Skip to main content

Chitinous Scaffolds from Marine Sponges for Tissue Engineering

  • Chapter
  • First Online:
Marine-Derived Biomaterials for Tissue Engineering Applications

Abstract

Chitin as a biological material which has been identified in skeletal structures of a broad variety of unicellular (yeast, protists, diatoms) and multicellular (sponges, corals, worms, molluscs, arthropods) organisms is recognized as natural template with good perspectives in modern biomedicine. This chapter provides first insights into prospective applications of naturally prefabricated three-dimensional chitinous scaffolds from selected marine sponges in tissue engineering. This became possible only owing to the recent discovery of poriferan chitin which provoked renewed multidisciplinary interest driven by growing demand in novel biomimetic materials. Here, we focused on both demosponges of Verongiida order as a renewable source of chitin scaffolds with jewelry designs, and human mesenchymal stromal cells having high therapeutic potential. The chapter covers approaches for isolation of scaffolds from the chitin-bearing marine sponges, nuances of their interaction with human cells and cryopreservation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer RS, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CAS  Google Scholar 

  2. Liu Z, Tang M, Zhao J et al (2018) Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv Mater 30:e1705388. https://doi.org/10.1002/adma.201705388

    Article  CAS  Google Scholar 

  3. Dhandayuthapani B, Yoshida Y, Maekawa T et al (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. https://doi.org/10.1155/2011/290602

    Article  Google Scholar 

  4. Ehrlich H (2013) Biomimetic potential of chitin-based composite biomaterials of poriferan origin. In: Ruys AJ (ed) Biomimetic biomaterials: structure and applications. Woodhead Publishing, Cambridge, pp 47–67

    Google Scholar 

  5. Ehrlich H (2018) Chitin of poriferan origin as a unique biological material. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules, vol 2. Wiley-VCH, Verlag, pp 821–854

    Chapter  Google Scholar 

  6. Granito RN, Custódio MR, Rennó ACM (2017) Natural marine sponges for bone tissue engineering: the state of art and future perspectives. J Biomed Mater Res B Appl Biomater 105:1717–1727

    Article  CAS  Google Scholar 

  7. DeLaubenfels M, Storr J (1958) The taxonomy of American commercial sponges. Bull Mar Sci 8:99–117

    Google Scholar 

  8. Jesionowski T, Norman M, Żółtowska-Aksamitowska S et al (2018) Marine spongin: naturally prefabricated 3D scaffold-based biomaterial. Mar Drugs 16:E88. https://doi.org/10.3390/md16030088

    Article  CAS  Google Scholar 

  9. Green D, Howard D, Yang X et al (2003) Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 9:1159–1166

    Article  CAS  Google Scholar 

  10. Ehrlich H, Wysokowski M, Żółtowska-Aksamitowska S et al (2018) Collagens of poriferan origin. Mar Drugs 16:E79. https://doi.org/10.3390/md16030079

    Article  CAS  Google Scholar 

  11. Pozzolini M, Scarfì S, Gallus L et al (2018) Production, characterization and biocompatibility evaluation of collagen membranes derived from marine sponge chondrosia reniformis Nardo, 1847. Mar Drugs 16:E111. https://doi.org/10.3390/md16040111

    Article  CAS  Google Scholar 

  12. Heinemann S, Ehrlich H, Knieb C et al (2007) Biomimetically inspired hybrid materials based on silicified collagen. Int J Mater Res 98:603–608

    Article  CAS  Google Scholar 

  13. Zheng MH, Hinterkeuser K, Solomon K et al (2007) Collagen-derived biomaterials in bone and cartilage repair. Macromol Symp 253:179–185

    Article  CAS  Google Scholar 

  14. Green DW (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed Mater 3:034010

    Article  Google Scholar 

  15. Lin Z, Solomon KL, Zhang X et al (2011) In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 7:968–977

    Article  CAS  Google Scholar 

  16. Cunningham E, Dunne N, Clarke S et al (2011) Comparative characterisation of 3-D hydroxyapatite scaffolds developed via replication of synthetic polymer foams and natural marine sponges. J Tissue Sci Eng S1:1–9

    Article  Google Scholar 

  17. Nandi SK, Kundu B, Mahato A et al (2015) In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial. Integr Biol 7:250–262

    Article  CAS  Google Scholar 

  18. Clarke SA, Choi SY, McKechnie M et al (2016) Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. J Mater Sci Mater Med 27:22

    Article  CAS  Google Scholar 

  19. Barros AA, Aroso IM, Silva TH et al (2016) In vitro bioactivity studies of ceramic structures isolated from marine sponges. Biomed Mater 11:045004

    Article  Google Scholar 

  20. Ehrlich H, Maldonado M, Spindler KD et al (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J Exp Zool B Mol Dev Evol 308:347–356

    Article  Google Scholar 

  21. Ehrlich H, Krautter M, Hanke T et al (2007) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool B Mol Dev Evol 308:473–483

    Article  Google Scholar 

  22. Ehrlich H, Kaluzhnaya OV, Brunner E et al (2013) Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris. J Struct Biol 183:474–483

    Article  CAS  Google Scholar 

  23. Ehrlich H, Ilan M, Maldonado M et al (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Biol Macromol 47:132–140

    Article  CAS  Google Scholar 

  24. Ehrlich H, Steck E, Ilan M et al (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. Int J Biol Macromol 47:141–145

    Article  CAS  Google Scholar 

  25. Ehrlich H, Heinemann S, Heinemann C et al (2008) Nanostructural organization of naturally occurring composites - Part I: Silica-collagen-based biocomposites. J Nanomater. https://doi.org/10.1155/2008/623838

    Google Scholar 

  26. Ehrlich H, Deutzmann R, Brunner E et al (2010) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat Chem 2:1084–1088

    Article  CAS  Google Scholar 

  27. Ehrlich H, Janussen D, Simon P et al (2008) Nanostructural organization of naturally occurring composites - Part II: Silica-chitin-based biocomposites. J. Nanomater. https://doi.org/10.1155/2008/670235

    Google Scholar 

  28. Wysokowski M, Behm T, Born R et al (2013) Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater Sci Eng C Mater Biol Appl 33:3935–3941

    Article  CAS  Google Scholar 

  29. Bazhenov VV, Wysokowski M, Petrenko I et al (2015) Preparation of monolithic silica-chitin composite under extreme biomimetic conditions. Int J Biol Macromol 76:33–38

    Article  CAS  Google Scholar 

  30. Wysokowski M, Motylenko M, Bazhenov VV et al (2013) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7:248–260

    Article  Google Scholar 

  31. Ehrlich H, Simon P, Motylenko M et al (2013) Extreme biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J Mater Chem B 1:5092–5099

    Article  CAS  Google Scholar 

  32. Wysokowski M, Motylenko M, Walter J et al (2014) Synthesis of nanostructured chitin-hematite composites under extreme biomimetic conditions. RSC Adv 4:61743–61752

    Article  CAS  Google Scholar 

  33. Wysokowski M, Petrenko I, Motylenko M et al (2015) Renewable chitin from marine sponge as a thermostable biological template for hydrothermal synthesis of hematite nanospheres using principles of extreme biomimetics. Bioinspired Mater 1:12–22

    Google Scholar 

  34. Wysokowski M, Bazhenov VV, Tsurkan MV et al (2013) Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. Int J Biol Macromol 62:94–100

    Article  CAS  Google Scholar 

  35. Rogulska OY, Mutsenko VV, Revenko EB et al (2013) culture and differentiation of human adipose tissue mesenchymal stromal cells within carriers based on sea sponge chitin skeletons. Prob Cryobiol Cryomed 23:267–270

    Google Scholar 

  36. Żółtowska-Aksamitowska S, Tsurkan MV, Lim SC et al (2018) The demosponge Pseudoceratina purpurea as a new source of fibrous chitin. Int J Biol Macromol 112:1021–1028

    Article  Google Scholar 

  37. Żółtowska-Aksamitowska S, Shaala LA, Youssef DTA et al (2018) First report on chitin in a non-verongiid marine demosponge: the Mycale euplectellioides case. Mar Drugs 16:E68. https://doi.org/10.3390/md16020068

    Article  CAS  Google Scholar 

  38. Ehrlich H, Shaala LA, Youssef DTA et al (2018) Discovery of chitin in skeletons of non-verongiid Red Sea demosponges. PLoS One 13:e0195803. https://doi.org/10.1371/journal.pone.0195803

    Article  CAS  Google Scholar 

  39. Shirakigawa N, Hiroyuki I (2017) Decellularized tissue engineering. In: Tripathi A, Melo JS (eds) Advances in biomaterials for biomedical applications. Springer Singapore, Singapore, pp 185–226

    Chapter  Google Scholar 

  40. Brunner E, Ehrlich H, Schupp P et al (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168:539–547

    Article  CAS  Google Scholar 

  41. Rohde S, Schupp PJ (2012) Growth and regeneration of the elephant ear sponge Ianthella basta (Porifera). Hydrobiologia 687:219–226

    Article  Google Scholar 

  42. Singh R, Shitiz K, Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14:1276–1289

    Article  Google Scholar 

  43. Azuma K, Izumi R, Osaki T et al (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142

    Article  CAS  Google Scholar 

  44. Chung JC, Shum-Tim D (2012) Neovascularization in tissue engineering. Cells 1:1246–1260

    Article  CAS  Google Scholar 

  45. Bramfeldt H, Sabra G, Centis V et al (2010) Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr Med Chem 17:3944–3967

    Article  CAS  Google Scholar 

  46. Dai Z, Ronholm J, Tian Y et al (2016) Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng 7:2041731416648810. https://doi.org/10.1177/2041731416648810

    Article  CAS  Google Scholar 

  47. Stawski D, Rabiej S, Herczyńska L et al (2008) Thermogravimetric analysis of chitins of different origin. J Therm Anal Calorim 93:489–494

    Article  CAS  Google Scholar 

  48. Wysokowski M, Petrenko I, Stelling LA et al (2015) Poriferan chitin as a versatile template for extreme biomimetics. Polymers 7:235–265

    Article  Google Scholar 

  49. González-Campos JB, Prokhorov E, Luna-Bárcenas G et al (2009) Relaxations in chitin: evidence for a glass transition. J Polym Sci B 47:932–943

    Article  Google Scholar 

  50. Palmer I, Clarke S, Nelson J et al (2012) Identification of a suitable sterilisation method for collagen derived from a marine Demosponge. Int J Nano Biomater 4:148–163

    Article  CAS  Google Scholar 

  51. Bernhardt A, Wehrl M, Paul B et al (2015) Improved sterilization of sensitive biomaterials with supercritical carbon dioxide at low temperature. PLoS One 10:e0129205. https://doi.org/10.1371/journal.pone.0129205

    Article  CAS  Google Scholar 

  52. Fang Y, Eglen RM (2017) Three-dimensional cell cultures in drug discovery and development. SLAS Discov 22:456–472

    CAS  Google Scholar 

  53. Ito I, Osaki T, Ifuku S et al (2014) Evaluation of the effects of chitin nanofibrils on skin function using skin models. Carbohydr Polym 101:464–470

    Article  CAS  Google Scholar 

  54. Ito I, Yoneda T, Omura Y et al (2015) Protective effect of chitin urocanate nanofibers against ultraviolet radiation. Mar Drugs 13:7463–7475

    Article  CAS  Google Scholar 

  55. Krishna L, Dhamodaran K, Jayadev C et al (2016) Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 7:188. https://doi.org/10.1186/s13287-016-0440-y

    Article  CAS  Google Scholar 

  56. Giwa S, Lewis JK, Alvarez L et al (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35:530–542

    Article  CAS  Google Scholar 

  57. Mutsenko VV, Gryshkov O, Lauterboeck L et al (2017) Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation. Int J Biol Macromol 104(Pt B):1955–1965

    Article  CAS  Google Scholar 

  58. Chen F, Zhang W, Wu W et al (2011) Cryopreservation of tissue-engineered epithelial sheets in trehalose. Biomaterials 32:8426–8435

    Article  CAS  Google Scholar 

  59. Batnyam O, Suye S, Fujita S (2017) Direct cryopreservation of adherent cells on an elastic nanofiber sheet featuring a low glass-transition temperature. RSC Adv 7:51264–51271

    Article  CAS  Google Scholar 

  60. Arav A, Friedman O, Natan Y et al (2017) Rat hindlimb cryopreservation and transplantation: a step toward “organ banking”. Am J Transplant 17:2820–2828

    Article  CAS  Google Scholar 

  61. Ehrlich H, Bazhenov VV, Meschke S et al (2016) Marine invertebrates of Boka Kotorska Bay unique sources for bioinspired materials science. In: Djurović M, Semenov AV, Zonn IS, Kostianoy AG (eds) The Boka Kotorska Bay environment, series: the handbook of environmental chemistry. Springer International Publishing, Heidelberg, pp 313–334

    Chapter  Google Scholar 

  62. Hennessy RS, Jana S, Tefft BJ et al (2017) Supercritical carbon dioxide-based sterilization of decellularized heart valves. JACC Basic Transl Sci 2:71–84

    Article  Google Scholar 

  63. Knight T, Basu J, Rivera EA et al (2013) Fabrication of a multi-layer three-dimensional scaffold with controlled porous micro-architecture for application in small intestine tissue engineering. Cell Adh Migr 7:267–274

    Article  Google Scholar 

  64. Atesok K, Doral MN, Karlsson J et al (2016) Multilayer scaffolds in orthopaedic tissue engineering. Knee Surg Sports Traumatol Arthrosc 24:2365–2373

    Article  Google Scholar 

  65. Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16:18149–18184

    Article  CAS  Google Scholar 

  66. Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756

    Article  Google Scholar 

  67. Wang W, Caetano G, Ambler WS et al (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9:E992. https://doi.org/10.3390/ma9120992

    Article  CAS  Google Scholar 

  68. Shi J, Dong N, Sun Z (2007) Immobilization of RGD peptides onto decellularized valve scaffolds to promote cell adhesion. J Wuhan Univ Technol Mater Sci Ed 22:686–690

    Article  CAS  Google Scholar 

  69. Kumar A, Lau W, Starly B (2017) Human mesenchymal stem cells expansion on three-dimensional (3D) printed poly-styrene (PS) scaffolds in a perfusion bioreactor. Procedia CIRP 65:115–120

    Article  Google Scholar 

  70. Diomede F, Gugliandolo A, Cardelli P et al (2018) Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther 9:104

    Article  Google Scholar 

  71. Antoni D, Burckel H, Josset E et al (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16:5517–5527

    Article  CAS  Google Scholar 

  72. Mutsenko VV, Bazhenov VV, Rogulska O et al (2017) 3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells. Int J Biol Macromol 104B:1966–1974

    Article  Google Scholar 

  73. Cruz-Barraza JA, Carballo JL, Rocha-Olivares A et al (2012) Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific. PLoS One 7:e42049

    Article  CAS  Google Scholar 

  74. Wang X, Schröder HC, Feng Q et al (2013) The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 11:718–746

    Article  CAS  Google Scholar 

  75. Wang X, Schröder HC, Grebenjuk V et al (2014) The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 12:1131–1147

    Article  CAS  Google Scholar 

  76. Müller WEG, Ackermann M, Wang S et al (2018) Inorganic polyphosphate induces accelerated tube formation of HUVEC endothelial cells. Cell Mol Life Sci 75:21–32

    Article  Google Scholar 

  77. Gaharwar AK, Mihaila SM, Swami A et al (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25:3329–3336

    Article  CAS  Google Scholar 

  78. Yang X, Li Y, Liu X et al (2016) The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. Biomed Mater 12:015001

    Article  Google Scholar 

  79. Beck GR Jr, Ha SW, Camalier CE et al (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine 8:793–803

    Article  CAS  Google Scholar 

  80. Kook YM, Jeong Y, Lee K et al (2017) Design of biomimetic cellular scaffolds for co-culture system and their application. J Tissue Eng 8:2041731417724640

    Article  Google Scholar 

  81. Lv D, Hu Z, Lu L et al (2017) Three-dimensional cell culture: a powerful tool in tumor research and drug discovery. Oncol Lett 14:6999–7010

    Google Scholar 

  82. Calcabrini C, Catanzaro E, Bishayee A et al (2017) Marine sponge natural products with anticancer potential: an updated review. Mar Drugs 15:E310. https://doi.org/10.3390/md15100310

    Article  CAS  Google Scholar 

  83. Bechmann N, Ehrlich H, Eisenhofer G et al (2018) Anti-tumorigenic and anti-metastatic activity of the sponge-derived marine drugs aeroplysinin-1 and isofistularin-3 against pheochromocytoma in vitro. Mar Drugs 16:E172. https://doi.org/10.3390/md16050172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by Leonhard-Euler-Programm from the German Academic Exchange Service (DAAD, Germany), the German Research Foundation through the Cluster of Excellence REBIRTH (EXC 62/1), IP@Leibniz program of the Leibniz University Hannover promoted by the DAAD (Germany, project code 57156199) as well as DFG Grant EH 394-3 (DFG, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Mutsenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mutsenko, V. et al. (2019). Chitinous Scaffolds from Marine Sponges for Tissue Engineering. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_13

Download citation

Publish with us

Policies and ethics