Skip to main content

Bioactivity of Red Sea Algae for Industrial Application and Biomedical Engineering

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Abstract

The Red Sea is largely undiscovered, strange wellspring of bioactive materials that its waters have not received sufficient and broad inspection till date. It expands for approximately 2000 kms and its semi segregation jointly with a rising saltiness at high water temperatures have offered new research trends for biological communities and developmental adjustments. Just a couple of marine green growths have been accounted for from the Red Sea up until now (27 passages in Algae Base rather than 512 for the Caribbean and 307 for the Arabian Gulf) and researches exploring the bioactivity of Red Sea algae are not many. Marine living beings have ended up being a rich wellspring of unprecedented and hopeful bioactive atoms for an extensive variety of uses, including novel therapeutics, cosmetics, and biotechnological applications. Marine algae, beside whichever benthic organisms, are predominately influenced by marine biofouling (epibiosis). It was confirmed that the aforementioned creatures yield secondary metabolites with antialgal, antibacterial, antifungal, anti-macrofouling and antiprotozoal characteristics in order to retain their surfaces without epibionts. Accordingly, natural yields from marine algae prove to be a favourable alternate source of unprecedented ecologically friendly compounds. Interestingly, exposing algae to light and high oxygen concentrations will stimulate the formation of inflammatory mediators like ROS and NOS. Consequently, algae are capable to produce the substantial compounds in order to protect themselves from external factors like UV radiation, stress and pollution. Generally, natural products are the main origin of compounds utilized in cancer therapy with over 75% of antineoplastic drugs in clinical research trials being either acquired or at least created by nature. Hence, marine algae possess a particular function since they are to an increasing extent significant dietary constituent in considerable portions of the world and are discussed as prospective, pharmaceutical foods in cancer management. In addition to the anti-cancer activity, marine algae display a multitude of anti-viral activities with an essential number of investigations concentrating on the human immunodeficiency virus type 1 (HIV-1), thereby exploring the significance of the aforementioned viral pathogen. HIV-1 keeps being a considerable human being health concern since there are more than 35.3 million people infected globally and 2.3 million new infections annually. Algal compounds were found to attack different steps of HIV-1 replication, covering viral entry and the main viral enzymes such as Reverse Transcriptase (RT), Integrase, and Protease. Furthermore, epidemiological discoveries indicate a consumption connection of marine algae with a low prevalence of HIV/AIDS in several Eastern Asia locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  2. Phang SM, Lewmanomont K, Lim PE (2008) Taxonomy of Southeast Asian seaweeds. Institute of Ocean and Earth Sciences Monograph Series 2

    Google Scholar 

  3. Kremb S, Müller C, Schmitt-Kopplin P et al (2017) potential of marine macroalgae from the central Red Sea (Saudi Arabia) assessed by high-throughput imaging-based phenotypic profiling. Mar Drugs 15:E80. https://doi.org/10.3390/md15030080

    Article  CAS  Google Scholar 

  4. Papenfuss GF (1968) A history, catalogue, and bibiography of Red Sea benthinc algae. Israel J Bot 17:1–118

    Google Scholar 

  5. Bruckner A, Rowlands G, Riegl B et al (2012) Atlas of Saudi Arabian Red Sea marine habitats. Khaled bin Sultan Living Oceans Foundation, Maryland

    Google Scholar 

  6. McHugh DJ (2003) A guide to the industry. Food and Agriculture Organization of the United Nations (FAO), Rome. http://www.fao.org/docrep/006/y4765e/y4765e00.htm

  7. Norziah MH, Ching CY (2000) Nutritional composition of edible Gracilaria changgi. Food Chem 68:69–76

    Article  CAS  Google Scholar 

  8. World Health Organization (2006) Safety evaluation of certain food additives. Sixty-fifth meeting of the Joint FAO/WHO. Expert Committee on Food Additives (JECFA). http://whqlibdoc.who.int/publications/2006/9241660562_eng.pdf

  9. Prabhasankar P, Ganesan P, Bhaskar N et al (2009) Edible Japanese, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chem 115:501–508

    Article  CAS  Google Scholar 

  10. MacArtain P, Gill CI, Brooks M et al (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    Article  Google Scholar 

  11. Mihranyan A, Edsman K, Stromme M (2007) Rheological properties of cellulose prepared from Cladophora cellulose powder. Food Hydrocoll 21:267–272

    Article  CAS  Google Scholar 

  12. Vinoj Kumar V, Kaladharan P (2007) Amino acids in the seaweeds as an alternate source of protein for animal feed. J Marine Biol Assoc India 49:35–40

    Google Scholar 

  13. Stirk WA, Van Staden J (1997) Isolation and identification of cytokinins in a new commercial product made from Fucus serratus L. J Appl Psychol 9:327–330

    CAS  Google Scholar 

  14. Werner T, Motyka V, Laucou V et al (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  Google Scholar 

  15. Reitz SR, Trumble JT (1996) Effects of cytokinin-containing extract on Phaseolus lunatus L: Influence of nutrient availability and apex removal. Bot Mar 39:33–38

    Article  CAS  Google Scholar 

  16. Cardozo KH, Guaratini T, Barros MP et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146:60–78

    Article  CAS  Google Scholar 

  17. Mozzachiodi R, Scuri R, Roberto M et al (2001) Caulerpenyne, a toxin from the Caulerpa taxifolia, depresses afterhyperpolarization in invertebrate neurons. Neuroscience 107:519–526

    Article  CAS  Google Scholar 

  18. Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336

    Article  CAS  Google Scholar 

  19. Villare R, Puente X, Carballeira A (2002) Seasonal variation and background levels of heavy metals in two green seaweeds. Environ Pollut 119:79–90

    Article  CAS  Google Scholar 

  20. Manivannan K, Thirumaran G, Karthikai Devi G et al (2008) Biochemical composition of seaweeds from Mandapam coastal regions along Southeast Coast of India. Am Eurasian J Bot 1:32–37

    Google Scholar 

  21. Riget F, Johansen P, Asmund G (1995) Natural seasonal variation of cadmium, copper, lead and zinc in brown (Fucus vesiculosus). Mar Pollut Bull 30:409–413

    Article  CAS  Google Scholar 

  22. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  23. Lourenço SO, Barbarino E, De-Paula JC et al (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversionfactors for 19 tropical seaweeds. Phycol Res 50:233–241

    Article  Google Scholar 

  24. Fountoulakis M, Lahm HW (1998) Hydrolysis and amino acid composition of proteins. J Chromatogr A 826:109–134

    Article  CAS  Google Scholar 

  25. Fleurence J (1999) proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  26. Galland-Irmouli AV, Fleurence J, Lamghari R et al (1999) Nutritional value of proteins from edible Palmaria palmata (dulse). J Nutr Biochem 10:353–359

    Article  CAS  Google Scholar 

  27. Denis C, Morancais M, Li M et al (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917

    Article  CAS  Google Scholar 

  28. Parisi AF, Vallee BL (1969) Zinc metalloenzymes: characteristics and significance in biology and medicine. Am J Clin Nutr 22:1222–1239

    Article  CAS  Google Scholar 

  29. McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130(5S Suppl):1437S–1446S

    Article  CAS  Google Scholar 

  30. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074

    Article  CAS  Google Scholar 

  31. Hamza I, Gitlin JD (2002) Copper chaperones for cytochrome c oxidase and human disease. J Bioenerg Biomembr 34:381–388

    Article  CAS  Google Scholar 

  32. Yoshioka S, Aso Y (2007) Correlations between molecular mobility and chemical stability during storage of amorphous. J Pharm Sci 96:960–981

    Article  CAS  Google Scholar 

  33. Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97:249–255

    Article  CAS  Google Scholar 

  34. Teas J, Pino S, Critchley A et al (2004) Variability of iodine content in common commercially available edible seaweeds. Thyroid 14:836–841

    Article  CAS  Google Scholar 

  35. Tsui CK, Sivichai S, Berbee ML (2006) Molecular systematics of Helicoma, Helicomyces and Helicosporium and their teleomorphs inferred from rDNA sequences. Mycologia 98:94–104

    Article  CAS  Google Scholar 

  36. Saenko GN, Kravtsova YY, Ivanenko VV (1978) Concentration of lodine and bromine by plants in the seas of Japan and Okhotsk. Marine Biol 47:243–250

    Article  Google Scholar 

  37. Kupper FC, Schweigert N, Gall EA et al (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163–171

    Article  Google Scholar 

  38. Hu SX, Tang CH, Wu ML (1996) Cadmium accumulation by several seaweeds. Sci Total Environ 187:65–71

    Article  CAS  Google Scholar 

  39. Antunes WM, Luna AS, Henriques CA et al (2003) An evaluation of copper biosorption by a brown under optimized conditions. Electron J Biotechnol 6:174–184

    Google Scholar 

  40. Ghimire KN, Inoue K, Ohto K et al (2008) Adsorption study of metal ions onto crosslinked Laminaria japonica. Bioresour Technol 99:32–37

    Article  CAS  Google Scholar 

  41. Norris LC, Wilgus HS Jr, Ringerseb A et al (1936) The vitamin-G requirement of poultry. Cornell University Agricultural Experiment Station, Ithaca

    Google Scholar 

  42. Yamamoto Y, Fujisawa A, Hara A et al (2001) An unusual vitamin E constituent (α-tocomonoenol) provides enhanced protection in marine organisms adapted to cold-water environments. Proc Natl Acad Sci U S A 98:13144–13148

    Article  CAS  Google Scholar 

  43. Houston MC (2005) Nutraceuticals, antioxidants, and minerals in the prevention and treatment of hypertension. Prog Cardiovasc Dis 47:396–449

    Article  CAS  Google Scholar 

  44. Burtin P (2003) Nutritional Value of Seaweeds. EJEAFChe 2:498–503

    Google Scholar 

  45. Kim KN, Heo SJ, Kang SM et al (2010) Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol In Vitro 24:1648–1654

    Article  CAS  Google Scholar 

  46. Maeda H, Tsukui T, Sashima T et al (2008) carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr 17:196–199

    CAS  Google Scholar 

  47. Miyashita K, Itoh H, Tsujimoto H et al (2009) Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58:2880–2892

    Article  CAS  Google Scholar 

  48. Bharate SB, Manda S, Mupparapu N et al (2012) Chemistry and biology of fascaplysin, a potent marine-derived CDK-4 inhibitor. Mini Rev Med Chem 12:650–664

    Article  CAS  Google Scholar 

  49. Glaser KB, Mayer AM (2009) A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem Pharmacol 78:440–448

    Article  CAS  Google Scholar 

  50. Moraes CC, Sala L, Cerveira GP et al (2011) C-phycocyanin extraction from Spirulina platensis wet biomass. Braz J Chem Eng 28:45–49

    Article  CAS  Google Scholar 

  51. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    Article  CAS  Google Scholar 

  52. Manirafasha E, Ndikubwimana T, Zeng XH et al (2016) Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296

    Article  CAS  Google Scholar 

  53. Cardozo KH, Carvalho VM, Pinto E et al (2006) Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 20:253–258

    Article  CAS  Google Scholar 

  54. Cimino G, Ghiselin MT (2001) Marine natural products chemistry as evolutionary narrative. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Marine Science Series, Florida, pp 115–154

    Google Scholar 

  55. Cannell RJP (1998) How to approach the isolation of a natural product. In: Cannell RJP (ed) Natural products isolation. Humana Press, New York, pp 1–51

    Chapter  Google Scholar 

  56. Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99–109

    Article  CAS  Google Scholar 

  57. Butler A, Sandy M (2009) Mechanistic considerations of halogenating enzymes. Nature 460:848–854

    Article  CAS  Google Scholar 

  58. Khotimchenko YS, Kovalev VV, Savchenko OV et al (2001) Physical–chemical properties, physiological activity, and usage of alginates, the polysaccharides of. Rus J Marine Biol 27:S53–S64

    Article  CAS  Google Scholar 

  59. Glyantsev SP, Annaev AG, Savvina TV (1993) Morphological substantiation of the choice of composition and structure of a sodium -based biologically active composition for healing wounds. Bull Exp Biol Med 115:69–72

    Article  Google Scholar 

  60. Doyle JW, Roth TP, Smith RM et al (1996) Effects of calcium on cellular processes modeled in vitro. J Biomed Mater Res 32:561–568

    Article  CAS  Google Scholar 

  61. Saeki Y, Kato T, Naito Y et al (1996) Inhibitory effects of funoran on the adherence and colonization of mutans streptococci. Res 30:119–125

    CAS  Google Scholar 

  62. Reynolds JEF, Prasad AB (eds) (1982) Martindale: the extra pharmacopeia. The Pharmaceopeial Press, London

    Google Scholar 

  63. Katayama S, Ohshita J, Sugaya K et al (1998) New medicinal treatment for severe gingivostomatitis. Int J Mol Med 2:675–679

    CAS  Google Scholar 

  64. Kasloff ZA (1990) The medical and dental uses of algae and algal products. In: Akatsuka I (ed) Introduction to Applied Phycology. SPB Academic Press, The Hague, pp 401–406

    Google Scholar 

  65. Steenfos HH, Agren MS (1998) A fibre-free dressing in the treatment of split thickness skin graft donor sites. J Eur Acad Dermatol Venereol 11:252–256

    Article  CAS  Google Scholar 

  66. Savitskaya IM (1986) Trial of a local hemostatic with base. Klin Khirurgiya 3:39–40

    Google Scholar 

  67. Nishiya M, Hareyama H, Makinoda S (1994) A study on the hemostatic effect of sodium on uterocervical hemorrhage. Asia Oceania J Obstet Gynaecol 20:203–208

    Article  CAS  Google Scholar 

  68. O’Sullivan DG, Sherman IW, Phillips DE (1992) The role of calcium swabs in adenotonsillectomy. Clin Otolaryngol Allied Sci 17:403–405

    Article  Google Scholar 

  69. Sithranga Boopathy N, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:214186. https://doi.org/10.1155/2010/214186

    Article  CAS  Google Scholar 

  70. Stevenson CS, Capper EA, Roshak AK et al (2002) The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Ther 303:858–866

    Article  CAS  Google Scholar 

  71. Carte BK (1996) Biomedical potential of marine natural products. Bioscience 46:271–286

    Article  Google Scholar 

  72. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807

    Article  CAS  Google Scholar 

  73. Luesch H, Moore RE, Paul VJ et al (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    Article  CAS  Google Scholar 

  74. Medina RA, Goeger DE, Hills P et al (2008) Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J Am Chem Soc 130:6324–6325

    Article  CAS  Google Scholar 

  75. Davidson BS (1995) New dimensions in natural-products research - cultured marine microorganisms. Curr Opin Biotechnol 6:284–291

    Article  CAS  Google Scholar 

  76. Yoshie Y, Wang W, Hsieh YP et al (2002) Compositional Difference of Phenolic Compounds between Two Seaweeds, Halimeda spp. J Tokyo Univ Fish 88:21–24

    Google Scholar 

  77. Vischer P, Buddecke E (1991) Different action of heparin and on arterial smooth muscle cell proliferation and thrombospondin and fibronectin metabolism. Eur J Cell Biol 56:407–414

    CAS  Google Scholar 

  78. Gerwick WH, Fenical W (1981) Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) Papenfuss. J Org Chem 46:22–27

    Article  CAS  Google Scholar 

  79. Palermo JA, Flower PB, Seldes AM (1992) Chondriamide-A and Chondriamide-B, new indolic metabolites from the red alga Chondria-sp. Tetrahedron Lett 33:3097–3100

    Article  CAS  Google Scholar 

  80. Barbier P, Guise S, Huitorel P et al (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci 70:415–429

    Article  CAS  Google Scholar 

  81. Athukorala Y, Jung WK, Vasanthan T et al (2006) An anticoagulative from an enzymatic hydrolysate of Ecklonia cava. Carbohydr Polym 66:184–191

    Article  CAS  Google Scholar 

  82. Hulsmans M, Van Dooren E, Holvoet P (2012) Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr Atheroscler Rep 14:264–276

    Article  CAS  Google Scholar 

  83. Kim YJ, Kim EH, Hahm KB (2012) Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. J Gastroenterol Hepatol 27:1004–1010

    Article  CAS  Google Scholar 

  84. Rosanna DP, Salvatore C (2012) Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 18:3889–3900

    Article  Google Scholar 

  85. Schramm A, Matusik P, Osmenda G et al (2012) Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol 56:216–231

    Article  CAS  Google Scholar 

  86. D’Orazio N, Gammone MA, Gemello E et al (2012) Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 10:812–833

    Article  CAS  Google Scholar 

  87. Wang W, Wang SX, Guan HS (2012) The activities and mechanisms of: an overview. Mar Drugs 10:2795–2816

    Article  Google Scholar 

  88. Lee JC, Hou MF, Huang HW et al (2013) Marine algal natural products with anti-oxidative, and properties. Cancer Cell Int 13:55

    Article  Google Scholar 

  89. Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Article  CAS  Google Scholar 

  90. Ziboh VA, Chapkin RS (1987) Biologic significance of polyunsaturated fatty acids in the skin. Arch Dermatol 123:1686a–1690

    Article  CAS  Google Scholar 

  91. Couteau C, Coiffard L (2016) application in. In: Fleurence J, Levine I (eds) in health and disease prevention. Academic Press, Massachusetts, p 423–441

    Google Scholar 

  92. de Jesus Raposo MF, de Morais RM, de Morais AM (2013) Health applications of compounds from marine microalgae. Life Sci 93:479–486

    Article  CAS  Google Scholar 

  93. Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446

    CAS  Google Scholar 

  94. Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802

    Article  CAS  Google Scholar 

  95. Rastogi RP, Sonani RR, Madamwar D (2015) Cyanobacterial sunscreen scytonemin: role in photoprotection and biomedical Rresearch. Appl Biochem Biotechnol 176:1551–1563

    Article  CAS  Google Scholar 

  96. Dillon JG, Tatsumi CM, Tandingan PG et al (2002) Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch Microbiol 177:322–331

    Article  CAS  Google Scholar 

  97. Shen CT, Chen PY, Wu JJ et al (2011) Purification of algal anti-tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti-solvent precipitation. J Supercrit Fluids 55:955–962

    Article  CAS  Google Scholar 

  98. Sousa I, Gouveia L Batista AP et al (2008) Microalgae in novel food products. In Papadoupoulos K (ed) Food Chemistry Research Developments. Nova Science Publishers, New York, p 75–112

    Google Scholar 

  99. Plaza M, Cifuentes A, Ibanez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 16:31–39

    Article  CAS  Google Scholar 

  100. Wagner WR (2012) Soft material design and development to facilitate desirable cardiovascular tissue remodelling. Paper presented at the EMRS 2012 Fall Meeting, Warsaw University of Technology, Warsaw, 17–21 September 2012

    Google Scholar 

  101. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  102. Gomes ME, Ribeiro AS, Malafaya PB et al (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. 22:883–889

    Google Scholar 

  103. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. 21:2529–2543

    CAS  Google Scholar 

  104. Borden M, Attawia M, Khan Y et al (2002) Tissue engineered microsphere-based matrices for bone repair: design and evaluation. 23:551–559

    CAS  Google Scholar 

  105. Martins A, Chung S, Pedro AJ et al (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3:37–42

    Article  CAS  Google Scholar 

  106. Duarte ARC, Mano JF, Reis RL (2009) Supercritical fluids in biomedical and tissue engineering applications: a review. Int Mater Rev 54:214–222

    Article  CAS  Google Scholar 

  107. Gomes ME, Holtorf HL, Reis RL et al (2006) Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng 12:801–809

    Article  CAS  Google Scholar 

  108. van der Smissen A, Hintze V, Scharnweber D et al (2011) Growth promoting substrates for human dermal fibroblasts provided by artificial extracellular matrices composed of I and sulfated glycosaminoglycans. 32:8938–8946

    Google Scholar 

  109. Salbach J, Rachner TD, Rauner M et al (2012) Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med 90:625–635

    Article  Google Scholar 

  110. Hintze V, Miron A, Moeller S et al (2012) Sulfated hyaluronan and chondroitin sulfate derivatives interact differently with human transforming growth factor-β1 (TGF-β1). Acta Biomater 8:2144–2152

    Article  CAS  Google Scholar 

  111. Kunze R, Rösler M, Möller S et al (2010) Sulfated hyaluronan derivatives reduce the proliferation rate of primary rat calvarial. Glycoconj J 27:151–158

    Article  CAS  Google Scholar 

  112. da Costa DS, Pires RA, Frias AM et al (2012) Sulfonic groups induce formation of filopodia in mesenchymal. J Mater Chem 22:7172–7178

    Article  CAS  Google Scholar 

  113. Hintze V, Miron A, Möller S et al (2014) Artificial extracellular matrices of and sulphated hyaluronan enhance the differentiation of human mesenchymal in the presence of dexamethasone. J Tissue Eng Regen Med 8:314–324

    Article  CAS  Google Scholar 

  114. Silva TH, Alves A, Ferreira BM et al (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57:276–307

    Article  CAS  Google Scholar 

  115. Senni K, Pereira J, Gueniche F et al (2011) a source of molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

    Article  CAS  Google Scholar 

  116. Falshaw R, Bixler HJ, Johndro K (2001) Structure and performance of commercial kappa-2 extracts I. Structure analysis. Food Hydrocoll 15:441–452

    Article  CAS  Google Scholar 

  117. Pekcan O, Kara S, Arda E (2007) Cation effects on phase transition of hybrids: a photon transmission study. Compos Interfaces 14:1–19

    Article  CAS  Google Scholar 

  118. Morris ER, Rees DA, Robinson G (1980) Cation-specific aggregation of helices: Domain model of polymer gel structure. J Mol Biol 138:349–362

    Article  CAS  Google Scholar 

  119. Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using -carrageenan hydrogel beads and fibers for applications. Biomacromol 12:3952–3961

    Article  CAS  Google Scholar 

  120. Kong L, Ziegler GR (2011) Fabrication of fibers by wet spinning: spinning parameters. Materials 4:1805–1817

    Article  CAS  Google Scholar 

  121. Mohamadnia Z, Zohuriaan-Mehr AJ, Kabiri K et al (2007) pH-Sensitive IPN hydrogel beads of -alginate for controlled. J Bioact Compat Polym 22:342–356

    Article  CAS  Google Scholar 

  122. Granero AJ, Razal JM, Wallace GG et al (2010) Conducting gel-fibres based on, and carbon nanotubes. J Mater Chem 20:7953–7956

    Article  CAS  Google Scholar 

  123. Yuan H, Song J, Zhang W et al (2006) activity and cytoprotective effect of oligosaccharides and their different derivatives. Bioorg Med Chem Lett 16:1329–1334

    Article  CAS  Google Scholar 

  124. Vera J, Castro J, Gonzalez A et al (2011) polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar Drugs 9:2514–2525

    Article  CAS  Google Scholar 

  125. Panlasigui LN, Baello OQ, Dimatangal JM et al (2003) Blood cholesterol and lipid-lowering effects of on human volunteers. Asia Pac J Clin Nutr 12:209–214

    CAS  Google Scholar 

  126. Farias WR, Valente AP, Pereira MS et al (2000) Structure and activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its action with that of sulfated galactans from invertebrates. J Biol Chem 275:29299–29307

    Article  CAS  Google Scholar 

  127. Jin G, Kim GH (2011) Rapid-prototyped PCL/ composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem 21:17710–17718

    Article  CAS  Google Scholar 

  128. McNeely WH (1959) In: Whistler RL, BeMiller JM (eds) Industrial Gums. Polysaccharides and their derivatives. Academic Press, New York, pp 117–121

    Google Scholar 

  129. Siddhanta AK, Murthy ASK (2001) Polysaccharides from marine. J Indian Chem Soc 78:431–437

    CAS  Google Scholar 

  130. Dobashi K, Nishino T, Fujihara M et al (1989) Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with activity from the brown Hizikia fusiforme. Carbohydr Res 194:315–320

    Article  CAS  Google Scholar 

  131. Baba M, Snoeck R, Pauwels R et al (1988) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32:1742–1745

    Article  CAS  Google Scholar 

  132. Sezer AD, Akbuğa J (2006) Fucosphere-new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J Microencapsul 23:513–522

    Article  CAS  Google Scholar 

  133. Lee EJ, Khan SA, Lim KH (2009) nanoparticle preparation by polyelectrolyte complexation. World J Eng 6:541–542

    Google Scholar 

  134. Lee JS, Jin GH, Yeo MG et al (2012) Fabrication of electrospun comprising polycaprolactone/ for tissue regeneration. Carbohydr Polym 90:181–188

    Article  CAS  Google Scholar 

  135. Manivasagan P, Oh J (2016) Marine -based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327

    Article  CAS  Google Scholar 

  136. Lira MC, Santos-Magalhães NS, Nicolas V et al (2011) Cytotoxicity and cellular uptake of newly synthesized -coated nanoparticles. Eur J Pharm Biopharm 79:162–170

    Article  CAS  Google Scholar 

  137. Leung TCY, Wong CK, Xie Y (2010) Green synthesis of nanoparticles using biopolymers, carboxymethylated-curdlan and. Mater Chem Phys 121:402–405

    Article  CAS  Google Scholar 

  138. Lee KW, Jeong D, Na K (2013) Doxorubicin loading acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym 94:850–856

    Article  CAS  Google Scholar 

  139. Sarmento B, Ribeiro AJ, Veiga F et al (2007) Insulin-loaded nanoparticles are prepared by ionotropic followed by polyelectrolyte complexation. J Nanosci Nanotechnol 7:2833–2841

    Article  CAS  Google Scholar 

  140. Zhang C, Wang W, Liu T et al (2012) Doxorubicin-loaded glycyrrhetinic acid-modified nanoparticles for liver tumor chemotherapy. 33:2187–2196

    CAS  Google Scholar 

  141. Ahmad Z, Pandey R, Sharma S et al (2006) Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in nanoparticles at two doses. Int J Antimicrob Agents 27:409–416

    Article  CAS  Google Scholar 

  142. Daniel-da-Silva AL, Trindade T, Goodfellow BJ et al (2007) In situ synthesis of nanoparticles in. Biomacromol 8:2350–2357

    Article  CAS  Google Scholar 

  143. Grenha A, Gomes ME, Rodrigues M et al (2010) Development of new/ nanoparticles for applications. J Biomed Mater Res A 92:1265–1272

    Google Scholar 

  144. Salgueiro AM, Daniel-da-Silva AL, Fateixa S et al (2013) hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. Carbohydr Polym 91:100–109

    Article  CAS  Google Scholar 

  145. Kattumuri V, Chandrasekhar M, Guha S et al (2006) stabilized gold nanoparticles for surface-enhanced Raman spectroscopic detection of DNA nucleosides. Appl Phys Lett 88:153114. https://doi.org/10.1063/1.2192573

    Article  CAS  Google Scholar 

  146. Kikionis S, Ioannou E, Toskas G et al (2015) Electrospun biocomposite nanofibers of/PCL and/PEO. J Appl Polym Sci 132:42153. https://doi.org/10.1002/app.42153

    Article  CAS  Google Scholar 

  147. Shukla MK, Singh RP, Reddy CR et al (2012) Synthesis and characterization of agar-based nanoparticles and film with antibacterial applications. Bioresour Technol 107:295–300

    Article  CAS  Google Scholar 

  148. Venkatpurwar V, Pokharkar V (2011) Green synthesis of nanoparticles using marine: Study of in-vitro antibacterial activity. Mater Lett 65:999–1002

    Article  CAS  Google Scholar 

  149. De Jong WH, Borm PJ (2008) and nanoparticles:applications and hazards. Int J Nanomedicine 3:133–149

    Article  Google Scholar 

  150. Bozkir A, Saka OM (2004) nanoparticles for plasmid DNA delivery: effect of molecular structure on formulation and release characteristics. Drug Deliv 11:107–112

    Article  CAS  Google Scholar 

  151. Jeong YI, Jin SG, Kim IY et al (2010) Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl and antitumor activity against glioma cells in vitro. Colloids Surf B Biointerfaces 79:149–155

    Article  CAS  Google Scholar 

  152. Wang S, Tan Y, Zhao D et al (2008) Amperometric tyrosinase biosensor based on Fe3O4. Biosens Bioelectron 23:1781–1787

    Article  CAS  Google Scholar 

  153. Ministry of State for Environmental Affairs (MSEA)(Egypt) (2007) Annual report on monitoring of the Mediterranean coastal water, prepared by the higher institute for studies and researches, Alexandria University, within coastal water information and environmental monitoring project, environment quality sector

    Google Scholar 

  154. Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175

    Article  Google Scholar 

  155. McMurtry GM, Wiltshire JC, Kauahikaua JP (1995) Heavy metal anomalies in coastal sediments of Oahu. Hawaii. Pac Sci 49:452–470

    CAS  Google Scholar 

  156. Tessier A, Rapin F, Carignan R (1985) Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim Cosmochim Acta 49:183–194

    Article  CAS  Google Scholar 

  157. McIntosh AW (1991) Trace metals in freshwater sediments: a review of the literature and an assessment of research needs. In: Newman MC, McIntosh AW (eds) Metal ecotoxicology: concepts and applications. Lewis Publishers, Michigan, pp 243–260

    Google Scholar 

  158. El-Sayed MK (1984) Reefal sediments of Al-Ghardaqa, northern Red Sea. Egypt. Mar Geol 56:259–271

    Article  CAS  Google Scholar 

  159. Mansour AM (1999) Changes of sediment nature by environmental impacts of Sharm Abu Makhadeg area, Red Sea. Egypt. Sedimentology Egypt 7:25–36

    Google Scholar 

  160. Madkour HA (2004) Geochemical and environmental studies of recent marine sediments and some invertebrates of the Red Sea, Egypt. Dissertation, South Valley University, Qena, Egypt

    Google Scholar 

  161. Madkour HA (2005) Geochemical and environmental studies of recent marine sediments and some hard corals of Wadi El-Gemal area of the Red Sea. Egypt. Egypt J Aquat Res 31:69–91

    CAS  Google Scholar 

  162. Mansour AM, Nawar AH, Madkour HA (2005) Metals concentration of recent invertebrates along the Red Sea Coast of Egypt: a Tool for monitoring environmental hazards. Sedimentology Egypt 3:171–185

    Google Scholar 

  163. Madkour HA, Mohamed AW, Ahmed NA (2008) The impact of anthropogenic activities on the physical and chemical characteristics of surface sediments in some coastal lagoons along the Egyptian red sea coast. Egypt J Aquat Res 34:53–68

    Google Scholar 

  164. Mansour AM, Nawar AH Mohamed AW (2008) Geochemistry of coastal marine sediments and their contaminant metals, Red Sea, Egypt: a legacy for the future and a tracer to modern sediment dynamics. Sedimentology Egypt 8:231–242

    Google Scholar 

  165. El-Taher A, Madkour HA (2011) Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast. Appl Radiat Isot 69:550–558

    Article  CAS  Google Scholar 

  166. Mohamed MA, Madkour HA, El-Saman MI (2011) Impact of anthropogenic activities and natural inputs on oceanographic characteristics of water and geochemistry of surface sediments in different sites along the Egyptian Red Sea Coast. Afr J Environ Sci Technol 5:494–511

    Google Scholar 

  167. El-Sorogy A, El Kammar A, Ziko A et al (2013) Gastropod shells as indicators, Red Sea coast. Egypt. J Afr Earth Sci 87:93–99

    Article  CAS  Google Scholar 

  168. El-Taher A (2007) Rare-earth elements in Egyptian granite by instrumental neutron activation analysis. Appl Radiat Isot 65:458–464

    Article  CAS  Google Scholar 

  169. Mansour AM, Nawar AH, Madkour HA (2011) Metal in marine sediments of selected harbours and industrial areas along the Red Sea coast of Egypt. Ann Naturhist Mus Wien Ser A 113:225–244

    Google Scholar 

  170. Madkour HA, El-Taher A, Ahmed AE et al (2012) Contamination of coastal sediments in El-hamrawein harbour, Red Sea. Egypt. Environ Sci Technol 5:210–221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Rimondini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, H., Abdelgeliel, A.S., Cochis, A., Sayed, W.F., Rimondini, L. (2019). Bioactivity of Red Sea Algae for Industrial Application and Biomedical Engineering. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_20

Download citation

Publish with us

Policies and ethics