (2004) Hepatitis B virus-associated nephropathy. Am J Nephrol 24:198–211PubMedCrossRefGoogle Scholar
  11. Bianchi S, Baronti A, Cominotto R, Bigazzi R (2016) Lipid metabolism abnormalities in Chronic Kidney Disease. G Ital Nefrol 33: S68 Google Scholar
  12. Brahler S, Ising C, Hagmann H, Rasmus M, Hoehne M, Kurschat C et al (2012) Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Renal Physiol 303:F1473–F1485PubMedCrossRefGoogle Scholar
  13. Bruggeman LA (2017) HIV-1 infection of renal cells in HIV-associated nephropathy. J Am Soc Nephrol 28:719–721PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bussolati B, Deregibus MC, Fonsato V, Doublier S, Spatola T, Procida S et al (2005) Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. J Am Soc Nephrol 16:1936–1947PubMedCrossRefGoogle Scholar
  15. Cellesi F, Li M, Rastaldi MP (2015) Podocyte injury and repair mechanisms. Curr Opin Nephrol Hypertens 24:239–244PubMedCrossRefGoogle Scholar
  16. Cha JJ, Hyun YY, Lee MH, Kim JE, Nam DH, Song HK et al (2013) Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology 154:2144–2155PubMedCrossRefGoogle Scholar
  17. Chandra P, Kopp JB (2013) Viruses and collapsing glomerulopathy: a brief critical review. Clin Kidney J 6:1–5PubMedCrossRefGoogle Scholar
  18. Chang JM, Hwang DY, Chen SC, Kuo MC, Hung CC, Hwang SJ et al (2013) B7-1 expression regulates the hypoxia-driven cytoskeleton rearrangement in glomerular podocytes. Am J Physiol Renal Physiol 304:F127–F136PubMedCrossRefGoogle Scholar
  19. Chen HC, Chen CA, Guh JY, Chang JM, Shin SJ, Lai YH (2000) Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci 67:2345–2353PubMedCrossRefGoogle Scholar
  20. Chen S, He FF, Wang H, Fang Z, Shao N, Tian XJ et al (2011) Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell Calcium 50:523–529PubMedCrossRefGoogle Scholar
  21. Chen S, Meng XF, Zhang C (2013) Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. Biomed Res Int 2013:839761PubMedPubMedCentralGoogle Scholar
  22. Cheng L, Gou SJ, Qiu HY, Ma L, Fu P (2018) Complement regulatory proteins in kidneys of patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin Exp Immunol 191:116–124PubMedCrossRefGoogle Scholar
  23. Choi SY, Lim SW, Salimi S, Yoo EJ, Lee-Kwon W, Lee HH et al (2018) Tonicity-responsive enhancer-binding protein mediates hyperglycemia-induced inflammation and vascular and renal injury. J Am Soc Nephrol 29:492–504PubMedCrossRefGoogle Scholar
  24. Cohen MP, Chen S, Ziyadeh FN, Shea E, Hud EA, Lautenslager GT et al (2005) Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy. Kidney Int 68:1554–1561PubMedCrossRefGoogle Scholar
  25. Conaldi PG, Bottelli A, Baj A, Serra C, Fiore L, Federico G et al (2002) Human immunodeficiency virus-1 tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am J Pathol 161:53–61PubMedPubMedCentralCrossRefGoogle Scholar
  26. Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A et al (2005) The human glomerular podocyte is a novel target for insulin action. Diabetes 54:3095–3102PubMedCrossRefGoogle Scholar
  27. Coward RJ, Welsh GI, Koziell A, Hussain S, Lennon R, Ni L et al (2007) Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes 56:1127–1135PubMedCrossRefGoogle Scholar
  28. Cybulsky AV (2013) The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int 84:25–33PubMedCrossRefGoogle Scholar
  29. Dai HY, Zheng M, Lv LL, Tang RN, Ma KL, Liu D et al (2012) The roles of connective tissue growth factor and integrin-linked kinase in high glucose-induced phenotypic alterations of podocytes. J Cell Biochem 113:293–301PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dandapani SV, Sugimoto H, Matthews BD, Kolb RJ, Sinha S, Gerszten RE et al (2007) Alpha-actinin-4 is required for normal podocyte adhesion. J Biol Chem 282:467–477PubMedCrossRefGoogle Scholar
  31. De Rechter S, Decuypere JP, Ivanova E, van den Heuvel LP, De Smedt H, Levtchenko E et al (2016) Autophagy in renal diseases. Pediatr Nephrol 31:737–752PubMedCrossRefGoogle Scholar
  32. de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM et al (2014) Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol 2:417–426PubMedCrossRefGoogle Scholar
  33. Ding G, Reddy K, Kapasi AA, Franki N, Gibbons N, Kasinath BS et al (2002) Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am J Physiol Renal Physiol 283:F173–F180PubMedCrossRefGoogle Scholar
  34. Du P, Fan B, Han H, Zhen J, Shang J, Wang X et al (2013) NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int 84:265–276PubMedCrossRefGoogle Scholar
  35. Durvasula RV, Shankland SJ (2008) Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol 294:F830–F839PubMedCrossRefGoogle Scholar
  36. Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P et al (2004) Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 65:30–39PubMedCrossRefGoogle Scholar
  37. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fantus D, Rogers NM, Grahammer F, Huber TB, Thomson AW (2016) Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 12:587–609PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fiorina P, Vergani A, Bassi R, Niewczas MA, Altintas MM, Pezzolesi MG et al (2014) Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol 25:1415–1429PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN et al (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3:85ra46PubMedPubMedCentralCrossRefGoogle Scholar
  41. Friedrich C, Endlich N, Kriz W, Endlich K (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol 291:F856–F865PubMedCrossRefGoogle Scholar
  42. Fujiwara Y, Tsuchiya H, Sakai N, Shibata K, Fujimura A, Koshimizu TA (2011) Proximal tubules and podocytes are toxicity targets of bucillamine in a mouse model of drug-induced kidney injury. Eur J Pharmacol 670:208–215PubMedCrossRefGoogle Scholar
  43. Gao N, Wang H, Yin H, Yang Z (2017) Angiotensin II induces calcium-mediated autophagy in podocytes through enhancing reactive oxygen species levels. Chem Biol Interact 277:110–118PubMedCrossRefGoogle Scholar
  44. Gill PS, Wilcox CS (2006) NADPH oxidases in the kidney. Antioxid Redox Signal 8:1597–1607PubMedCrossRefGoogle Scholar
  45. Goldwich A, Burkard M, Olke M, Daniel C, Amann K, Hugo C et al (2013) Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 24:906–916PubMedPubMedCentralCrossRefGoogle Scholar
  46. Greka A, Mundel P (2011) Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J Am Soc Nephrol 22:1969–1980PubMedPubMedCentralCrossRefGoogle Scholar
  47. Greka A, Mundel P (2012) Cell biology and pathology of podocytes. Annu Rev Physiol 74:299–323PubMedCrossRefGoogle Scholar
  48. Gu L, Hagiwara S, Fan Q, Tanimoto M, Kobata M, Yamashita M et al (2006) Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes. Nephrol Dial Transplant 21:299–313PubMedCrossRefGoogle Scholar
  49. Gupta A, Quigg RJ (2015) Glomerular diseases associated with hepatitis B and C. Adv Chronic Kidney Dis 22:343–351PubMedCrossRefGoogle Scholar
  50. Gurley SB, Riquier-Brison ADM, Schnermann J, Sparks MA, Allen AM, Haase VH et al (2011) AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab 13:469–475PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gutwein P, Abdel-Bakky MS, Schramme A, Doberstein K, Kampfer-Kolb N, Amann K et al (2009) CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. Am J Pathol 174:2061–2072PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ha TS (2006) High glucose and advanced glycosylated end-products affect the expression of alpha-actinin-4 in glomerular epithelial cells. Nephrology (Carlton) 11:435–441CrossRefGoogle Scholar
  53. Ha TS, Nam JA, Seong SB, Saleem MA, Park SJ, Shin JI (2017) Montelukast improves the changes of cytoskeletal and adaptor proteins of human podocytes by interleukin-13. Inflamm Res 66:793–802PubMedCrossRefGoogle Scholar
  54. Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921PubMedCrossRefGoogle Scholar
  55. Han SY, So GA, Jee YH, Han KH, Kang YS, Kim HK et al (2004) Effect of retinoic acid in experimental diabetic nephropathy. Immunol Cell Biol 82:568–576PubMedCrossRefGoogle Scholar
  56. Han SY, Kang YS, Jee YH, Han KH, Cha DR, Kang SW et al (2006) High glucose and angiotensin II increase beta1 integrin and integrin-linked kinase synthesis in cultured mouse podocytes. Cell Tissue Res 323:321–332PubMedCrossRefGoogle Scholar
  57. Hashizume M, Mihara M (2012) Atherogenic effects of TNF-alpha and IL-6 via up-regulation of scavenger receptors. Cytokine 58:424–430PubMedCrossRefGoogle Scholar
  58. Heller T, Hennecke M, Baumann U, Gessner JE, zu Vilsendorf AM, Baensch M et al (1999) Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J Immunol 163:985–994PubMedGoogle Scholar
  59. Herrmann SM, Sethi S, Fervenza FC (2012) Membranous nephropathy: the start of a paradigm shift. Curr Opin Nephrol Hypertens 21:203–210PubMedPubMedCentralCrossRefGoogle Scholar
  60. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hu ZB, Ma KL, Zhang Y, Wang GH, Liu L, Lu J et al (2018) Inflammation-activated CXCL16 pathway contributes to tubulointerstitial injury in mouse diabetic nephropathy. Acta Pharmacol Sin 39:1022–1033PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA et al (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168:6244–6252PubMedCrossRefGoogle Scholar
  63. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A et al (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103:17079–17086PubMedPubMedCentralCrossRefGoogle Scholar
  64. Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D et al (2012) Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8:1009–1031PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M et al (2006) Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 17:1950–1961PubMedCrossRefGoogle Scholar
  66. Ikezumi Y, Suzuki T, Karasawa T, Kawachi H, Nikolic-Paterson DJ, Uchiyama M (2008) Activated macrophages down-regulate podocyte nephrin and podocin expression via stress-activated protein kinases. Biochem Biophys Res Commun 376:706–711PubMedCrossRefGoogle Scholar
  67. Ishimoto T, Shimada M, Araya CE, Huskey J, Garin EH, Johnson RJ (2011) Minimal change disease: a CD80 podocytopathy? Semin Nephrol 31:320–325PubMedCrossRefGoogle Scholar
  68. Jim B, Ghanta M, Qipo A, Fan Y, Chuang PY, Cohen HW et al (2012) Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS ONE 7:e36041PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jin J, Sison K, Li C, Tian R, Wnuk M, Sung HK et al (2012) Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151:384–399PubMedCrossRefGoogle Scholar
  70. Joles JA, Kunter U, Janssen U, Kriz W, Rabelink TJ, Koomans HA et al (2000) Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol 11:669–683PubMedGoogle Scholar
  71. Kaysen GA (2001) The microinflammatory state in uremia: causes and potential consequences. J Am Soc Nephrol 12:1549–1557PubMedGoogle Scholar
  72. Kelder TP, Penning ME, Uh HW, Cohen D, Bloemenkamp KW, Bruijn JA et al (2012) Quantitative polymerase chain reaction-based analysis of podocyturia is a feasible diagnostic tool in preeclampsia. Hypertension 60:1538–1544PubMedCrossRefGoogle Scholar
  73. Kim JS, Han BG, Choi SO, Cha SK (2016) Secondary focal segmental glomerulosclerosis: from podocyte injury to glomerulosclerosis. Biomed Res Int 2016:1630365PubMedPubMedCentralGoogle Scholar
  74. Kim AH, Chung JJ, Akilesh S, Koziell A, Jain S, Hodgin JB et al (2017) B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2:pii: 81836CrossRefGoogle Scholar
  75. Kimura J, Ichii O, Miyazono K, Nakamura T, Horino T, Otsuka-Kanazawa S et al (2014) Overexpression of toll-like receptor 8 correlates with the progression of podocyte injury in murine autoimmune glomerulonephritis. Sci Rep 4:7290PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kobayashi N, Ueno T, Ohashi K, Yamashita H, Takahashi Y, Sakamoto K et al (2015) Podocyte injury-driven intracapillary plasminogen activator inhibitor type 1 accelerates podocyte loss via uPAR-mediated beta1-integrin endocytosis. Am J Physiol Renal Physiol 308:F614–F626PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC et al (1996) Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547PubMedGoogle Scholar
  78. Kretzler M, Koeppen-Hagemann I, Kriz W (1994) Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomised-desoxycorticosterone hypertensive rat. Virchows Arch 425:181–193PubMedCrossRefGoogle Scholar
  79. Kriz W, Lemley KV (2015) A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26:258–269PubMedCrossRefGoogle Scholar
  80. Kriz W, Elger M, Nagata M, Kretzler M, Uiker S, Koeppen-Hageman I et al (1994) The role of podocytes in the development of glomerular sclerosis. Kidney Int Suppl 45:S64–S72PubMedCrossRefGoogle Scholar
  81. Kriz W, Gretz N, Lemley KV (1998a) Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 54:687–697PubMedCrossRefGoogle Scholar
  82. Kriz W, Hosser H, Hahnel B, Gretz N, Provoost AP (1998b) From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: a histopathological study in rat models and human glomerulopathies. Nephrol Dial Transplant 13:2781–2798PubMedCrossRefGoogle Scholar
  83. Kriz W, Hosser H, Hahnel B, Simons JL, Provoost AP (1998c) Development of vascular pole-associated glomerulosclerosis in the Fawn-hooded rat. J Am Soc Nephrol 9:381–396PubMedGoogle Scholar
  84. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV (2013) The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 304:F333–F347PubMedCrossRefGoogle Scholar
  85. Kwon SH, Woollard JR, Saad A, Garovic VD, Zand L, Jordan KL et al (2017) Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients. Nephrol Dial Transplant 32:800–807PubMedGoogle Scholar
  86. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763PubMedCrossRefGoogle Scholar
  87. Lee HS (2011) Mechanisms and consequences of hypertriglyceridemia and cellular lipid accumulation in chronic kidney disease and metabolic syndrome. Histol Histopathol 26:1599–1610PubMedGoogle Scholar
  88. Lennon R, Pons D, Sabin MA, Wei C, Shield JP, Coward RJ et al (2009) Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol Dial Transplant 24:3288–3296PubMedCrossRefGoogle Scholar
  89. Lewko B, Bryl E, Witkowski JM, Latawiec E, Golos M, Endlich N et al (2005) Characterization of glucose uptake by cultured rat podocytes. Kidney Blood Press Res 28:1–7PubMedCrossRefGoogle Scholar
  90. Li JH, Huang XR, Zhu HJ, Oldfield M, Cooper M, Truong LD et al (2004) Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J 18:176–178PubMedCrossRefGoogle Scholar
  91. Li G, Li CX, Xia M, Ritter JK, Gehr TW, Boini K et al (2015) Enhanced epithelial-to-mesenchymal transition associated with lysosome dysfunction in podocytes: role of p62/Sequestosome 1 as a signaling hub. Cell Physiol Biochem 35:1773–1786PubMedPubMedCentralCrossRefGoogle Scholar
  92. Liebau MC, Lang D, Bohm J, Endlich N, Bek MJ, Witherden I et al (2006) Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol 290:F710–F719PubMedCrossRefGoogle Scholar
  93. Liu W, Zhang Y, Hao J, Liu S, Liu Q, Zhao S et al (2012) Nestin protects mouse podocytes against high glucose-induced apoptosis by a Cdk5-dependent mechanism. J Cell Biochem 113:3186–3196PubMedCrossRefGoogle Scholar
  94. Liu Y, Hitomi H, Diah S, Deguchi K, Mori H, Masaki T et al (2013) Roles of Na(+)/H(+) exchanger type 1 and intracellular pH in angiotensin II-induced reactive oxygen species generation and podocyte apoptosis. J Pharmacol Sci 122:176–183PubMedPubMedCentralCrossRefGoogle Scholar
  95. Loeffler I, Wolf G (2015) Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells 4:631–652PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lv Z, Hu M, Zhen J, Lin J, Wang Q, Wang R (2013) Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering beta-catenin transcriptional activity under high glucose conditions. Int J Biochem Cell Biol 45:255–264PubMedCrossRefGoogle Scholar
  97. Ma Y, Hendershot LM (2001) The unfolding tale of the unfolded protein response. Cell 107:827–830PubMedCrossRefGoogle Scholar
  98. Macconi D, Ghilardi M, Bonassi ME, Mohamed EI, Abbate M, Colombi F et al (2000) Effect of angiotensin-converting enzyme inhibition on glomerular basement membrane permeability and distribution of zonula occludens-1 in MWF rats. J Am Soc Nephrol 11:477–489PubMedGoogle Scholar
  99. Machida H, Ito S, Hirose T, Takeshita F, Oshiro H, Nakamura T et al (2010) Expression of toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol Dial Transplant 25:2530–2537PubMedCrossRefGoogle Scholar
  100. Mack M (2009) Podocyte antigens, dendritic cells and T cells contribute to renal injury in newly developed mouse models of glomerulonephritis. Nephrol Dial Transplant 24:2984–2986PubMedCrossRefGoogle Scholar
  101. Maekawa H, Inagi R (2017) Stress signal network between hypoxia and ER stress in chronic kidney disease. Front Physiol 8:74PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mao N, Tan RZ, Wang SQ, Wei C, Shi XL, Fan JM et al (2016) Ginsenoside Rg1 inhibits angiotensin II-induced podocyte autophagy via AMPK/mTOR/PI3 K pathway. Cell Biol Int 40:917–925PubMedCrossRefGoogle Scholar
  103. Marquez E, Riera M, Pascual J, Soler MJ (2015) Renin-angiotensin system within the diabetic podocyte. Am J Physiol Renal Physiol 308:F1–F10PubMedCrossRefGoogle Scholar
  104. Martinez-Garcia C, Izquierdo-Lahuerta A, Vivas Y, Velasco I, Yeo TK, Chen S et al (2015) Renal lipotoxicity-associated inflammation and insulin resistance affects actin cytoskeleton organization in podocytes. PLoS ONE 10:e0142291PubMedPubMedCentralCrossRefGoogle Scholar
  105. Masuda D, Hirano K, Oku H, Sandoval JC, Kawase R, Yuasa-Kawase M et al (2009) Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res 50:999–1011PubMedPubMedCentralCrossRefGoogle Scholar
  106. Merscher S, Pedigo CE, Mendez AJ (2014) Metabolism, energetics, and lipid biology in the podocyte-cellular cholesterol-mediated glomerular injury. Front Endocrinol (Lausanne) 5:169Google Scholar
  107. Merscher-Gomez S, Guzman J, Pedigo CE, Lehto M, Aguillon-Prada R, Mendez A et al (2013) Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62:3817–3827PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mima A, Ohshiro Y, Kitada M, Matsumoto M, Geraldes P, Li C et al (2011) Glomerular-specific protein kinase C-beta-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int 79:883–896PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mundel P, Kriz W (1995) Structure and function of podocytes: an update. Anat Embryol (Berl) 192:385–397CrossRefGoogle Scholar
  110. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T (2006) Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47:1084–1093CrossRefGoogle Scholar
  111. Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T (2007) Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50:877–883CrossRefGoogle Scholar
  112. Nagata M (2016) Podocyte injury and its consequences. Kidney Int 89:1221–1230PubMedCrossRefGoogle Scholar
  113. Najafian B, Svarstad E, Bostad L, Gubler MC, Tondel C, Whitley C et al (2011) Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int 79:663–670PubMedCrossRefGoogle Scholar
  114. Neal CR, Muston PR, Njegovan D, Verrill R, Harper SJ, Deen WM et al (2007) Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am J Physiol Renal Physiol 293:F1787–F1798PubMedCrossRefGoogle Scholar
  115. Nijenhuis T, Sloan AJ, Hoenderop JG, Flesche J, van Goor H, Kistler AD et al (2011) Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol 179:1719–1732PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nose A, Mori Y, Uchiyama-Tanaka Y, Kishimoto N, Maruyama K, Matsubara H et al (2003) Regulation of glucose transporter (GLUT1) gene expression by angiotensin II in mesangial cells: involvement of HB-EGF and EGF receptor transactivation. Hypertens Res 26:67–73PubMedCrossRefGoogle Scholar
  117. Novelli R, Gagliardini E, Ruggiero B, Benigni A, Remuzzi G (2016a) Another piece of the puzzle of podocyte B7-1 expression: lupus nephritis. Nephron 133:129–138PubMedCrossRefGoogle Scholar
  118. Novelli R, Gagliardini E, Ruggiero B, Benigni A, Remuzzi G (2016b) Any value of podocyte B7-1 as a biomarker in human MCD and FSGS? Am J Physiol Renal Physiol 310:F335–F341PubMedCrossRefGoogle Scholar
  119. Orellana JM, Kampe K, Schulze F, Sieber J, Jehle AW (2017) Fetuin-A aggravates lipotoxicity in podocytes via interleukin-1 signaling. Physiol Rep 5:pii: e13287CrossRefGoogle Scholar
  120. Pan M, Maitin V, Parathath S, Andreo U, Lin SX, St Germain C et al (2008) Presecretory oxidation, aggregation, and autophagic destruction of apoprotein-B: a pathway for late-stage quality control. Proc Natl Acad Sci U S A 105:5862–5867PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pavenstadt H (2000) Roles of the podocyte in glomerular function. Am J Physiol Renal Physiol 278:F173–F179PubMedCrossRefGoogle Scholar
  122. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307CrossRefGoogle Scholar
  123. Pozdzik AA, Debiec H, Brocheriou I, Husson C, Rorive S, Broeders N et al (2015) Anti-NEP and anti-PLA2R antibodies in membranous nephropathy: an update. Rev Med Brux 36:166–171PubMedGoogle Scholar
  124. Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y (2011) Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell 22:3520–3532PubMedPubMedCentralCrossRefGoogle Scholar
  125. Puelles VG, Cullen-McEwen LA, Taylor GE, Li J, Hughson MD, Kerr PG et al (2016) Human podocyte depletion in association with older age and hypertension. Am J Physiol Renal Physiol 310:F656–F668PubMedCrossRefGoogle Scholar
  126. Qi W, Mu J, Luo ZF, Zeng W, Guo YH, Pang Q et al (2011) Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism 60:594–603PubMedCrossRefGoogle Scholar
  127. Qin W, Xu Z, Lu Y, Zeng C, Zheng C, Wang S et al (2012) Mixed organic solvents induce renal injury in rats. PLoS ONE 7:e45873PubMedPubMedCentralCrossRefGoogle Scholar
  128. Raats CJ, van den Born J, Bakker MA, Oppers-Walgreen B, Pisa BJ, Dijkman HB et al (2000) Expression of agrin, dystroglycan, and utrophin in normal renal tissue and in experimental glomerulopathies. Am J Pathol 156:1749–1765PubMedPubMedCentralCrossRefGoogle Scholar
  129. Raclot T, Langin D, Lafontan M, Groscolas R (1997) Selective release of human adipocyte fatty acids according to molecular structure. Biochem J 324(Pt3):911–915PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14:996–1007PubMedCrossRefGoogle Scholar
  131. Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N et al (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98:9271–9276PubMedPubMedCentralCrossRefGoogle Scholar
  132. Reidy K, Susztak K (2009) Epithelial-mesenchymal transition and podocyte loss in diabetic kidney disease. Am J Kidney Dis 54:590–593PubMedPubMedCentralCrossRefGoogle Scholar
  133. Reiser J, Kriz W, Kretzler M, Mundel P (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11:1–8PubMedGoogle Scholar
  134. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L et al (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C et al (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744PubMedPubMedCentralCrossRefGoogle Scholar
  136. Reivinen J, Holthofer H, Miettinen A (1992) A cell-type specific ganglioside of glomerular podocytes in rat kidney: an O-acetylated GD3. Kidney Int 42:624–631PubMedCrossRefGoogle Scholar
  137. Ren Z, Liang W, Chen C, Yang H, Singhal PC, Ding G (2012) Angiotensin II induces nephrin dephosphorylation and podocyte injury: role of caveolin-1. Cell Signal 24:443–450PubMedCrossRefGoogle Scholar
  138. Romero M, Ortega A, Izquierdo A, Lopez-Luna P, Bosch RJ (2010) Parathyroid hormone-related protein induces hypertrophy in podocytes via TGF-beta(1) and p27(Kip1): implications for diabetic nephropathy. Nephrol Dial Transplant 25:2447–2457PubMedCrossRefGoogle Scholar
  139. Ronco P, Debiec H (2005) Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization. J Am Soc Nephrol 16:1205–1213PubMedCrossRefGoogle Scholar
  140. Ronco P, Debiec H (2007) Target antigens and nephritogenic antibodies in membranous nephropathy: of rats and men. Semin Immunopathol 29:445–458PubMedCrossRefGoogle Scholar
  141. Ruggenenti P, Cravedi P, Remuzzi G (2012) Mechanisms and treatment of CKD. J Am Soc Nephrol 23:1917–1928PubMedCrossRefGoogle Scholar
  142. Ruotsalainen V, Ljungberg P, Wartiovaara J, Lenkkeri U, Kestila M, Jalanko H et al (1999) Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A 96:7962–7967PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ruster C, Wolf G (2011) Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol 22:1189–1199CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ruster C, Bondeva T, Franke S, Tanaka N, Yamamoto H, Wolf G (2009) Angiotensin II upregulates RAGE expression on podocytes: role of AT2 receptors. Am J Nephrol 29:538–550PubMedCrossRefGoogle Scholar
  145. Sakai K, Morito N, Usui J, Hagiwara M, Hiwatashi A, Fukuda K et al (2011) Focal segmental glomerulosclerosis as a complication of hepatitis B virus infection. Nephrol Dial Transplant 26:371–373PubMedCrossRefGoogle Scholar
  146. Sakoda M, Ichihara A, Kurauchi-Mito A, Narita T, Kinouchi K, Murohashi-Bokuda K et al (2010) Aliskiren inhibits intracellular angiotensin II levels without affecting (pro)renin receptor signals in human podocytes. Am J Hypertens 23:575–580PubMedCrossRefGoogle Scholar
  147. Sakoda M, Itoh H, Ichihara A (2011) Podocytes as a target of prorenin in diabetes. Curr Diabetes Rev 7:17–21PubMedCrossRefGoogle Scholar
  148. Sanchez-Nino MD, Sanz AB, Carrasco S, Saleem MA, Mathieson PW, Valdivielso JM et al (2011) Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol Dial Transplant 26:1797–1802PubMedCrossRefGoogle Scholar
  149. Schermer B, Benzing T (2009) Lipid-protein interactions along the slit diaphragm of podocytes. J Am Soc Nephrol 20:473–478PubMedCrossRefGoogle Scholar
  150. Schiffer M, Susztak K, Ranalletta M, Raff AC, Bottinger EP, Charron MJ (2005) Localization of the GLUT8 glucose transporter in murine kidney and regulation in vivo in nondiabetic and diabetic conditions. Am J Physiol Renal Physiol 289:F186–F193PubMedCrossRefGoogle Scholar
  151. Schomig M, Eisenhardt A, Ritz E (2000) The microinflammatory state of uremia. Blood Purif 18:327–332PubMedCrossRefGoogle Scholar
  152. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W et al (2001) Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest 108:1621–1629PubMedPubMedCentralCrossRefGoogle Scholar
  153. Seguin B, Boutros PC, Li X, Okey AB, Uetrecht JP (2005) Gene expression profiling in a model of D-penicillamine-induced autoimmunity in the Brown Norway rat: predictive value of early signs of danger. Chem Res Toxicol 18:1193–1202PubMedCrossRefGoogle Scholar
  154. Shankland SJ (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69:2131–2147CrossRefGoogle Scholar
  155. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T (2007) Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49:355–364CrossRefGoogle Scholar
  156. Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH (2011) Minimal change disease: a “two-hit” podocyte immune disorder? Pediatr Nephrol 26:645–649PubMedCrossRefGoogle Scholar
  157. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA et al (2012) Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-kappaB-dependent pathway. Nephrol Dial Transplant 27:81–89PubMedCrossRefGoogle Scholar
  158. Sieber J, Jehle AW (2014) Free Fatty acids and their metabolism affect function and survival of podocytes. Front Endocrinol (Lausanne) 5:186CrossRefGoogle Scholar
  159. Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H et al (2010) Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 299:F821–F829PubMedPubMedCentralCrossRefGoogle Scholar
  160. Simons M, Schwarz K, Kriz W, Miettinen A, Reiser J, Mundel P et al (2001) Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am J Pathol 159:1069–1077PubMedPubMedCentralCrossRefGoogle Scholar
  161. Soetikno V, Sari FR, Sukumaran V, Lakshmanan AP, Harima M, Suzuki K et al (2013) Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. J Nutr Biochem 24:796–802PubMedCrossRefGoogle Scholar
  162. Sonneveld R, van der Vlag J, Baltissen MP, Verkaart SA, Wetzels JF, Berden JH et al (2014) Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am J Pathol 184:1715–1726PubMedCrossRefGoogle Scholar
  163. Sorensson J, Fierlbeck W, Heider T, Schwarz K, Park DS, Mundel P et al (2002) Glomerular endothelial fenestrae in vivo are not formed from caveolae. J Am Soc Nephrol 13:2639–2647PubMedCrossRefGoogle Scholar
  164. Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225–233PubMedCrossRefGoogle Scholar
  165. Szabo C, Biser A, Benko R, Bottinger E, Susztak K (2006) Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes 55:3004–3012PubMedCrossRefGoogle Scholar
  166. Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV (2016) Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int 90:997–1011PubMedCrossRefGoogle Scholar
  167. Takano T, Elimam H, Cybulsky AV (2013) Complement-mediated cellular injury. Semin Nephrol 33:586–601PubMedCrossRefGoogle Scholar
  168. Takeda T, McQuistan T, Orlando RA, Farquhar MG (2001) Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J Clin Invest 108:289–301PubMedPubMedCentralCrossRefGoogle Scholar
  169. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M et al (2000) Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 11:1656–1666PubMedGoogle Scholar
  170. Tavasoli M, Li L, Al-Momany A, Zhu LF, Adam BA, Wang Z et al (2016) The chloride intracellular channel 5A stimulates podocyte Rac1, protecting against hypertension-induced glomerular injury. Kidney Int 89:833–847PubMedCrossRefGoogle Scholar
  171. Udani S, Lazich I, Bakris GL (2011) Epidemiology of hypertensive kidney disease. Nat Rev Nephrol 7:11–21CrossRefPubMedPubMedCentralGoogle Scholar
  172. Velez JC, Bland AM, Arthur JM, Raymond JR, Janech MG (2007) Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 293:F398–F407PubMedCrossRefGoogle Scholar
  173. Wahl P, Ducasa GM, Fornoni A (2016) Systemic and renal lipids in kidney disease development and progression. Am J Physiol Renal Physiol 310:F433–F445PubMedCrossRefGoogle Scholar
  174. Wang G, Lai FM, Kwan BC, Lai KB, Chow KM, Li PK et al (2009) Podocyte loss in human hypertensive nephrosclerosis. Am J Hypertens 22:300–306PubMedCrossRefGoogle Scholar
  175. Wang L, Sun S, Zhou A, Yao X, Wang Y (2014) oxLDL-induced lipid accumulation in glomerular podocytes: role of IFN-gamma, CXCL16, and ADAM10. Cell Biochem Biophys 70:529–538PubMedCrossRefGoogle Scholar
  176. Welsh GI, Hale LJ, Eremina V, Jeansson M, Maezawa Y, Lennon R et al (2010) Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 12:329–340PubMedPubMedCentralCrossRefGoogle Scholar
  177. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF et al (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804PubMedCrossRefGoogle Scholar
  178. Wolf G, Schanze A, Stahl RA, Shankland SJ, Amann K (2005) p27(Kip1) Knockout mice are protected from diabetic nephropathy: evidence for p27(Kip1) haplotype insufficiency. Kidney Int 68:1583–1589PubMedCrossRefGoogle Scholar
  179. Xing L, Liu Q, Fu S, Li S, Yang L, Liu S et al (2015) PTEN inhibits high glucose-induced phenotypic transition in podocytes. J Cell Biochem 116:1776–1784PubMedCrossRefGoogle Scholar
  180. Xu ZG, Yoo TH, Ryu DR, Cheon Park H, Ha SK, Han DS et al (2005) Angiotensin II receptor blocker inhibits p27Kip1 expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int 67:944–952PubMedCrossRefGoogle Scholar
  181. Xu ZE, Chen Y, Huang A, Varghese Z, Moorhead JF, Yan F et al (2011) Inflammatory stress exacerbates lipid-mediated renal injury in ApoE/CD36/SRA triple knockout mice. Am J Physiol Renal Physiol 301:F713–F722PubMedCrossRefGoogle Scholar
  182. Yadav A, Vallabu S, Arora S, Tandon P, Slahan D, Teichberg S et al (2010) ANG II promotes autophagy in podocytes. Am J Physiol Cell Physiol 299:C488–C496PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yamaguchi Y, Iwano M, Suzuki D, Nakatani K, Kimura K, Harada K et al (2009) Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis 54:653–664PubMedCrossRefGoogle Scholar
  184. Yard BA, Kahlert S, Engelleiter R, Resch S, Waldherr R, Groffen AJ et al (2001) Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Exp Nephrol 9:214–222PubMedCrossRefGoogle Scholar
  185. Ying WZ, Wang PX, Sanders PW (2000) Induction of apoptosis during development of hypertensive nephrosclerosis. Kidney Int 58:2007–2017PubMedGoogle Scholar
  186. Yoo TH, Li JJ, Kim JJ, Jung DS, Kwak SJ, Ryu DR et al (2007) Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int 71:1019–1027PubMedCrossRefGoogle Scholar
  187. You H, Gao T, Raup-Konsavage WM, Cooper TK, Bronson SK, Reeves WB et al (2017) Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice. Kidney Int 91:671–682PubMedCrossRefGoogle Scholar
  188. Zhang H, Schin M, Saha J, Burke K, Holzman LB, Filipiak W et al (2010) Podocyte-specific overexpression of GLUT1 surprisingly reduces mesangial matrix expansion in diabetic nephropathy in mice. Am J Physiol Renal Physiol 299:F91–F98PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zhang Y, Ma KL, Liu J, Wu Y, Hu ZB, Liu L et al (2015a) Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy. Am J Physiol Endocrinol Metab 308:E1140–E1148PubMedCrossRefGoogle Scholar
  190. Zhang Y, Ma KL, Liu J, Wu Y, Hu ZB, Liu L et al (2015b) Inflammatory stress exacerbates lipid accumulation and podocyte injuries in diabetic nephropathy. Acta Diabetol 52:1045–1056PubMedCrossRefGoogle Scholar
  191. Zhang Y, Ma KL, Ruan XZ, Liu BC (2016) Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. Int J Biol Sci 12:569–579PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zuo Y, Matsusaka T, Zhong J, Ma J, Ma LJ, Hanna Z et al (2006) HIV-1 genes vpr and nef synergistically damage podocytes, leading to glomerulosclerosis. J Am Soc Nephrol 17:2832–2843PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chen-Chen Lu
    • 1
  • Gui-Hua Wang
    • 1
  • Jian Lu
    • 1
  • Pei-Pei Chen
    • 1
  • Yang Zhang
    • 1
  • Ze-Bo Hu
    • 1
  • Kun-Ling Ma
    • 1
    Email author
  1. 1.Institute of Nephrology, Zhong Da HospitalSoutheast University School of MedicineNanjingChina

Personalised recommendations