Skip to main content

Techno-Economic Assessment of Microbe-Assisted Wastewater Treatment Strategies for Energy and Value-Added Product Recovery

  • Chapter
  • First Online:
Microbial Technology for the Welfare of Society

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 17))

Abstract

In the twentieth century, wastewater has emerged as one of the most appalling problems facing mankind. In recent times, numerous steps have been taken to conserve the water bodies, and a variety of wastewater treatment strategies have been developed to treat wastewater in order to make it reusable. The high operational cost associated with these strategies makes the process economically unfeasible. Therefore, looking into the high nutrient content of wastewaters from domestic and industrial establishments, it has been proposed that these treatment plants may be integrated with energy generation (bioenergy) and resource recovery (N, P, K fertilizers and molecular intermediates as value-added products) for making the overall process self-sustainable. Overall, the man-made problem caused due to wastewater can be used as an opportunity for economic benefits through technological advancements. The present chapter evaluates technical and economic aspects of various wastewater treatment strategies with special emphasis on energy and value-added product recovery. It will not only highlight crucial features of each process but also suggest probable areas of improvements keeping in mind the future prospects for establishing self-sustainable wastewater treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal K, Chaturvedi V, Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5(4):1–12. https://doi.org/10.1186/s40643-018-0190-z

    Article  Google Scholar 

  • Aoyama T, Nosaka N, Kasai M (2007) Research on the nutritional characteristics of medium-chain fatty acids. J Med Investig 54:385–388

    Google Scholar 

  • Arashiro LT, Montero N, Ferrer I et al (2018) Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ 622–623:1118–1130. https://doi.org/10.1016/j.scitotenv.2017.12.051

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi O, Yerushalmi L, Haghighat F (2015) Wastewater treatment in the pulp-and-paper industry: a review of treatment processes and the associated greenhouse gas emission. J Environ Manag 158:146–157. https://doi.org/10.1016/j.jenvman.2015.05.010

    Article  CAS  Google Scholar 

  • Avci A, Kiliç NK, Dönmez G, Dönmez S (2014) Evaluation of hydrogen production by Clostridium strains on beet molasses. Environ Technol 35:278–285

    CAS  PubMed  Google Scholar 

  • Azad SA, Vikineswary S, Chong VC, Ramachandran KB (2003) Rhodovulum sulfidophilum in the treatment and utilization of sardine processing wastewater. Lett Appl Microbiol 38(1):13–18. https://doi.org/10.1046/j.1472-765X.2003.01435.x

    Article  Google Scholar 

  • Balasubramanian S, Tyagi RD (2016) Value-added bio-products from sewage sludge. In: Christian Larroche C, Sanroman M, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering bioprocesses, bioreactors and controls. Elsevier, Amsterdam, pp 27–42

    Google Scholar 

  • Bayramouglu G, Arica MY (2008) Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. J Hazard Mater 156:148–155

    Google Scholar 

  • Behnami A, Farajzadeh D, Isazadeh S et al (2018) Diversity of bacteria in a full-scale petrochemical wastewater treatment plant experiencing stable hydrocarbon removal. J Water Process Eng 23:285–291. https://doi.org/10.1016/j.jwpe.2018.04.015

    Article  Google Scholar 

  • Bhunia A, Durani S, Wangikar PP (2001) Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol Bioeng 72:562–567

    CAS  PubMed  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    CAS  PubMed  Google Scholar 

  • Blázquez E, Gabriel D, Baeza JA, Guisasola A (2016) Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery. Water Res 105:395–405

    PubMed  Google Scholar 

  • Bodzek M, Bohdziewicz J, Kowalska M (1994) Preparation of membrane-immobilised enzymes for phenol decomposition. J Chem Technol Biotechnol 61(3):231–239

    CAS  PubMed  Google Scholar 

  • Bohdziewicz J (1997) Biodegradation of phenol by enzymes from Pseudomonas sp. immobilized onto ultrafiltration membrane. Process Biochem 33(8):811–818

    Google Scholar 

  • Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym-Plast Technol Eng 43:1779–1793

    CAS  Google Scholar 

  • Campbell AS, Dong C, Dordick JS, Dinu CZ (2013) BioNano engineered hybrids for hypochlorous acid generation. Process Biochem 48:1355–1360

    CAS  Google Scholar 

  • Campbell AS, Dong C, Maloney A et al (2014a) A systematic study of the catalytic behavior at enzyme–metal-oxide nanointerfaces. Nano Life 4(2):1450005

    Google Scholar 

  • Campbell AS, Dong C, Meng F et al (2014b) Enzyme catalytic efficiency: a function of bio-nano interface reactions. ACS Appl Mater Interfaces 6:5393–5403

    CAS  PubMed  Google Scholar 

  • Capodaglio A (2017) Integrated, decentralized wastewater management for resource recovery in rural and peri-urban areas. Resources 6(2):22. https://doi.org/10.3390/resources6020022

    Article  Google Scholar 

  • Chandra R, Castillo-Zacarias C, Delgado P, Parra-Saldívar R (2018) A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. J Clean Prod 183:1184–1196. https://doi.org/10.1016/j.jclepro.2018.02.124

    Article  CAS  Google Scholar 

  • Chen B-Y, Hsueh C-C, Liu S-Q et al (2013a) Deciphering mediating characteristics of decolorized intermediates for reductive decolorization and bioelectricity generation. Bioresour Technol 145:321–325

    CAS  PubMed  Google Scholar 

  • Chen BY, Liu S-Q, Hung JY et al (2013b) Reduction of carbon dioxide emission by using microbial fuel cells during wastewater treatment. Aerosol Air Qual Res 13:266–274

    CAS  Google Scholar 

  • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. https://doi.org/10.1021/es803531g

    Article  CAS  PubMed  Google Scholar 

  • Cole AJ, Neveux N, Whelan A et al (2016) Adding value to the treatment of municipal wastewater through the intensive production of freshwater macroalgae. Algal Res 20:100–109. https://doi.org/10.1016/j.algal.2016.09.026

    Article  Google Scholar 

  • Coppens J, Grunert O, Hende S, Den V et al (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28:2367–2377. https://doi.org/10.1007/s10811-015-0775-2

    Article  CAS  Google Scholar 

  • Cotterill SE, Dolfing J, Jones C et al (2017) Low temperature domestic wastewater treatment in a microbial electrolysis cell with 1 m2 anodes: towards system scale-up. Fuel Cells 17:584–592

    CAS  Google Scholar 

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337. https://doi.org/10.1007/s10811-012-9810-8

    Article  CAS  Google Scholar 

  • Craggs RJ, Lundquist TJ, Benemann JR (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 153–163

    Google Scholar 

  • Craggs R, Park J, Heubeck S, Sutherland D (2014) High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. N Z J Bot 52:60–73. https://doi.org/10.1080/0028825X.2013.861855

    Article  Google Scholar 

  • De Lathouder KM, Smeltink MW, Straathof AJJ et al (2008) Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G. J Ind Microbiol Biotechnol 35:815–824

    PubMed  PubMed Central  Google Scholar 

  • Dinu CZ, Zhu G, Bale SS et al (2010) Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv Funct Mater 20:392–398

    CAS  Google Scholar 

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsevier, Amsterdam

    Google Scholar 

  • Dong XZ, Cai MY (2001) Determinative manual for routine bacteriology. Beijing Scientific Press, Beijing, pp 370–390

    Google Scholar 

  • Edwards W, Bownes R, Leukes WD et al (1999) A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents. Enzym Microb Technol 24(3–4):209–217

    CAS  Google Scholar 

  • Farooqi IH, Basheer F (2017) Treatment of adsorbable organic halide (AOX) from pulp and paper industry wastewater using aerobic granules in pilot scale SBR. J Water Process Eng 19:60–66. https://doi.org/10.1016/j.jwpe.2017.07.005

    Article  Google Scholar 

  • Feng Y, He W, Liu J et al (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 156:132–138

    CAS  PubMed  Google Scholar 

  • Fischer F, Bastian C, Happe M et al (2011) Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour Technol 102:5824–5830

    CAS  PubMed  Google Scholar 

  • Flock C, Bassi A, Gijzen M (1999) Removal of aqueous phenol and 2-chlorophenol with purified soybean peroxidase and raw soybean hulls. J Chem Technol Biotechnol 74:303–309

    CAS  Google Scholar 

  • Foley J, De Haas D, Hartley K, Lant P (2010) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res 44:1654–1666

    CAS  PubMed  Google Scholar 

  • Gallifuoco A, Alfani F, Cantarella M, Viparelli P (2001) Studying enzyme-catalyzed depolymerizations in continuous reactors. Ind Eng Chem Res 40:5184–5190

    CAS  Google Scholar 

  • Garcia-gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28(2):1051–1061. https://doi.org/10.1007/s10811-015-0625-2

    Article  PubMed  Google Scholar 

  • Garfí M, Flores L, Ferrer I (2017) Life cycle assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds. J Clean Prod 161:211–219. https://doi.org/10.1016/j.jclepro.2017.05.116

    Article  Google Scholar 

  • Ge Z, He Z (2016) Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environ Sci Water Res Technol 2:274–281

    CAS  Google Scholar 

  • Ghosh A, Dastidar MG, Sreekrishnan TR (2017) Bioremediation of chromium complex dyes and treatment of sludge generated during the process. Int Biodeterior Biodegradation 119:448–460. https://doi.org/10.1016/j.ibiod.2016.08.013

    Article  CAS  Google Scholar 

  • Gianfreda L, Bollag J-M (2002) Isolated enzymes for the transformation and detoxification of organic pollutants. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. CRC Press, New York, pp 499–542

    Google Scholar 

  • Gilbert EM, Agrawal S, Karst SM et al (2014) Low temperature partial nitritation/anammox in a moving bed bio film reactor treating low strength wastewater. Environ Sci Technol 48(15):8784–8792

    CAS  PubMed  Google Scholar 

  • Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    CAS  Google Scholar 

  • Grobbelaar JU (2012) Microalgae mass culture: the constraints of scaling-up. J Appl Phycol 24:315–318. https://doi.org/10.1007/s10811-011-9728-6

    Article  CAS  Google Scholar 

  • Hadiyanto H, Elmore S, Van Gerven T, Stankiewicz A (2013) Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem Eng J 217:231–239. https://doi.org/10.1016/j.cej.2012.12.015

    Article  CAS  Google Scholar 

  • Han L, Huang C, Wang C (2008) Application of photosynthetic bacteria to the wastewater treatment. Weifang High Vocat Educ 1:18

    Google Scholar 

  • Han-chang S (2002) Industrial wastewater-types, amounts and effects. Encycl Life Support Syst I:1–6

    Google Scholar 

  • Hao J, Wang X, Wang H (2017) Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate. Front Environ Sci Eng 11:5

    Google Scholar 

  • Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448. https://doi.org/10.1039/c003068f

    Article  CAS  PubMed  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Harun R, Davidson M, Doyle M et al (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35:741–747. https://doi.org/10.1016/j.biombioe.2010.10.007

    Article  CAS  Google Scholar 

  • Hiegemann H, Herzer D, Nettmann E et al (2016) An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol 218:115–122

    CAS  PubMed  Google Scholar 

  • Ho NAD, Babel S, Sombatmankhong K (2018) Bio-electrochemical system for recovery of silver coupled with power generation and wastewater treatment from silver(I) diammine complex. J Water Process Eng 23:186–194. https://doi.org/10.1016/j.jwpe.2018.04.001

    Article  Google Scholar 

  • Holkar CR, Jadhav AJ, Pinjari DV et al (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366

    CAS  Google Scholar 

  • Hülsen T, Barry EM, Lu Y et al (2016) Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Res 100:486–495. https://doi.org/10.1016/j.watres.2016.04.061

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi O, Hirooka K (2012) Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour Technol 114:303–307

    CAS  PubMed  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C (2012) Urine utilisation by microbial fuel cells; energy fuel for the future. Phys Chem Chem Phys 14:94–98

    CAS  PubMed  Google Scholar 

  • Ishizaki A, Tanaka K (1991) Production of poly-β-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 71:254–257

    CAS  Google Scholar 

  • Jadhav DA, Ghosh Ray S, Ghangrekar MM (2017) Third generation in bio-electrochemical system research – a systematic review on mechanisms for recovery of valuable by-products from wastewater. Renew Sust Energ Rev 76:1022–1031. https://doi.org/10.1016/j.rser.2017.03.096

    Article  CAS  Google Scholar 

  • Jäger K, Bartók T, Ördög V, Barnabás B (2010) Improvement of maize (Zea mays L.) anther culture responses by algae-derived natural substances. S Afr J Bot 76:511–516. https://doi.org/10.1016/j.sajb.2010.03.009

    Article  CAS  Google Scholar 

  • Jahangiri E, Thomas I, Schulze A et al (2018) Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment. Sci Total Environ 624:309–322. https://doi.org/10.1016/j.scitotenv.2017.12.127

    Article  CAS  PubMed  Google Scholar 

  • Jamie A, Alshami AS, Maliabari ZO et al (2016) Immobilization and enhanced catalytic activity of lipase on modified MWCNT for oily wastewater treatment. Environ Prog Sustain Energy 35:1441–1449

    CAS  Google Scholar 

  • Jeong S-K, Ahn S-C, Kong I-S, Kim J-K (2008) Isolation and identification of a photosynthetic bacterium containing a high content of coenzyme Q 10. Fish Aquat Sci 11:172–176

    CAS  Google Scholar 

  • Jolivalt C, Brenon S, Caminade E et al (2000) Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J Membr Sci 180:103–113

    CAS  Google Scholar 

  • Kaewsuk J, Thorasampan W, Thanuttamavong M, Tae G (2010) Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. J Environ Manag 91:1161–1168. https://doi.org/10.1016/j.jenvman.2010.01.012

    Article  CAS  Google Scholar 

  • Kalogerakis N, Fava F, Corvini PF-X (2017) Bioremediation advances. N Biotechnol 38:41–42. https://doi.org/10.1016/j.nbt.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  • Kim JR, Zuo Y, Regan JM, Logan BE (2008) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:1120–1127

    CAS  PubMed  Google Scholar 

  • Kojima H, Ogawa M, Tamal S et al (1995) Oxidation ofglucose by glucose oxidase entrapped in hollow fibre membrane. J Chem Eng Jpn 28:623–626

    CAS  Google Scholar 

  • Kokabian B, Gude VG, Smith R, Brooks JP (2018) Evaluation of anammox biocathode in microbial desalination and wastewater treatment. Chem Eng J 342:410–419. https://doi.org/10.1016/j.cej.2018.02.088

    Article  CAS  Google Scholar 

  • Köller G, Möder M, Czihal K (2000) Peroxidative degradation of selected PCB: a mechanistic study. Chemosphere 41:1827–1834

    PubMed  Google Scholar 

  • Komala PS, Effendi AJ, Wneten IG, Wisjnuprapto (2011) Performance of Anoxic-oxic Membrane bioreactor for azo dye biodegradation. Int J Civil Environ Eng 11:28–34

    Google Scholar 

  • Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater 22:890–906

    CAS  Google Scholar 

  • Kuenen JG (2008) Anammox bacteria : from discovery to application. Nat Rev Microbiol 6:320–326

    CAS  Google Scholar 

  • Kumar B, Agrawal K, Bhardwaj N et al (2018) Advances in concurrent bioelectricity generation and bioremediation through microbial fuel cells. In: Microbial fuel cell technology for bioelectricity. Springer, pp 211–239

    Google Scholar 

  • Kuntke P, Åšmiech K, Bruning H et al (2012) Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res 46:2627–2636

    CAS  PubMed  Google Scholar 

  • Lante A, Crapisi A, Krastanov A, Spettoli P (2000) Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem 36:51–58

    CAS  Google Scholar 

  • Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284:17–53

    CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    CAS  PubMed  Google Scholar 

  • Lee J-H, Han J, Choi H, Hur H-G (2007) Effects of temperature and dissolved oxygen on Se (IV) removal and Se (0) precipitation by Shewanella sp. HN-41. Chemosphere 68:1898–1905

    CAS  PubMed  Google Scholar 

  • Li R h, Li X y (2017) Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation. Bioresour Technol 245:615–624. https://doi.org/10.1016/j.biortech.2017.08.199

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang X, Li A et al (2011) Research progress of photosynthetic bacteria in wastewater treatment. Appl Mech Mater 71–78:2831–2835. https://doi.org/10.4028/www.scientific.net/AMM.71-78.2831

    Article  CAS  Google Scholar 

  • Li M, Pan Y, Huang L et al (2017) Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr (VI), Cu (II) and Cd (II) in self-driven MFC--MEC system. Environ Technol 38:615–628

    CAS  PubMed  Google Scholar 

  • Li J, Li J, Gao R et al (2018) A critical review of one-stage anammox processes for treating industrial wastewater: optimization strategies based on key functional microorganisms. Bioresour Technol 265:498–505. https://doi.org/10.1016/j.biortech.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Wei J, Li M, Huang X (2013) Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Front Environ Sci Eng 7:913–919

    CAS  Google Scholar 

  • Liu Z, Wang J, Wang C (2010) Tech-economic analysis on anoxic/Oxic membrane bioreactor (A/O-MBR) for domestic wastewater treatment. International conference challenges environment science computer engineering. Tech-economic 56–59. https://doi.org/10.1109/CESCE.2010.209

  • Liu Y, Huang L, Dong G et al (2018) Enhanced granulation and methane recovery at low load by downflow sludge circulation in anaerobic treatment of domestic wastewater. Bioresour Technol 249:851–857. https://doi.org/10.1016/j.biortech.2017.10.091

    Article  CAS  PubMed  Google Scholar 

  • Livingston AG (1994) Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters. J Chem Technol Biotechnol 60(2):117–124

    CAS  PubMed  Google Scholar 

  • Lopez C, Mielgo I, Moreira MT et al (2002) Enzymatic membrane reactors for biodegradation of recalcitrant compounds: application to dye decolourisation. J Biotechnol 99:249–257

    CAS  PubMed  Google Scholar 

  • Lu L, Ren ZJ (2016) Microbial electrolysis cells for waste biorefinery: a state of the art review. Bioresour Technol 215:254–264

    CAS  PubMed  Google Scholar 

  • Lu H, Peng M, Zhang G et al (2019) Brewery wastewater treatment and resource recovery through long term continuous-mode operation in pilot photosynthetic bacteria-membrane bioreactor. Sci Total Environ 646:196–205. https://doi.org/10.1016/j.scitotenv.2018.07.268

    Article  CAS  PubMed  Google Scholar 

  • Maloney AJ, Dong C, Campbell AS, Dinu CZ (2015) Emerging enzyme-based technologies for wastewater treatment. ACS Symp Ser 1192:69–85. https://doi.org/10.1021/bk-2015-1192.ch005

    Article  CAS  Google Scholar 

  • Mathuriya AS, Yakhmi JV (2014) Microbial fuel cells to recover heavy metals. Environ Chem Lett 12:483–494. https://doi.org/10.1007/s10311-014-0474-2

    Article  CAS  Google Scholar 

  • Meng F, Yang A, Wang H et al (2018) One-step treatment and resource recovery of high-concentration non-toxic organic wastewater by photosynthetic bacteria. Bioresour Technol 251:121–127. https://doi.org/10.1016/j.biortech.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93. https://doi.org/10.1016/j.jbiotec.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  • Mingxing L, Yanling Z (2010) Research on the technological parameters of the treatment of wastewater from traditional Chinese medicine production by photosynthetic bacteria+ coagulation. Ind Water Treat 30:33–35

    Google Scholar 

  • Mo W, Zhang Q (2013) Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants. J Environ Manag 127:255–267. https://doi.org/10.1016/j.jenvman.2013.05.007

    Article  CAS  Google Scholar 

  • Mohan SV, Velvizhi G, Krishna KV, Babu ML (2014) Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour Technol 165:355–364

    Google Scholar 

  • Molinos-Senante M, Gómez T, Garrido-Baserba M et al (2014) Assessing the sustainability of small wastewater treatment systems: a composite indicator approach. Sci Total Environ 497–498:607–617. https://doi.org/10.1016/j.scitotenv.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  • Mulder A, Van De Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–183

    CAS  Google Scholar 

  • Mutambanengwe C, Oyekola O (2008) Production of enzymes for industrial wastewater treatment: proof of concept and application. WRC Report No 1541/1/08. 1–58

    Google Scholar 

  • Nicolau E, Fonseca JJ, Rodríguez-Martínez JA et al (2014) Evaluation of a urea bioelectrochemical system for wastewater treatment processes. ACS Sustain Chem Eng 2:749–754. https://doi.org/10.1021/sc400342x

    Article  CAS  Google Scholar 

  • Onodera T, Sase S, Choeisai P et al (2013) Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process. Bioresour Technol 131:295–302

    CAS  PubMed  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    CAS  PubMed  Google Scholar 

  • Ozturk E, Cinperi NC (2018) Water efficiency and wastewater reduction in an integrated woolen textile mill. J Clean Prod 201:686–696

    CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42. https://doi.org/10.1016/j.biortech.2010.06.158

    Article  CAS  PubMed  Google Scholar 

  • Passos F, Gutiérrez R, Uggetti E et al (2017) Towards energy neutral microalgae-based wastewater treatment plants. Algal Res 28:235–243. https://doi.org/10.1016/j.algal.2017.11.006

    Article  Google Scholar 

  • Ponsano EHG, Paulino CZ, Pinto MF (2008) Phototrophic growth of Rubrivivax gelatinosus in poultry slaughterhouse wastewater. Bioresour Technol 99:3836–3842. https://doi.org/10.1016/j.biortech.2007.06.063

    Article  CAS  PubMed  Google Scholar 

  • Prachanurak P, Chiemchaisri C, Chiemchaisri W, Yamamotob K (2014) Biomass production from fermented starch wastewater in photo-bioreactor with internal overflow recirculation. Bioresour Technol 165:129–136. https://doi.org/10.1016/j.biortech.2014.03.119

    Article  CAS  PubMed  Google Scholar 

  • Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478. https://doi.org/10.1016/j.tsf.2009.03.195

    Article  CAS  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    CAS  PubMed  Google Scholar 

  • Rajesh PP, Jadhav DA, Ghangrekar MM (2015) Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum. Bioresour Technol 180:66–71

    CAS  PubMed  Google Scholar 

  • Ren HY, Kong F, Ma J et al (2018) Continuous energy recovery and nutrients removal from molasses wastewater by synergistic system of dark fermentation and algal culture under various fermentation types. Bioresour Technol 252:110–117. https://doi.org/10.1016/j.biortech.2017.12.092

    Article  CAS  PubMed  Google Scholar 

  • Rios GM, Belleville MP, Paolucci D, Sanchez J (2004) Progress in enzymatic membrane reactors – a review. J Membr Sci 242:189–196. https://doi.org/10.1016/j.memsci.2003.06.004

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  • Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324–333

    CAS  PubMed  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW et al (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640. https://doi.org/10.1016/j.ijhydene.2005.12.006

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K et al (2008a) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    CAS  PubMed  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008b) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634. https://doi.org/10.1021/es071720+

    Article  CAS  PubMed  Google Scholar 

  • Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752–1755. https://doi.org/10.1016/j.elecom.2009.07.008

    Article  CAS  Google Scholar 

  • Saejung C, Thammaratana T (2016) Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff. Environ Technol 37:3055–3061

    CAS  PubMed  Google Scholar 

  • Sahinkaya E, Sahin A, Yurtsever A, Kitis M (2018) Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater. J Environ Manag 222:420–427. https://doi.org/10.1016/j.jenvman.2018.05.057

    Article  CAS  Google Scholar 

  • Savant DV, Abdul-Rahman R, Ranade DR (2006) Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour Technol 97:1092–1104. https://doi.org/10.1016/j.biortech.2004.12.013

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Bajracharya S, Gildemyn S et al (2014) A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 140:191–208

    CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22. https://doi.org/10.1016/j.jenvman.2017.12.075

    Article  CAS  Google Scholar 

  • Shen Q, Yang R, Hua X et al (2011) Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem 46:1565–1571

    CAS  Google Scholar 

  • Shi X, Leong KY, Ng HY (2017) Anaerobic treatment of pharmaceutical wastewater: a critical review. Bioresour Technol 245:1238–1244. https://doi.org/10.1016/j.biortech.2017.08.150

    Article  CAS  PubMed  Google Scholar 

  • Shin C, Bae J (2018) Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: a critical review. Bioresour Technol 247:1038–1046. https://doi.org/10.1016/j.biortech.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  • Shokrollahzadeh S, Azizmohseni F, Golmohammad F et al (2008) Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bioresour Technol 99:6127–6133. https://doi.org/10.1016/j.biortech.2007.12.034

    Article  CAS  PubMed  Google Scholar 

  • Sirianuntapiboon S, Prasertsong K (2008) Treatment of molasses wastewater by acetogenic bacteria BP103 in sequencing batch reactor (SBR) system. Bioresour Technol 99:1806–1815

    CAS  PubMed  Google Scholar 

  • Stadlmair LF, Letzel T, Drewes JE, Grassmann J (2018) Enzymes in removal of pharmaceuticals from wastewater: a critical review of challenges, applications and screening methods for their selection. Chemosphere 205:649–661. https://doi.org/10.1016/j.chemosphere.2018.04.142

    Article  CAS  PubMed  Google Scholar 

  • Steinbusch KJJ, Hamelers HVM, Buisman CJN (2008) Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res 42:4059–4066

    CAS  PubMed  Google Scholar 

  • Strous M, Gerven VE, Zheng P et al (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation ( Anammox ) process in different reactor configurations. Water Res 31:1955–1962

    CAS  Google Scholar 

  • Sutherland DL, Howard-Williams C, Turnbull MH et al (2015) Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 184:222–229. https://doi.org/10.1016/j.biortech.2014.10.074

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Zheng P, Mahmood Q (2009) The shear force amendments on the slugging behavior of upflow Anammox granular sludge bed reactor. Sep Purif Technol 69:262–268. https://doi.org/10.1016/j.seppur.2009.07.029

    Article  CAS  Google Scholar 

  • Tang C, Zheng P, Chen T et al (2011a) Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process. Water Res 45:201–210. https://doi.org/10.1016/j.watres.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Zheng P, Wang C et al (2011b) Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res 45:135–144. https://doi.org/10.1016/j.watres.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Duan C, Yu C, Song Y (2017) Removal of nitrogen from wastewaters by anaerobic ammonium oxidation ( ANAMMOX ) using granules in upflow reactors. Environ Chem Lett 15:311–328. https://doi.org/10.1007/s10311-017-0607-5

    Article  CAS  Google Scholar 

  • Tao Y, Gao D, Fu Y et al (2012) Bioresource technology impact of reactor configuration on anammox process start-up: MBR versus SBR. Bioresour Technol 104:73–80. https://doi.org/10.1016/j.biortech.2011.10.052

    Article  CAS  PubMed  Google Scholar 

  • Tao H-C, Lei T, Shi G et al (2014) Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J Hazard Mater 264:1–7

    CAS  PubMed  Google Scholar 

  • Thatoi H, Das S, Mishra J et al (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399. https://doi.org/10.1016/j.jenvman.2014.07.014

    Article  CAS  Google Scholar 

  • Thygesen A, Thomsen AB, Possemiers S, Verstraete W (2010) Integration of microbial electrolysis cells (MECs) in the biorefinery for production of ethanol, H2 and phenolics. Waste Biomass Valoriz 1:9–20

    CAS  Google Scholar 

  • ToczyÅ‚owska-MamiÅ„ska R (2017) Limits and perspectives of pulp and paper industry wastewater treatment – A review. Renew Sust Energ Rev 78:764–772. https://doi.org/10.1016/j.rser.2017.05.021

    Article  CAS  Google Scholar 

  • Uysal O, Uysal FO, Ekinci K (2015) Evaluation of microalgae as microbial fertilizer. Eur J Sustain Dev 4:77–82

    Google Scholar 

  • Van Eerten-Jansen MCAA, Ter Heijne A, Grootscholten TIM et al (2013) Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain Chem Eng 1:513–518

    Google Scholar 

  • Vashi H, Iorhemen OT, Tay JH (2018) Aerobic granulation: a recent development on the biological treatment of pulp and paper wastewater. Environ Technol Innov 9:265–274. https://doi.org/10.1016/j.eti.2017.12.006

    Article  Google Scholar 

  • Villano M, Aulenta F, Ciucci C et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090

    CAS  PubMed  Google Scholar 

  • Vladisavljević GT (2015) Biocatalytic membrane reactors. In: Saha B (ed) Catalytic reactors. Berlin/Boston, Walter de Gruyter GmbH, pp 51–102

    Google Scholar 

  • Wang FF, Liu WW (1999) Application of photosynthetic microbe to the treatment of aginomoto sewage. Fujian Environ 16:17–20

    CAS  Google Scholar 

  • Wang X, Feng Y, Liu J et al (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25:2639–2643

    CAS  PubMed  Google Scholar 

  • Wang K, Abdala AA, Hilal N et al (2017) Mechanical characterization of membranes. In: Hilal N, Ismail AF, Matsuura T, Oatley-Radcliffe D (eds) Membrane characterization, pp 259–306

    Google Scholar 

  • Watson SD, Akhurst T, Whiteley CG et al (2004) Primary sludge floc degradation is accelerated under biosulphidogenic conditions: enzymological aspects. Enzyme Microb Technol 34:595–602. https://doi.org/10.1016/j.enzmictec.2004.01.004

    Article  CAS  Google Scholar 

  • Whiteley C, Pletschke B, Rose P, Ngesi N (2002a) Specific sulphur metabolites stimulate $β$-glucosidase activity in an anaerobic sulphidogenic bioreactor. Biotechnol Lett 24:1509–1513

    CAS  Google Scholar 

  • Whiteley CG, Heron P, Pletschke B et al (2002b) The enzymology of sludge solubilisation utilising sulphate reducing systems: properties of proteases and phosphatases. Enzyme Microb Technol 31:419–424. https://doi.org/10.1016/S0141-0229(02)00100-X

    Article  CAS  Google Scholar 

  • Whiteley CG, Enongene G, Pletschke BI et al (2003) Co-digestion of primary sewage sludge and industrial wastewater under anaerobic sulphate reducing conditions: enzymatic profiles in a recycling sludge bed reactor. Water Sci Technol 48:129–138

    CAS  PubMed  Google Scholar 

  • Windey K, Bo I, De ÃWV (2005) Oxygen-limited autotrophic nitrification – denitrification ( OLAND ) in a rotating biological contactor treating high-salinity wastewater. Water Res 39:4512–4520. https://doi.org/10.1016/j.watres.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Zou S, Zhang B et al (2018) Forward osmosis promoted in-situ formation of struvite with simultaneous water recovery from digested swine wastewater. Chem Eng J 342:274–280. https://doi.org/10.1016/j.cej.2018.02.082

    Article  CAS  Google Scholar 

  • Xiang Z, Yao Ho F, Yuan-song W (2003) A pilot scale anoxic/oxic membrane bioreactor (A/O MBR) for woolen mill dyeing wastewater treatment. J Environ Sci (China) 15:449–455

    Google Scholar 

  • Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46:11459–11466

    CAS  PubMed  Google Scholar 

  • Xu Q, Hamid A, Wen X et al (2014) Fenton-Anoxic–Oxic/MBR process as a promising process for avermectin fermentation wastewater reclamation. Sep Purif Technol 134:82–89. https://doi.org/10.1016/j.seppur.2014.07.029

    Article  CAS  Google Scholar 

  • Yan X, Bilad MR, Gerards R et al (2012) Comparison of MBR performance and membrane cleaning in a single-stage activated sludge system and a two-stage anaerobic/aerobic (A/A) system for treating synthetic molasses wastewater. J Membr Sci 394:49–56

    Google Scholar 

  • Yan L, Ye X, Linhardt RJ et al (2018a) Full recovery of value-added compounds from citrus canning processing water. J Clean Prod 176:959–965. https://doi.org/10.1016/j.jclepro.2017.12.018

    Article  CAS  Google Scholar 

  • Yan T, Ye Y, Ma H et al (2018b) A critical review on membrane hybrid system for nutrient recovery from wastewater. Chem Eng J 348:143–156. https://doi.org/10.1016/j.cej.2018.04.166

    Article  CAS  Google Scholar 

  • Yang Y, Zhang L, Han X et al (2016) Determine the operational boundary of a pilot-scale single-stage partial nitritation/anammox system with granular sludge. Water Sci Technol 73:2085–2092. https://doi.org/10.2166/wst.2016.052

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Zhang G, Yang G et al (2017) Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria. Bioresour Technol 232:408–411

    CAS  PubMed  Google Scholar 

  • Yen H-W, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    CAS  PubMed  Google Scholar 

  • Zhai R, Zhang B, Wan Y et al (2013) Chitosan--halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309

    CAS  Google Scholar 

  • Zhang F, Zheng B, Zhang J et al (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem C 114:8469–8473

    CAS  Google Scholar 

  • Zhang Y, Liu T, Wang Q et al (2012a) Synthesis of novel poly (N, N-diethylacrylamide-co-acrylic acid)(P (DEA-co-AA)) microgels as carrier of horseradish peroxidase immobilization for pollution treatment. Macromol Res 20:484–489

    CAS  Google Scholar 

  • Zhang Z, Donaldson AA, Ma X (2012b) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30:913–919

    CAS  PubMed  Google Scholar 

  • Zhang L, Liu M, Zhang S et al (2015a) Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge. Chemosphere 140:114–118. https://doi.org/10.1016/j.chemosphere.2015.02.001

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhang S, Peng Y et al (2015b) Nitrogen removal performance and microbial distribution in pilot- and full-scale integrated fixed-biofilm activated sludge reactors based on nitritation-anammox process. Bioresour Technol 196:448–453. https://doi.org/10.1016/j.biortech.2015.07.090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors acknowledge Department of Biotechnology, Government of India (Grant No. BT/304/ NE/TBP/2012 and BT/PR7333/PBD/26/373/2012), for financially supporting the work. B.K. acknowledges Jawaharlal Nehru Memorial Fund, New Delhi, for providing Doctoral Studies Scholarship. K.A. acknowledges the financial support provided by Central University of Rajasthan, Ajmer, India. N.B. gratefully acknowledges University Grants Commission, Government of India, for providing RGNF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, B., Agrawal, K., Bhardwaj, N., Chaturvedi, V., Verma, P. (2019). Techno-Economic Assessment of Microbe-Assisted Wastewater Treatment Strategies for Energy and Value-Added Product Recovery. In: Arora, P. (eds) Microbial Technology for the Welfare of Society. Microorganisms for Sustainability, vol 17. Springer, Singapore. https://doi.org/10.1007/978-981-13-8844-6_7

Download citation

Publish with us

Policies and ethics