Skip to main content

Bioremediation of Persistent Toxic Substances: From Conventional to New Approaches in Using Microorganisms and Plants

  • Chapter
  • First Online:
Microbial Technology for the Welfare of Society

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 17))

Abstract

Bioremediation – the use of microorganisms and/or plants to detoxify different environmental compartments polluted with organic and inorganic compounds – received an increased attention across scientific media for its eco-friendliness, efficiency, and low cost. After the Stockholm Convention, persistent toxic substances (PTS) have also received an increased attention due to their persistence and bioaccumulative and toxic characteristics. Different bioremediation options started to be used to degrade and/or remove PTS. One of the major breakthroughs of our century is the use of bioremediation of genetically modified microorganisms (GMMOs) and plant-microbe interactions, including plants engineered by transferring different genes from organisms such as other plants, animals, bacteria, or fungi, meaning the so-called transgenic plants. Accordingly, this chapter discusses major in situ and ex situ technologies used for PTS removal by bioremediation, their limitations and advantages in practice, and future perspectives by applying genetically engineered alternatives to improve process efficiency and for successful application at a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatenh E, Gizaw B, Tsegaye Z et al (2017) Application of microorganisms in bioremediation-review. J Environ 1(1):02–09

    Google Scholar 

  • Abdul Salam J, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29:475–487

    CAS  PubMed  Google Scholar 

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420

    CAS  PubMed  Google Scholar 

  • Abraham J, Gea T, Vicent T (2016) Impact of biostimulation and bioaugmentation as bioremediation systems on diesel contaminated soils. Environ Eng Manag J 15:1743–1753

    CAS  Google Scholar 

  • Almaguer-Cantú V, Morales-Ramos LH, Balderas-Rentería I (2011) Biosorption of lead (II) and cadmium (II) using Escherichia coli genetically engineered with the mice metallothionein I. Water Sci Technol 63(8):1607–1613

    PubMed  Google Scholar 

  • AMAP (2004) Persistent toxic substances, food security and indigenous peoples of the Russian North final report. Arctic Monitoring and Assessment Programme, AMAP Secretariat, Oslo, Norway

    Google Scholar 

  • Apostol LC, Gavrilescu M (2016) Conventional and emerging technologies for environmental bioremediation – current state, constraints, developments and perspectives. In: Gavrilescu M (ed) Biosorption and bioaccumulation: principles and applications in environmental bioremediation. Politehnium Publishing House, Iasi

    Google Scholar 

  • Argüello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transportP1B-ATPases. Biometals 20(3–4):233–248

    PubMed  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int J Environ Res Public Health 14(1):94

    PubMed Central  Google Scholar 

  • Bajaj S, Singh DK (2015) Biodegradation of persistent organic pollutants in soil, water and pristine sites by cold-adapted microorganisms: Mini review. Int Biodeterior Biodegrad 100:98–105

    CAS  Google Scholar 

  • Barakat AO (2004) Assessment of persistent toxic substances in the environment of Egypt. Environ Int 30(3):309–322

    CAS  PubMed  Google Scholar 

  • Barbeş L, Bărbulescu A (2017) Monitoring and statistical assessement of heavy metals in soil and leaves of Populus Nigra L. Environ Eng Manag J 16:187–196

    Google Scholar 

  • Barh A, Singh S, Chandra D, Pankaj KPR, Chandra S, Singh NK (2015) Enhanced bioremediation techniques for agricultural soils. Int J Curr Res Acad Rev 3(7):166–173

    CAS  Google Scholar 

  • Bradl H, Xenidis A (2005) Chapter 3: Remediation techniques. In: Bradl HB (ed) Interface science and technology, vol 6. Elsevier Ltd.

    Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcusgeothermalis for bioremediation of hightemperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral L, Soares CR, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31(11):1655–1664

    CAS  PubMed  Google Scholar 

  • Cao X, Yang C, Liu R, Li Q, Zhang W, Liu J, Song C, Qiao C, Mulchandani A (2013) Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobiumjaponicum UT26 with surface-displayed organophosphorus hydrolase. Biodegradation 24(2):295–303

    CAS  PubMed  Google Scholar 

  • Carpene E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21(Suppl 1):35–39

    CAS  PubMed  Google Scholar 

  • CEC (2018) Persistent bioaccumulative toxic substances, Commission for Environmental Cooperation. http://www3.cec.org/islandora/en/item/992-north-american-mosaic-overview-key-environmental-issues-en.pdf. Accessed 5 Nov 2018

  • Chen JM, Hao OJ (1998) Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol 28(3):219–251

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182

    CAS  Google Scholar 

  • Cojocaru P, CotiuscaZauca D, Biali G (2016) Decontamination of soils polluted with petroleum products by bioremediation. Environ Eng Manag J 15:1419–1425

    CAS  Google Scholar 

  • Cozma P, Hlihor RM, Apostol LC, Gavrilescu M (2016) Biosystems and bioreactors for biosorption and bioaccumulation. In: Gavrilescu M (ed) Biosorption and Bioaccumulation: Pricimples and Applications in Environmental Bioremediation. Politehnium Publishing House, Iasi

    Google Scholar 

  • da Costa ACA, Duta FP (2001) Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis. Braz J Microbiol 32(1):1. https://doi.org/10.1590/S1517-83822001000100

    Article  Google Scholar 

  • Daghan H, Arslan M, Uygur V, Koleli N, Eren A (2010) The cadmium phytoextraction efficiency of ScMTII gene bearing transgenic tobacco plant. Biotechnol Biotechnol Equip 24(3):1974–1978

    CAS  Google Scholar 

  • Deng S, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39(10):2167–2177

    CAS  PubMed  Google Scholar 

  • Deng X, Yi XE, Liu G (2007) Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J Hazard Mater 139(2):340–344

    CAS  PubMed  Google Scholar 

  • Dick J (2014) Phytoremediation of Lindane in Transgenic Arabidopsis thaliana Expressing a Bacterial HCH-dehydrochlorinase (LinA) Protein. Doctoral dissertation. University of Sheffield

    Google Scholar 

  • Dixit R, Malaviya WD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Kumar Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    CAS  Google Scholar 

  • Dlugonski J (2016) Microbial biodegradation. Academic, Caister

    Google Scholar 

  • EEA (2014a) Most frequently applied remediation techniques for contaminated soil, European Environment Agency. https://www.eea.europa.eu/data-and-maps/daviz/dominant-remediation-technologies-for-contaminated-1#tab-chart_1_filters=%7B"rowFilters"%3A%7B%7D%3B"columnFilters"%3A%7B%7D%3B"sortFilter"%3A%5B"country_region"%5D%7D. Accessed 8 Nov 2018

  • EEA (2014b) Contaminants affecting soil and groundwater in Europe. European Environment Agency. https://www.eea.europa.eu/data-and-maps/daviz/overview-of-contaminants-affecting-soil#tab-chart_3. Accessed 10 Nov 2018

  • Elekes CC (2014) Chapter 10: Eco-technological solutions for the remediation of polluted soil and heavy metal recovery. In: Environmental risk assessment of soil contamination. InTechEditure, pp 309–335

    Google Scholar 

  • EPA (1994) How to evaluate alternative cleanup technologies for underground storage tank sites. A guide for corrective action plan reviewers. https://www.epa.gov/sites/production/files/2014-03/documents/tum_ch4.pdf. Accessed 24 Oct 2017

  • EPA (1998) An analysis of composting as an environmental remediation technology, United States Environmental Protection Agency EPA530-R-98-008 April 1998. https://www.epa.gov/sites/production/files/2015-09/documents/analpt_all.pdf. Accessed on 23 Oct 2018

  • Eslami E, Joodat SHS (2018) Bioremediation of oil and heavy metal contaminated soil in construction sites: a case study of using bioventing-biosparging and phytoextraction techniques. Geophysics. https://arxiv.org/pdf/1806.03717.pdf

  • Gavrilescu M, Chisti Y (2005) Biotechnology-a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499

    CAS  PubMed  Google Scholar 

  • Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2–3):475–510

    CAS  PubMed  Google Scholar 

  • Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32(1):147–156

    CAS  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble Quinone reductases of Pseudomonas putida that defends against H2O2. J Biol Chem 280(24):22590–22595

    CAS  PubMed  Google Scholar 

  • Hamby DM (2000) Site remediation techniques supporting environmental restoration activities: a review. University of Michigan press, Michigan

    Google Scholar 

  • He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H et al (2015) Overexpression of bacterial g-glutamyl cysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol 205:240–254

    CAS  PubMed  Google Scholar 

  • Hlihor RM, Diaconu M, Gavrilescu M (2011) Influence of pH on Cr(VI) reduction and removal by Saccharomyces cerevisiae. Bull Polytechnic Inst Iasi Sect Chem Chem Eng LVII(LXI), pp 147–153

    Google Scholar 

  • Hlihor RM, Diaconu M, Leon F, Curteanu S, Tavares T, Gavrilescu M (2015) Experimental analysis and mathematical prediction of Cd(II) removal by biosorption using support vector machines and genetic algorithms. New Biotechnol 32(3):358–368

    CAS  Google Scholar 

  • Hlihor RM, Apostol LC, Smaranda C, Simion IM, Fortuna EM, Diaconu M, Bulgariu L, Gavrilescu M (2016) Target compounds and pollutants, biosorbents and bioaccumulators. In: Gavrilescu M (ed) Biosorption and bioaccumulation: principles and applications in environmental bioremediation. Politehnium Publishing House, Iasi

    Google Scholar 

  • Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M (2017) Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): batch and column studies. Process Saf Environ 108:44–56

    CAS  Google Scholar 

  • Hu G-J, Chen S-L, Zhao Y-G, Sun C, Li J, Wang H (2009) Persistent toxic substances in agricultural soils of Lishui County, Jiangsu Province, China. Bull Environ Contam Toxicol 82(1):48–54

    CAS  PubMed  Google Scholar 

  • Hua L, Wu W, Liu Y et al (2008) Effect of composting on polycyclic aromatic hydrocarbons removal in sewage sludge. Water Air Soil Pollut 193:259–267

    CAS  Google Scholar 

  • Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Mahmudur Rahman M, Wang F, Shaheen S, Hussain J, Reichenauer STG (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628–629:1582–1599

    PubMed  Google Scholar 

  • Ibañez S, Talano M, Ontanon O, Suman J, Medina MI, Macek T, Agostini E (2016) Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. New Biotechnol 33(5. Pt B):625–635

    Google Scholar 

  • Iosob G-A, Prisecaru M, Stoica I, Călin M, Cristea TO (2016) Biological remediation of soil polluted with oil products: an overview of available technologies. http://pubs.ub.ro/dwnl.php?id=SCSB201602V25S01A0014. Accessed 23 Oct 2018

  • Jafari M (2013) Bioremediation and genetically modified organisms. In: Goltapeh EM et al (eds) Fungi as bioremediators. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kao CM, Chien HY, Surampalli RY, Sung WP (2009) Application of biopile system for the remediation of petroleum-hydrocarbon contaminated soils. In: World environmental and water resources congress. Kansas City, Missouri, pp 17–21

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1. https://doi.org/10.4061/2011/805187

    Article  CAS  Google Scholar 

  • Kasi M, McEvoy J, Padmanabhan G, Khan E (2010) In situ groundwater remediation using enricher reactor – permeable reactive biobarrier. In: Proceedings of the Water Environment Federation. WEFTEC 2010: Session 1 through Session, vol 10, pp 300–317

    Google Scholar 

  • Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Technol 44(16):6343–6349

    CAS  PubMed  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J Agric Food Chem 54:2985–2991

    CAS  PubMed  Google Scholar 

  • Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    PubMed  Google Scholar 

  • Kumar D, Pannu R (2018) Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. Bioresour Bioprocess 5:29

    CAS  Google Scholar 

  • Kumar S, Dagar VK, Khasa YP, Kuhad RC (2013) Genetically modified microorganisms (GMOs) for bioremediation. In: Kuhad R, Singh A (eds) Biotechnology for environmental management and resource recovery. Springer, New Delhi

    Google Scholar 

  • Kumar D, Kumar A, Sharma J (2016) Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W. Bioresour Bioprocess 3(1):53

    PubMed  PubMed Central  Google Scholar 

  • Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR (2017) Phytoremediation and rhizoremediation: uptake, mobilization and sequestration of heavy metals by plants. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore

    Google Scholar 

  • Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61(3):1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lammel G, Audy O, Besis A, Efstathiou EK, Kohoutek J et al (2015) Air and seawater pollution and air–sea gas exchange of persistent toxic substances in the Aegean Sea: spatial trends of PAHs, PCBs, OCPs and PBDEs. Environ Sci Pollut Res Int 22(15):11301–11313

    CAS  PubMed  Google Scholar 

  • Lan WS, Lu TK, Qin ZF, Shi XJ, Wang JJ, Hu YF, Chen B, Zhu YH, Liu Z (2014) Genetically modified microorganism Spingomonaspaucimobilis UT26 for simultaneously degradation of methyl-parathion and c-hexachlorocyclohexane. Ecotoxicology 23(5):840–850

    CAS  PubMed  Google Scholar 

  • Liu Z, Hong Q, Xu JH, Jun W, Li SP (2006) Construction of a genetically engineered microorganism for degrading organophosphate and carbamate pesticides. Int Biodeterior Biodegrad 58:65–69

    CAS  Google Scholar 

  • Ma Y, Lin J, Zhang C, Ren Y, Lin J (2011) Cd(II) and As(III) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins. J Hazard Mater 185(2–3):1605–1608

    CAS  PubMed  Google Scholar 

  • Malschi D, Muntean L, Oprea I, Roba C, Popita G, Stefanescu L, Malschi Florian B, Rinba E (2018) Research on wastewaters bioremediation with aquatic species for constructed wetlands. Environ Eng Manag J 17:1753–1764

    Google Scholar 

  • Marihal AK, Jagadeesh KS (2013) Plant–microbe interaction: a potential tool for enhanced bioremediation. In: Arora N (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi

    Google Scholar 

  • Matsumoto E, Kawanaka Y, Yun SJ, Oyaizu H (2009) Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Appl Microbiol Biotechnol 84(2):205–216. https://doi.org/10.1007/s00253-009-2094-5

    Article  CAS  PubMed  Google Scholar 

  • Matthies M, Solomon K, Vighi M, Gilman A, Tarazona JV (2016) The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Environ Sci Process Impacts 18(9):1114–1128

    CAS  PubMed  Google Scholar 

  • Michaud L, Di Marco G, Bruni V, Lo Giudice A (2007) Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar Pollut Bull 54:1754–1761

    CAS  PubMed  Google Scholar 

  • Minh NH, Anh DH, Tri TM, Anh HQ, Ngoc Mai PT, Nam VD, Viet PH, Minh TB (2016) Persistent toxic substances in Vietnam: a review of environmental contamination and human exposure. In: Persistent organic chemicals in the environment: status and trends in the Pacific Basin countries I contamination status. ACS Symposium Series, vol 1243, pp 55–83

    Google Scholar 

  • Moermond CTA, Janssen MPM, de Knecht JA, Montforts MHMM, Peijnenburg WJGM, Zweers PGPC, Sijm DTHM (2011) PBT assessment using the revised Annex XIII of REACH: A comparison with other regulatory frameworks, Integr Environ Assess Manag 8(2):359–371

    CAS  PubMed  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. https://doi.org/10.3389/fpls.2016.00303

    Article  PubMed  PubMed Central  Google Scholar 

  • Murínová S, Dercová K, Dudášová H (2014) Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. Int Biodeterior Biodegrad 91:52–59

    Google Scholar 

  • Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus conidiobolus 03-1-56 isolated from litter. Indian J Microbiol 48:134–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7

    CAS  PubMed  Google Scholar 

  • Nie M, Wang Y, Yu J, Xiao M, Jiang L et al (2011) Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS One 6(3):e17961. https://doi.org/10.1371/journal.pone.0017961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259

    CAS  PubMed  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12). https://doi.org/10.3390/ijerph14121504

    PubMed Central  Google Scholar 

  • Pavel LV, Gavrilescu M (2008) Overview of ex situ decontamination techniques for soil cleanup. Environ Eng Manag J 7:815–834

    Google Scholar 

  • Pavlíková D, Macek T, Macková M, Surá M, Száková J, Tlustoš P (2004) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50(12):513–517

    Google Scholar 

  • Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J et al (2014a) Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 26:100–110

    CAS  PubMed  Google Scholar 

  • Peng R-H, Fu X-Y, Zhao W, Tian Y-S, Zhu B, Han H-J et al (2014b) Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. Environ SciTechnol 48:12824–12832

    CAS  Google Scholar 

  • Prabha R, Singh DP, Verma MK (2017) Microbial interactions and perspectives for bioremediation of pesticides in the soils. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore

    Google Scholar 

  • Quintelas C, Pereira R, Kaplan E, Tavares T (2013) Removal of Ni(II) from aqueous solutions by an Arthrobacter viscosus biofilm supported on zeolite: from laboratory to pilot scale. Bioresour Technol 142:368–374

    CAS  PubMed  Google Scholar 

  • RBA PST (2003) Regionally based assessment of persistent toxic substances, Global report 2003. UNEP Chemicals, Châtelaine

    Google Scholar 

  • Rein A, Fernqvist MM, Mayer P, Trapp S, Bittens M, Karlson UG (2007) Degradation of PCB congeners by bacterial strains. Appl Microbiol Biotechnol 77:469–481

    CAS  PubMed  Google Scholar 

  • Roșca M, Hlihor RM, Comăniță ED, Cozma P, Simion IM, Gavrilescu M (2017a) The potential of some indigenous microorganisms and plants for the removal of heavy metals from soil. Sci Papers Hortic Ser 60:65–72

    Google Scholar 

  • Roșca M, Hlihor RM, Diaconu M, Tavares T, Gavrilescu M (2017b) Efficiency of living Bacillus megaterium in cadmium removal from aqueous solutions. Paper presented at the 9th international conference on environmental engineering and management – circular economy and environmental sustainability, Bologna, Italy, 6–9 September 2017

    Google Scholar 

  • Roșca M, Hlihor RM, Cozma P, Dragoi EN, Diaconu M, Silva B, Tavares T, Gavrilescu M (2018) Comparison of Rhodotorula sp. and Bacillus megaterium in the removal of cadmium ions from liquid effluents. Green Processes Synth 7:74–88

    Google Scholar 

  • Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodrıguez-Vazquez R, Poggi-Varaldo H (2002) Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6(4):559–568

    Google Scholar 

  • Saavedra JM, Acevedo F, González M, Seeger M (2010) Mineralization of PCBs by the genetically modified strain Cupriavidusnecator JMS34 and its application for bioremediation of PCBs in soil. Appl Microbiol Biotechnol 87(4):1543–1554

    CAS  PubMed  Google Scholar 

  • Saez JM, Alvarez A, Fuentes MS, Amoroso MJ, Benimeli CS (2017) An overview on microbial degradation of lindane. In: Singh S (ed) Microbe-induced degradation of pesticides. Environmental science and engineering. Springer, Cham

    Google Scholar 

  • Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27(8):1747–1754

    CAS  Google Scholar 

  • Salam JA, Das N (2014) Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J Microbiol Biotechnol 30(4):1301–1313

    CAS  PubMed  Google Scholar 

  • Sasek V, Bhatt M, Cajthaml T, Malachová K, Lednická D (2003) Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch Environ Contam Toxicol 44(3):336–342

    CAS  PubMed  Google Scholar 

  • Sharma J, Fulekar MH (2009) Potential of Citrobacterfreundii for bioaccumulation of heavy metal – copper. Biol Med 1(3):7–14

    CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22

    CAS  Google Scholar 

  • Singh BK, Kuhad RC (1999) Biodegradation of lindane (g-hexachlorocyclohexane) by the white-rot fungus Trameteshirsutus. Lett Appl Microbiol 28(3):238–241

    CAS  PubMed  Google Scholar 

  • Singh S, Sherkhane PD, Kale SP, Eapen S (2011) Expression of a human cytochrome P4502E1 in Nicotianatabacum enhances tolerance and remediation of g-hexachlorocyclohexane. New Biotechnol 28(4):423–429

    CAS  Google Scholar 

  • Smaranda C, Hlihor RM, Apostol LC, Bulgariu L, Diaconu M, Fortuna ME, Gavrilescu M (2016) Biosorption and bioaccumulation: principles and potential applications in bioremediation. In: Gavrilescu M (ed) Biosorption and Bioaccumulation: Principles and Applications in Environmental Bioremediation. Politehnium Publishing House, Iasi

    Google Scholar 

  • Srivastava NK, Jha MK, Mall ID, Singh D (2010) Application of genetic engineering for chromium removal from industrial wastewater. Int J Environ Ecol Eng 4(12):433–438

    Google Scholar 

  • Stockholm Convention (2001) Stockholm convention on persistent organic pollutants. http://chm.pops.int/Portals/0/Repository/convention_text/UNEP-POPS-COP-CONVTEXT-FULL.English.PDF. Accessed 15 Oct 2018

  • Stockholm Convention (2008) All POPs listed in the Stockholm Convention. http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx. Accessed 12 Oct 2018

  • Taguchi K, Motoyama M, Iida T, Kudo T (2007) Polychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of rhodococci. Biosci Biotechnol Biochem 71(5):1136–1144

    CAS  PubMed  Google Scholar 

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK (2012) Nakanishi H The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7(12):1605–1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truua J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9. https://doi.org/10.2174/1874070720150430E009

  • Turnau K et al (2006) Role of mycorrhizal fungi in phytoremediation and toxicity monitoring of heavy metal rich industrial wastes in Southern Poland. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring, protection and remediation, NATO science series, vol 69. Springer, Dordrecht

    Google Scholar 

  • Van Aken B, Doty SL (2010) Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds. Biotechnol Genet Eng Rev 26:43–64

    PubMed  Google Scholar 

  • Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R (2014) Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genomics 15:1014. https://doi.org/10.1186/1471-2164-15-1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegrad 60:96–102

    CAS  Google Scholar 

  • Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3(5):475–486. https://doi.org/10.1111/j.1467-7652.2005.00138.x

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ren H, Pan H, Liu J, Zhang L (2015) Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase. J Hazard Mater 286:269–275. https://doi.org/10.1016/j.jhazmat.2014.12.049

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhi J, Liu X, Zhang H, Liu H, Xu J (2018) ITransgenic tobacco plants expressing a P1B-ATPase gene from Populustomentosa Carr (PtoHMA5) demonstrate improved cadmium transport. Int J Biol Macromol 113:655–661

    CAS  PubMed  Google Scholar 

  • Wasilkowski D, Swędzioł Ż, Mrozik A (2012) The applicability of genetically modified microorganisms in bioremediation of contaminated environments. Chemik 66(8):817–826

    CAS  Google Scholar 

  • Weiland-Bräuer N, Fischer MA, Schramm KW, Schmitz RA (2017) Polychlorinated Biphenyl (PCB)-degrading potential of microbes present in a cryoconite of Jamtalferner Glacier. Front Microbiol 8:1105. https://doi.org/10.3389/fmicb.2017.01105

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong MH, Armour M-A, Naidu R, Man M (2012) Persistent toxic substances: sources, fates and effects. Rev Environ Health 27(4):207–213

    CAS  PubMed  Google Scholar 

  • World Health Organization (2014) Frequently asked questions on genetically modified foods. http://www.who.int/foodsafety/areas_work/food-technology/faq-genetically-modified-food/en/. Accessed 5 Nov 2018

  • Zhang Y, Liu J (2011) Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J Hazard Mater 189(1–2):357–362. https://doi.org/10.1016/j.jhazmat.2011.02.042

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jiang X, Lu L, Xiao W (2015) Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1. PLoS One 10(7):e0131450. https://doi.org/10.1371/journal.pone.0131450.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-III-P4-ID-PCE-2016-0683, Contract no. 65/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gavrilescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosca, M., Hlihor, RM., Gavrilescu, M. (2019). Bioremediation of Persistent Toxic Substances: From Conventional to New Approaches in Using Microorganisms and Plants. In: Arora, P. (eds) Microbial Technology for the Welfare of Society. Microorganisms for Sustainability, vol 17. Springer, Singapore. https://doi.org/10.1007/978-981-13-8844-6_14

Download citation

Publish with us

Policies and ethics