Skip to main content

Composites Containing Marine Biomaterials for Bone Tissue Repair

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Abstract

In recent years, a striking development has been achieved in marine biomaterials for bone tissue repair. Marine sources have proven to be non-polluting and versatile for biomedical applications. Bone tissue engineering is a promising alternative for treating bone ailments caused due to trauma and surgical intrusions. Biocomposites comprise of biodegradable and biocompatible materials and mimic the architecture of bone and support regeneration. Significant sources of marine biomaterials are fish, invertebrates, fungi, corals, etc. Bone defects are treated using marine biocomposite polymers such as chitosan, collagen, alginate, gelatin, and ceramics. Chitosan is anti-microbial and bioactive; hydroxyapatite and collagen are significant constituents of bone, and alginate boosts mechanical strength and structural integrity of biocomposites. This chapter accounts for the source and types of biomaterials from marine fauna, the fabrication of biomaterials as scaffolds and their biological activity in enhancing bone repair in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  CAS  Google Scholar 

  2. Boskey AL (2015) Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 4:710

    Article  Google Scholar 

  3. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Google Scholar 

  4. Pisani P, Renna MD, Conversano F et al (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7:171–181

    Article  Google Scholar 

  5. Fardellone P, Séjourné A, Paccou J et al (2014) Bone remodelling markers in rheumatoid arthritis. Mediators Inflamm 2014:484280

    Article  CAS  Google Scholar 

  6. Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704

    Article  CAS  Google Scholar 

  7. Schaffler MB, Cheung WY, Majeska R et al (2014) Osteocytes: master orchestrators of bone. Calcif Tissue Int 94:5–24

    Article  CAS  Google Scholar 

  8. Dimitriou R, Jones E, McGonagle D et al (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66

    Article  Google Scholar 

  9. Lerner UH (2012) Osteoblasts, osteoclasts, and osteocytes: unveiling their intimate-associated responses to applied orthodontic forces. Semin Orthod 18:237–248

    Article  Google Scholar 

  10. Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater 10:557–579

    Article  CAS  Google Scholar 

  11. Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114

    Article  CAS  Google Scholar 

  12. Mackie EJ, Ahmed YA, Tatarczuch L et al (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62

    Article  CAS  Google Scholar 

  13. Franz-Odendaal TA (2011) Induction and patterning of intramembranous bone. Front Biosci (Landmark Ed) 16:2734–2746

    Article  CAS  Google Scholar 

  14. Schlundt C, El Khassawna T, Serra A et al (2018) Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 106:78–89

    Article  CAS  Google Scholar 

  15. Fröhlich M, Grayson WL, Wan LQ et al (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3:254–264

    Article  Google Scholar 

  16. Saranya N, Moorthi A, Saravanan S et al (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48:234–238

    Article  CAS  Google Scholar 

  17. Swetha M, Sahithi K, Moorthi A et al (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172

    Article  CAS  Google Scholar 

  18. García-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121

    Article  CAS  Google Scholar 

  19. Sriram M, Sainitya R, Kalyanaraman V et al (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412

    Article  CAS  Google Scholar 

  20. Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93B:1354–1365

    Article  CAS  Google Scholar 

  21. Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104B:1372–1382

    Article  CAS  Google Scholar 

  22. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765

    Article  CAS  Google Scholar 

  23. Pattnaik S, Nethala S, Tripathi A et al (2011) Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol 49:1167–1172

    Article  CAS  Google Scholar 

  24. Tripathi A, Saravanan S, Pattnai S et al (2012) Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol 50:294–299

    Article  CAS  Google Scholar 

  25. Sowjanya JA, Singh J, Mohita T et al (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300

    Article  CAS  Google Scholar 

  26. Fishero BA, Kohli N, Das A et al (2015) Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 8:23–30

    Google Scholar 

  27. Kumar P, Vinitha B, Fathima G (2013) Bone grafts in dentistry. J Pharm Bioallied Sci 5:S125–S127

    Article  CAS  Google Scholar 

  28. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25

    Article  CAS  Google Scholar 

  29. Sainitya R, Sriram M, Kalyanaraman V et al (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488

    Article  CAS  Google Scholar 

  30. Rao SH, Harini B, Shadamarshan RPK et al (2018) Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 110:88–96

    Article  CAS  Google Scholar 

  31. Srivastava S, Bankar R, Roy P (2013) Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine 20:683–690

    Article  CAS  Google Scholar 

  32. Leena RS, Vairamani M, Selvamurugan N (2017) Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces 158:308–318

    Article  CAS  Google Scholar 

  33. Preethi Soundarya S, Sanjay V, Haritha Menon A et al (2018) Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol 110:74–87

    Article  CAS  Google Scholar 

  34. Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 803:41–53

    Article  CAS  Google Scholar 

  35. Ruocco N, Costantini S, Guariniello S et al (2016) Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 21:E551

    Article  CAS  Google Scholar 

  36. Wang H, Fu ZM, Han CC (2014) The potential applications of marine bioactives against diabetes and obesity. Am J Marine Sci 2:1–8

    Google Scholar 

  37. Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347

    Article  CAS  Google Scholar 

  38. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4:411–427

    CAS  Google Scholar 

  39. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    Article  CAS  Google Scholar 

  40. Khan AA, Shibata H, Kresnowati MTAP et al (2001) Production of chitin and chitosan from shrimp shells. https://repository.tudelft.nl/islandora/object/uuid%3A629de7e9-74d5-49ea-a984-eabf2595f0ef. Accessed 16 June 2018

  41. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174

    Article  CAS  Google Scholar 

  42. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Article  CAS  Google Scholar 

  43. Klokkevold PR, Vandemark L, Kenney EB et al (1996) Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol 67:1170–1175

    Article  CAS  Google Scholar 

  44. Seol YJ, Lee JY, Park YJ et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041

    Article  CAS  Google Scholar 

  45. Boynueğri D, Ozcan G, Senel S (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466

    Article  CAS  Google Scholar 

  46. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266

    Article  CAS  Google Scholar 

  47. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465

    Article  CAS  Google Scholar 

  48. Ehrlich H (2010) Biological materials of marine origin. Springer, New York

    Book  Google Scholar 

  49. Gómez-Guillén MC, Turnay J, Fernández-Dıaz MD et al (2002) Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloid 16:25–34

    Article  Google Scholar 

  50. Venkatesan J, Lowe B, Manivasagan P et al (2015) Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 8:5426–5439

    Article  CAS  Google Scholar 

  51. Boutinguiza M, Pou J, Comesana R et al (2012) Biological hydroxyapatite obtained from fish bones. Mat Sci Eng C - Mater 32:478–486

    Article  CAS  Google Scholar 

  52. Tripathi G, Basu B (2012) A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram Int 38:341–349

    Article  CAS  Google Scholar 

  53. Pan LZ, He HW, Yao ZW et al (2010) Preparation and characterization of nano-hydroxy apatite/konjac glucomannan composite scaffolds. J Wuhan Univ Technol Mat Sci Ed 25:484–486

    Article  CAS  Google Scholar 

  54. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  CAS  Google Scholar 

  55. Dhivya S, Saravanan S, Sastry TP et al (2015) Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology 13:40

    Article  CAS  Google Scholar 

  56. Badii F, Howell NK (2006) Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids 20:630–640

    Article  CAS  Google Scholar 

  57. Saravanan S, Chawla A, Vairamani M et al (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104B:1975–1985

    Article  CAS  Google Scholar 

  58. Hoque ME, Nuge T, Yeow TK et al (2015) Gelatin based scaffolds for tissue engineering—a review. Polymer Res J 9:15–32

    Google Scholar 

  59. Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359

    Article  CAS  Google Scholar 

  60. Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14:E34

    Article  CAS  Google Scholar 

  61. Venkatesan J, Bhatnagar I, Manivasagan P et al (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  CAS  Google Scholar 

  62. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  Google Scholar 

  63. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479

    Article  CAS  Google Scholar 

  64. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502

    Article  CAS  Google Scholar 

  65. Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechn 3(2). https://doi.org/10.2225/vol3-issue2-fulltext-5

  66. Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine 8:337–350

    Article  CAS  Google Scholar 

  67. Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D (ed) Tissue engineering. IntechOpen, London, pp 141–157

    Google Scholar 

  68. Sughanthy Siva AP, Ansari MNM (2015) A review on bone scaffold fabrication methods. Int Res J Eng Technol 2:1232–1238

    Google Scholar 

  69. Grey CP (2014) Tissue engineering scaffold fabrication and processing techniques to improve cellular infiltration. Dissertation, Virginia Commonwealth University

    Google Scholar 

  70. Shalumon KT, Binulal NS, Selvamurugan N et al (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77:863–869

    Article  CAS  Google Scholar 

  71. Binulal NS, Deepthy M, Selvamurugan N et al (2010) Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering–response to osteogenic regulators. Tissue Eng Part A 16:393–404

    Article  CAS  Google Scholar 

  72. Ibrahim HM, El- Zairy EMR (2015) Chitosan as a biomaterial—structure, properties, and electrospun nanofibers. In: Bobbarala V (ed) Concepts, compounds and the alternatives of antibacterials. IntechOpen, London, pp 81–101

    Google Scholar 

  73. Oftadeh R, Perez-Viloria M, Villa-Camacho JC et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):0109021–01080215

    Article  Google Scholar 

  74. Peter M, Ganesh N, Selvamurugan N et al (2010) Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohyd Polym 80:687–694

    Article  CAS  Google Scholar 

  75. Guo YP, Guan JJ, Yang J et al (2015) Hybrid nanostructured hydroxyapatite-chitosan composite scaffold: bioinspired fabrication, mechanical properties and biological properties. J Mater Chem B 3:4679–4689

    Article  CAS  Google Scholar 

  76. Heidari F, Razavi M, Bahrololoom ME et al (2016) Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 65:338–344

    Article  CAS  Google Scholar 

  77. Roy P, Sailaja RR (2015) Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies. Int J Biol Macromol 73:170–181

    Article  CAS  Google Scholar 

  78. Serra IR, Fradique R, Vallejo MC et al (2015) Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 55:592–604

    Article  CAS  Google Scholar 

  79. Kavya KC, Jayakumar R, Nair S et al (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263

    Article  CAS  Google Scholar 

  80. Lin L, Zhang H, Yao Y et al (2007) Application of image processing and finite element analysis in bionic scaffolds’ design optimizing and fabrication. In: Li K, Li X, Irwin GW, He G (eds) Life system modeling and simulation. LSMS 2007. Lecture notes in computer science, vol 4689. Springer, Heidelberg, pp 136–145

    Google Scholar 

  81. Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  Google Scholar 

  82. Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184

    Article  CAS  Google Scholar 

  83. Li H, Zhou CR, Zhu MY et al (2010) Preparation and characterization of homogeneous hydroxyapatite/chitosan composite scaffolds via in-situ hydration. J Biomater Nanobiotechnol 1:42–49

    Article  CAS  Google Scholar 

  84. Mao J, Zhao L, De Yao K et al (2003) Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A 64:301–308

    Article  CAS  Google Scholar 

  85. Sharma C, Dinda AK, Potdar PD et al (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 64:416–427

    Article  CAS  Google Scholar 

  86. Gaharwar AK, Schexnailder PJ, Kline BP et al (2011) Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 7:568–577

    Article  CAS  Google Scholar 

  87. Millán JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341

    Article  CAS  Google Scholar 

  88. Lima PA, Resende CX, Soares GD et al (2013) Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33:3389–3395

    Article  CAS  Google Scholar 

  89. Kumar JP, Lakshmi L, Jyothsna V et al (2014) Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo. J Biomed Nanotechnol 10:970–981

    Article  CAS  Google Scholar 

  90. Dhivya S, Keshav Narayan A, Logith Kumar R et al (2018) Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif. https://doi.org/10.1111/cpr.12408

    Article  CAS  Google Scholar 

  91. Wang X, Yu T, Chen G et al (2017) Preparation and characterization of a chitosan/gelatin/extracellular matrix scaffold and its application in tissue engineering. Tissue Eng Part C Methods 23:169–179

    Article  CAS  Google Scholar 

  92. Zhang Y, Venugopal JR, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322

    Article  CAS  Google Scholar 

  93. Sajesh KM, Jayakumar R, Nair SV et al (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471

    Article  CAS  Google Scholar 

  94. Vimalraj S, Saravanan S, Vairamani M et al (2016) A combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int J Biol Macromol 93B:1457–1464

    Article  CAS  Google Scholar 

  95. Zhang JC, Lu HY, Lv GY et al (2010) The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles. Int J Oral Maxillofac Surg 39:469–477

    Article  CAS  Google Scholar 

  96. Wu HC, Wang TW, Sun JS et al (2016) Development and characterization of a bioinspired bone matrix with aligned nanocrystalline hydroxyapatite on collagen nanofibers. Materials 9:E198

    Article  CAS  Google Scholar 

  97. Vimalraj S, Arumugam B, Miranda PJ et al (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208

    Article  CAS  Google Scholar 

  98. Risteli L, Koivula MK, Risteli J (2014) Procollagen assays in cancer. Adv Clin Chem 66:79–100

    Article  CAS  Google Scholar 

  99. De Toni L, Di Nisio A, Rocca MS et al (2017) Osteocalcin, a bone-derived hormone with important andrological implications. Andrology 5:664–670

    Article  CAS  Google Scholar 

  100. Chesnutt BM, Yuan Y, Buddington K et al (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15:2571–2579

    Article  CAS  Google Scholar 

  101. Lee JS, Baek SD, Venkatesan J et al (2014) In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Int J Biol Macromol 67:360–366

    Article  CAS  Google Scholar 

  102. Ruan SQ, Yan L, Deng J et al (2017) Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Int Orthop 41:1899–1908

    Article  Google Scholar 

  103. Oryan A, Alidadi S, Bigham-Sadegh A et al (2016) Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med 27:155

    Article  CAS  Google Scholar 

  104. Li T, Liu ZL, Xiao M et al (2017) In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances 7:54100–54110

    Article  Google Scholar 

  105. Jin HH, Kim DH, Kim TW et al (2012) In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1079–1085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balagangadharan, K., Rao, H., Shadamarshan, P., Balaji, H., Selvamurugan, N. (2019). Composites Containing Marine Biomaterials for Bone Tissue Repair. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_16

Download citation

Publish with us

Policies and ethics