Skip to main content

Biotechnological Applications of Lipases in Flavour and Fragrance Ester Production

  • Chapter
  • First Online:
Microbial Technology for the Welfare of Society

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 17))

Abstract

Lipases are of widespread occurrence throughout the Earth’s flora and fauna. However, microbial flora comprising bacteria, fungi and yeast has drawn more attention in biotechnological applications. Lipases (EC 3.1.1.3) include the hydrolase family of enzymes that possess the unique feature of acting as an interface between the aqueous and non-aqueous phases, and this feature distinguishes them from esterase. Owing to the most versatile biocatalyst, they bring about a range of bioconversion reactions such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis.

Lipase is drawing attention due to its potential applications for flavour and fragrance ester synthesis. Flavour and fragrance ester synthesis by biotechnological processes plays nowadays an increasing role in the food- and pharmaceutical-based industries. This is the result, amongst other things, of scientific advances in biological processes, making use of microorganisms or enzymes as an alternative to chemical synthesis, combined with recent developments in analytical techniques. In this chapter, a comprehensive and illustrious survey is made of the applied aspects of microbial lipases in flavour and fragrance ester synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almarsson O, Klibanov AM (1996) Remarkable activation of enzymes in nonaqueous media by denaturing organic cosolvents. Biotechnol Bioeng 49:87–92

    CAS  PubMed  Google Scholar 

  • Angello AJ, Vercellotti JR (1989) Phospholipids and fatty acid esters of alcohols. In: Charalambous G, Doxastakis G (eds) Food emulsifier chemistry, technology, functional properties and applications. Elsevier, Amsterdam

    Google Scholar 

  • Arcos JA, Bernabe M, Otero C (1998) Quantitative enzymatic production of 6-O-acylglucose esters. Biotechnol Bioeng 57:505–509

    CAS  PubMed  Google Scholar 

  • Athawale V, Manjrekar N, Athawale M (2002) Lipase-catalyzed synthesis of geranyl methacrylate by transesterification: study of reaction parameters. Tetrahedron Lett 43:4797–4800

    CAS  Google Scholar 

  • Bauer AR, Garbe D, Surgurg H (1990) Common fragrance and flavour materials, 2nd revised edn. VCH, New York, pp 67–81

    Google Scholar 

  • Beisson F, Tiss A, Rivière C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 2:133–153

    Google Scholar 

  • Bell G, Janssen AEM, Halling PJ (1997) Water activity fails to predict critical hydration level for enzyme activity in polar organic solvents: Interconversion of water concentrations and activities. Enzym Microb Technol 20:471–477

    CAS  Google Scholar 

  • Bevinakatti HS, Banerji AA (1988) Lipase-catalysis: factors governing transesterification. Biotechnol Lett 6:397–398

    Google Scholar 

  • Bloomer S, Adlercreutz P, Mattiasson B (1992) Kilogram-scale ester synthesis of acyl donor and its use in lipase-catalyzed interesterifications. J Am Oil Chem Soc 69:966–973

    CAS  Google Scholar 

  • Bornscheuer UT, Bessler C, Srinivas R, Krishna SH (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437

    CAS  PubMed  Google Scholar 

  • Bourg-Garros S, Razafindramboa N, Pavia AA (1998) Large-scale preparation of (Z)-3-hexen-1-yl acetate using Candida antarctica immobilized lipase in hexane. Biotechnol Bioeng 59:495–500

    CAS  PubMed  Google Scholar 

  • Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg P, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770

    CAS  PubMed  Google Scholar 

  • Castillo E, Pezzotti F, Navarro A, Lopez-Munguia A (2003) Lipase catalysed synthesis of xylitol monoesters: solvent engineering approach. J Biotechnol 102:251–259

    CAS  PubMed  Google Scholar 

  • Cherukuvada SL, Seshasayee AS, Raghunathan K, Anishetty S, Pennathur G (2005) Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations. PLoS Comput Biol 1:e28

    PubMed  PubMed Central  Google Scholar 

  • Chiang WD, Chang SW, Shieh CJ (2003) Studies on the optimized lipase-catalyzed biosynthesis of cis-3-hexen-1-yl acetate in n-hexane. Process Biochem 38:1193–1199

    CAS  Google Scholar 

  • Chowdary GV, Divakar S, Prafulla SG (2002) Modeling on isoamyl isovalerate synthesis from Rhizomucor miehei lipase in organic media: optimization studies. World J Microbiol Biotechnol 18:179–185

    CAS  Google Scholar 

  • Claon PA, Akoh CC (1993) Enzymatic synthesis of geraniol and citronellol esters by direct esterification in n-hexane. Biotechnol Lett 15:1211–1216

    CAS  Google Scholar 

  • Claon PA, Akoh CC (1994) Effect of reaction parameters on SP435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent. Enzym Microb Technol 16:835–838

    CAS  Google Scholar 

  • Compton DL, Laszlo JA, Berhow MA (2000) Lipase-catalyzed synthesis of ferulate esters. J Am Oil Chem Soc 77:513–519

    CAS  Google Scholar 

  • de Souza MCM, dos Santos KP, Freire RM, Barreto ACH, Fechine PBA, Gonçalves LRB (2017) Production of flavor esters catalyzed by lipase B from Candida antarctica immobilized on magnetic nanoparticles. Braz J Chem Eng 34(3):681–690

    Google Scholar 

  • Degn P, Zimmermann W (2001) Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnol Bioeng 74:483–491

    CAS  PubMed  Google Scholar 

  • Degn P, Pedersen LH, Duus J, Zimmermann W (1999) Lipase-catalyzed synthesis of glucose fatty acid esters in tert-butanol. Biotechnol Lett 21:275–280

    CAS  Google Scholar 

  • Devi NA, Radhika GB, Bhargavi RJ (2017) Lipase catalyzed transesterification of ethyl butyrate synthesis in n-hexane-a kinetic study. J Food Sci Technol 54(9):2871–2877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dias ALB, Santos PD, MartĂ­nez J (2018) Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: a review. J CO2 Util 23:159–178

    CAS  Google Scholar 

  • Dodson GG, Lawson DM, Winkler FK (1992) Structural and evolutionary relationships in lipase mechanism and activation. Faraday Discuss 93:95–105

    CAS  Google Scholar 

  • Dudal Y, Lortie R (1995) Influence of water activity on the synthesis of triolein catalyzed by immobilized Mucor miehei lipase. Biotechnol Bioeng 45:129–134

    CAS  PubMed  Google Scholar 

  • Evans JD, Sikdar SK (1990) Biodegradable plastics: an idea whose time has come. ChemTech 20:38–42

    CAS  Google Scholar 

  • From M, Adlercreutz P, Mattiasson B (1997) Lipase catalyzed esterification of lactic acid. Biotechnol Lett 19:315–317

    CAS  Google Scholar 

  • Gandhi NN, Sawant SB, Joshi JB (1995) Specificity of a lipase in ester synthesis: effect of alcohol. Biotechnol Prog 11:282–287

    CAS  Google Scholar 

  • Gao C, Mayon P, MacManus DA, Vulfson EN (2001) Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters. Biotechnol Bioeng 71:235–243

    CAS  Google Scholar 

  • Gao Z, Chu J, Jiang T, Xu T, Wu B, He B (2018) Lipase immobilization on functionalized mesoporous TiO2: specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem 64:152–159

    CAS  Google Scholar 

  • Giacometti J, Giacometti F, Milin C, Racki DV (2001) Kinetic characterization of enzymatic esterification in a solvent system: adsorptive control of water with molecular sieves. J Mol Catal B Enzym 11:921–928

    CAS  Google Scholar 

  • Goderis H, Ampe G, Feyten M, Fouwe B, Guffens WV, Cauwenbergh S, Tobback P (1987) Lipase-catalyzed ester exchange reactions in organic media with controlled humidity. Biotechnol Bioeng 30:258–266

    CAS  PubMed  Google Scholar 

  • Godfrey T, West S (1996) The application of enzymes in industry. In: Godfrey T, Reichelt J (eds) Industrial enzymology, 2nd edn. The Nature Press, New York, p 512

    Google Scholar 

  • Gorman LAS, Dordick J (1992) Organic solvents strip water of enzymes. Biotechnol Bioeng 39:392–397

    CAS  PubMed  Google Scholar 

  • Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 15:12843–12847

    Google Scholar 

  • Grochulski P, Li Y, Schrag JD, Cygler M (1994) Two conformational states of Candida rugosa lipase. Protein Sci 3:82–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    CAS  Google Scholar 

  • Halling PJ (1994) Thermodynamic predictions for biocatalysis in non-conventional media: theory, tests and recommendations for experimental design and analysis. Enzym Microb Technol 16:178–206

    CAS  Google Scholar 

  • Hamsaveni DR, Prafulla SG, Divakar S (2001) Optimization of isobutyl butyrate synthesis using central composite rotatable design. Process Biochem 36:1103–1109

    CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251

    CAS  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    CAS  PubMed  Google Scholar 

  • Hazarika S, Goswami P, Dutta NN (2003) Lipase catalyzed transesterification of 2-o-benzylglycerol with vinyl acetate: solvent effect. Chem Eng J 94:1–10

    CAS  Google Scholar 

  • He XL, Chen BQ, Tan TW (2002) Enzymatic synthesis of 2- ethylhexyl esters of fatty acids by immobilized lipase from Candida sp. J Mol Catal B Enzym 18:333–339

    CAS  Google Scholar 

  • Hill K, Rhode O (1999) Sugar-based surfactants for consumer products and technical applications. Fett-Lipid 101:25–33

    CAS  Google Scholar 

  • Inada Y, Nishimura H, Takahashi K, Yoshimoto T, Saha AR, Saito Y (1984) Ester synthesis catalyzed by polyethylene glycol-modified lipase in benzene. Biochem Biophys Res Commun 122:845–890

    CAS  PubMed  Google Scholar 

  • Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol l13:390–397

    Google Scholar 

  • Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    CAS  PubMed  Google Scholar 

  • Jaeger K-E, Ransac S, Dijkstra BW, Colson C, van HM, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    CAS  PubMed  Google Scholar 

  • Jaeger K-E, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    CAS  PubMed  Google Scholar 

  • Kanwar L, Goswami P (2002) Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its application in the synthesis of isoamyl acetate using membrane-immobilized lipase. Enzym Microb Technol 31:727–735

    CAS  Google Scholar 

  • Kanwar SS, Verma ML (2010) Lipases. In: Encyclopedia of industrial biotechnology. Wiley, New York, pp 1–16

    Google Scholar 

  • Kanwar SS, Kaushal RK, Verma ML, Kumar Y, Chauhan GS, Gupta R, Chimni SS (2005) Synthesis of ethyl laurate by hydrogel immobilized lipase of Bacillus coagulans MTCC-6375. Ind J Microbiol 45:187–193

    CAS  Google Scholar 

  • Kanwar SS, Verma HK, Pathak S, Kaushal RK, Kumar Y, Verma ML, Chimni SS, Chauhan GS (2006) Enhancement of ethyl propionate synthesis by poly (AAc-co-HPMA-cl-MBAm)-immobilized Pseudomonas aeruginosa MTCC-4713 exposed to Hg2+, and NH4+ ions. Acta Microbiol Immunol Hung 53:195–207

    CAS  PubMed  Google Scholar 

  • Kanwar SS, Verma ML, Maheshwari C, Chauhan S, Chimni SS, Chauhan GS (2007a) Properties of poly (AAc-co-HPMA-cl-EGDMA) hydrogel-bound lipase of Pseudomonas aeruginosa MTCC-4713 and its use in synthesis of methyl acrylate. J Appl Polym Sci 104:183–191

    CAS  Google Scholar 

  • Kanwar SS, Kaushal RK, Verma ML, Kumar Y, Azmi W, Gupta R, Chimni SS, Chauhan GS (2007b) Synthesis of ethyl oleate employing synthetic hydrogel-immobilized lipase of Bacillus coagulans MTCC-6375. Indian J Biotechnol 6:68–73

    CAS  Google Scholar 

  • Kanwar SS, Gehlot S, Verma ML, Gupta R, Kumar Y, Chauhan GS (2008a) Synthesis of geranyl butyrate employing poly (AAc-co-HPMA-cl-EGDMA) hydrogel-immobilized lipase of Pseudomonas aeruginosa MTCC-4713. J Appl Polym Sci 110:2681–2692

    CAS  Google Scholar 

  • Kanwar SS, Sharma C, Verma ML, Chauhan S, Chimni SS, Chauhan GS (2008b) Short-chain ester synthesis by transesterification employing poly (MAc-co-DMA-cl-MBAm) hydrogel-bound lipase of Bacillus coagulans MTCC-6375. J Appl Polym Sci 109:1063–1071

    CAS  Google Scholar 

  • Kanwar SS, Verma ML, Puri S, Chauhan GS (2015) Synthetic hydrogel: characteristics and applications. In: Emerging areas in biotechnology. Nirmal Book Agency Publisher, Kurukshetra, pp 173–212

    Google Scholar 

  • Kastle JH, Loevenhart AS (1990) Concerning lipase, the fat-splitting enzyme, and the reversibility of its action. Am Chem J 24:491–525

    Google Scholar 

  • Kaur J, Wehtje E, Adlercreutz P, Chand S, Mattiasson B (1997) Water activity control in enzymatic esterification processes. Enzym Microb Technol 21:502–510

    Google Scholar 

  • Ke T, Wescott CR, Klibanov AM (1996) Prediction of the solvent dependence of enzymatic prochiral selectivity by means of structure-based thermodynamic calculations. J Am Chem Soc 118:3366–3374

    CAS  Google Scholar 

  • Kim JE, Han JJ, Yoon JH, Rhee JS (1998) Effect of salt hydrate pair on lipase-catalyzed regioselective monoacylation of sucrose. Biotechnol Bioeng 57:121–125

    CAS  PubMed  Google Scholar 

  • Kittleson JR, Pantaleone DP (1994) Enzymic biphasic process for the synthesis of aromatic esters flavoring agents from corresponding carboxylic acid and alcohol by esterification mediated by a lipase from Candida cylindracea. US Patent 5,437,991

    Google Scholar 

  • Kobayashi T, Adachi S (2004) Reaction equilibrium for lipase catalyzed condensation in organic solvent system. Biotechnol Lett 26:1461–1468

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Furutani W, Adachi S, Matsuno R (2003) Equilibrium constant for the lipase-catalyzed synthesis of fatty acid butyl ester in various organic solvents. J Mol Catal B Enzym 24-25:61–66

    CAS  Google Scholar 

  • Krishna SH, Divakar S, Prapulla SG, Karanth NG (2001) Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei. J Biotechnol 87:193–201

    Google Scholar 

  • Kumar R, Modak J, Madras G (2005) Effect of the chain length of the acid on the enzymatic synthesis of flavors in supercritical carbon dioxide. Biochem Eng J 23:199–202

    CAS  Google Scholar 

  • Kuo S-J, Parkin KL (1996) Solvent polarity influences product selectivity of lipase-mediated micro aqueous media. J Am Oil Chem Soc 73:1427–1433

    CAS  Google Scholar 

  • Kuwabara K, Watanabe Y, Adachi S, Nakanishi K, Mutsuno R (2003) Synthesis of 6-O-unsaturated acyl L-ascorbates by immobilized lipase in acetone in the presence of molecular sieve. Biochem Eng J16:17–23

    Google Scholar 

  • Kwon SJ, Song KM, Hong WH, Rhee JS (1995) Removal of water produced from lipase catalyzed esterification in organic solvent by pervaporation. Biotechnol Bioeng 46:393–395

    CAS  PubMed  Google Scholar 

  • Laane C, Boeren S, Vos K, Veeger C (1987) Roles for optimization of biocatalysis in organic-solvents. Biotechnol Bioeng 30:81–87

    CAS  PubMed  Google Scholar 

  • Lang D, Hoffman B, Haalack L, Hecht H-J, Spener F, Schmid RD, Schomburg D (1996) Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 Ă… resolution. J Mol Biol 259:704–717

    CAS  PubMed  Google Scholar 

  • Langrand G, Rondot N, Triantaphylides C, Baratti J (1990) Short-chain flavor esters synthesis by microbial lipases. Biotechnol Lett 12:581–586

    CAS  Google Scholar 

  • Leszczak JP, Tran-Minh C (1998) Optimized enzymatic synthesis of methyl benzoate in organic medium: operating conditions and impact of different factors on kinetics. Biotechnol Bioeng 60:556–561

    Google Scholar 

  • Liaquat M (2011) Optimized synthesis of (Z)-3-hexen-1-yl caproate using germinated rapeseed lipase in organic solvent. J Mol Catal B Enzym 68:59–65

    CAS  Google Scholar 

  • MacManus DA, Vulfson EN (1997) Reversal of regioselectivity in the enzymatic acylation of secondary hydroxyl groups mediated by organic solvents. Enzym Microb Technol 20:225–228

    CAS  Google Scholar 

  • Manohar B, Divakar S (2002) Application of central composite rotatable design to lipase catalyzed syntheses of m-cresyl acetate. World J Microbiol Biotechnol 18:745–751

    CAS  Google Scholar 

  • Manohar B, Divakar S (2004) Porcine pancreas lipase acetylation of beta–cyclodextrin anchored 4-t-butylcyclohexanol. Indian J Chem Sect B 43B:2661–2665

    CAS  Google Scholar 

  • Marlot C, Langrand G, Triantaphylides C, Baratti J (1985) Ester synthesis in organic solvent catalyzed by lipase immobilized on hydrophilic supports. Biotechnol Lett 7:647–650

    CAS  Google Scholar 

  • Maugard T, Tudella J, Legoy MD (2000) Study of vitamin ester synthesis by lipase-catalyzed transesterification in organic media. Biotechnol Prog 16:358–362

    CAS  PubMed  Google Scholar 

  • Mestri S, Pai JS (1994) Synthesis of isoamyl butyrate by lipase of Mucor miehei. PAFAI J 2:24–26

    Google Scholar 

  • Miller C, Austin H, Posorske L, Gonzalez J (1988) Characteristics of an immobilized lipase for the commercial synthesis of esters. J Am Chem Soc 65:927–932

    CAS  Google Scholar 

  • Mishio T, Takahashi K, Yoshimoto T, Kodera Y, Saito Y, Inada Y (1987) Terpene alcohol ester synthesis by poylethylene glycol modified lipase in benzene. Biotechnol Lett 9:187–190

    Google Scholar 

  • Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314

    CAS  Google Scholar 

  • Mulder M (1991) Basic principles of membrane technology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Nardini M, Dijkstra BW (1999) α/β hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737

    CAS  PubMed  Google Scholar 

  • Nicotra F, Riva S, Secundo F, Zuchelli L (1989) An interesting example of complementary regioselective acylation of secondary hydroxyl groups by different lipases. Tetrahedron Lett 30:1703–1704

    CAS  Google Scholar 

  • Oladepo DK, Halling PJ, Larsen VF (1994) Reaction rates in organic media show similar dependence on water activity with lipase catalyst immobilised on different supports. Biocatalysis 8:283–287

    CAS  Google Scholar 

  • Otero C, Arcos JA, Berrendero MA, Torres C (2001) Emulsifiers from solid and liquid polyols: different strategies for obtaining optimum conversions and selectivities. J Mol Catal B Enzym 11:883–892

    CAS  Google Scholar 

  • Otto RT, Bornscheuer UT, Scheib H, Pleiss J, Syldatk C, Schmid RD (1998) Lipase catalyzed esterification of unusual substrates: synthesis of glucuronic acid and ascorbic acid (vitamin C) esters. Biotechnol Lett 20:1091–1094

    CAS  Google Scholar 

  • Padilha GS, Tambourgi EB, Alegre RM (2018) Evaluation of lipase from Burkholderia cepacia immobilized in alginate beads and application in the synthesis of banana flavor (isoamyl acetate). Chem Eng Commun 205:23–33

    CAS  Google Scholar 

  • Palekar AA, Vasudevan PT, Yan S (2000) Purification of lipase: a review. Biocatal Biotransformation 18:177–200

    CAS  Google Scholar 

  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol UT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    CAS  PubMed  Google Scholar 

  • Parida S, Dordick JS (1991) Substrate structure and solvent hydophobicity control lipase catalysis and enantioselectivity in organic media. J Am Chem Soc 113:2253–2259

    CAS  Google Scholar 

  • Patel V, Deshpande MP, Pandey A, Larroche C, Madamwar D (2018) Nanobiocatalysis for the synthesis of Pentyl Valerate in organic solvents: characterization, optimization and reusability studies. Curr Biotechnol 7(2):105–114

    CAS  Google Scholar 

  • Patil D, Das D, Nag A (2011) Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy. Chem Pap 65:9–15

    CAS  Google Scholar 

  • Perraud R, Laboret F (1989) Optimization of methyl propionate production catalyzed by Mucor miehei lipase. Appl Microbiol Biotechnol 44:321–326

    Google Scholar 

  • Pleiss J, Fischer M, Peiker M, Thiele C, Schmid RD (2000) Lipase engineering database: understanding and exploiting sequence-structure-function relationships. J Mol Catal B Enzym 10:491–508

    CAS  Google Scholar 

  • Radzi SM, Basri M, Salleh AB, Ariff A, Mohammad R, Rahman MBA, Rahman RNZRA (2005) Large-scale production of liquid wax ester by immobilized lipase. J Oleo Sci 54:4203–4209

    Google Scholar 

  • Rao P, Divakar S (2002) Response surface methodological approach for the Rhizomucor miehei lipase-mediated esterification of α-terpineol with propionic acid and acetic anhydride. World J Microbiol Biotechnol 18:341–345

    CAS  Google Scholar 

  • Rees GD, Nascimento MG, Jenta TRJ, Robinson BH (1991) Reverse enzyme synthesis in microemulsion-based organ-gels. Biochim Biophys Acta 1073:493–501

    CAS  PubMed  Google Scholar 

  • Rich JO, Bedell BA, Dordick JS (1995) Controlling enzyme catalyzed regioselectivity in sugar ester synthesis. Biotechnol Bioeng 45:426–434

    CAS  PubMed  Google Scholar 

  • Rosell CM, Vaidya AM, Halling PJ (1996) Continuous in-situ water activity control for organic phase biocatalysis in a packed bed hollow fiber reactor. Biotechnol Bioeng 49:284–289

    CAS  PubMed  Google Scholar 

  • Salvi HM, Kamble MP, Yadav GD (2018) Synthesis of geraniol esters in a continuous-flow packed-bed reactor of immobilized lipase: optimization of process parameters and kinetic modeling. Appl Biochem Biotechnol 184(2):630–643

    CAS  PubMed  Google Scholar 

  • Saxena RK, Gosh PK, Gupta R, Davidson WS, Bradoo S, Gulati R (1999) Microbial lipases: potential biocatalysts for the future industry. Curr Sci 77:101–115

    CAS  Google Scholar 

  • Schrag JD, Cygler M (1993) 1.8-angstrom refined structure of the lipase from Geotrichum candidum. J Mol Biol 230:575–591

    CAS  PubMed  Google Scholar 

  • Sharma R, Sharma N (2018) Microbial lipase mediated by health beneficial modification of cholesterol and flavors in food products: a review. Recent Pat Biotechnol 12(2):81–91

    CAS  PubMed  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv 19:627–662

    CAS  PubMed  Google Scholar 

  • Sheih CJ, Akoh CC, Yee LN (1996) Optimized enzymatic synthesis of geranyl butyrate with lipase AY from Candida rugosa. Biotechnol Bioeng 51:371–374

    Google Scholar 

  • Sheldon RA (1996) Large-scale enzymatic conversion in non-aqueous media. In: Koskinen AMP, Klibanov AM (eds) Enzymatic reactions in organic media. Blackie Academic and Professional, Glasgow, pp 267–307

    Google Scholar 

  • Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Google Scholar 

  • Sonwalkar RD, Chen CC, Ju LK (2003) Roles of silica gel in poly-condensation of lactic acid in organic solvent. Bioresour Technol 87:69–73

    CAS  PubMed  Google Scholar 

  • Suresh Babu CV, Divakar S (2001) Selection of alcohols through Plakett-Burman design in lipase catalyzed syntheses of anthranilic acid. J Am Oil Chem Soc 78:49–52

    Google Scholar 

  • Suresh Babu CV, Karanth NG, Divakar S (2002) Lipase catalysed esterification of cresols. Indian J Chem Sect B 41B:1068–1071

    Google Scholar 

  • Svensson I, Wehtje E, Adlercreutz P, Mattiasson B (1994) Effects of water activity on reaction rates and equilibrium positions in enzymatic esterification. Biotechnol Bioeng 44:549–556

    CAS  PubMed  Google Scholar 

  • Tan HSG, Yu B, Curran P, Liu SQ (2010) Lipase-catalysed synthesis of natural aroma-active 2-phenylethyl esters in coconut cream. Food Chem 124:80–84

    Google Scholar 

  • Tapiero H, Tew KD, Nguyen Ba G, Mathe G (2002) Polyphenols: do they play a role in the prevention of human pathologies. Biomed Pharmacother 56:200–207

    CAS  PubMed  Google Scholar 

  • Torres C, Otero C (1999) Part 1: enzymatic synthesis of lactate and glycolate esters of fatty alcohols. Enzym Microb Technol 25:745–752

    CAS  Google Scholar 

  • Ujang Z, Sharbati NA, Vaidya AM (1997) Organic-phase enzymatic esterification in a hollow fiber membrane reactor with in situ gas-phase water activity control. Biotechnol Prog 13:39–42

    CAS  Google Scholar 

  • Valivety RH, Johnston GA, Suckling CJ, Halling PJ (1991) Solvent effects on biocatalysis in organic systems: equilibrium position and rates of lipase catalyzed esterification. Biotechnol Bioeng 38:1137–1143

    CAS  PubMed  Google Scholar 

  • Valivety RH, Halling PJ, Macrae AR (1992) Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochim Biophys Acta 1118:218–222

    CAS  PubMed  Google Scholar 

  • Van der Padt A, Sewalt JJW, Van’t Riet K (1993) On-line water removal during enzymatic triacylglycerol synthesis by means of pervaporation. J Membr Sci 80:199–208

    Google Scholar 

  • Van Tol JBA, Stevens RMM, Veldhuizen WJ, Jongejan JA, Duine JA (1995) Do organic solvent affects the catalytic properties of lipase? Intrinsic kinetic parameters of lipase in ester hydrolysis and formation in various organic solvent. Biotechnol Bioeng 47:71–81

    PubMed  Google Scholar 

  • Verma ML (2009) Studies on lipase of Bacillus cereus MTCC 8372 and its application for synthesis of esters. PhD thesis, HP University Shimla, India

    Google Scholar 

  • Verma ML (2017a) Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ Chem Lett 15(4):555–560

    CAS  Google Scholar 

  • Verma ML (2017b) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S, Dasgupta N, Lichfouse E (eds) Nanoscience in food and agriculture 4, sustainable agriculture reviews. Springer, Cham, pp 229–245, isbn:978-3-319-53111-324

    Google Scholar 

  • Verma ML, Barrow CJ (2015) Recent advances in feedstocks and enzyme-immobilised technology for effective transesterification of lipids into biodiesel. In: Kalia V (ed) Microbial factories. Springer, New Delhi, pp 87–103

    Google Scholar 

  • Verma ML, Kanwar SS (2008) Properties and application of Poly(MAc-2011co-DMA-cl-MBAm) hydrogel immobilized Bacillus cereus MTCC 8372 lipase for synthesis of geranyl acetate. J Appl Polym Sci 110:837–846

    CAS  Google Scholar 

  • Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 57:187–201

    Google Scholar 

  • Verma ML, Kanwar SS (2012) Harnessing the potential of thermophiles: the variants of extremophiles. Dynamic Biochem Process Biotechnol Mol Biol 6(1):28–39

    Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2008a) Microbial lipases: at the interface of aqueous and non-aqueous media-a review. Acta Microbiol Immunol Hung 55:265–293

    CAS  PubMed  Google Scholar 

  • Verma ML, Chauhan GS, Kanwar SS (2008b) Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC-8372. Acta Microbiol Immunol Hung 55:327–342

    CAS  PubMed  Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2009) Synthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 56:229–242

    CAS  PubMed  Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2011) Enzymatic synthesis of isopropyl acetate by immobilized Bacillus cereus lipase in organic medium. Enzyme Res 2011, Article ID 919386, 7 pages

    Google Scholar 

  • Verma ML, Kumar S, Devi A, Jana AK (2012a) Engineering enzyme for efficient biocatalysis. In: 2nd international conference on biomedical engineering and assistive technologies at NIT, Jalandhar, India, December 6–7, 2012, pp 1–5, isbn:13:978-81-925454-1-7

    Google Scholar 

  • Verma ML, Kumar S, Devi A, Jana AK (2012b) Metagenomics approaches for the discovery of novel lipases with biotechnological perspectives. In: 2nd international conference on biomedical engineering and assistive technologies at NIT, Jalandhar, India, December 6–7, 2012, pp 1–6, isbn:13:978-81-925454-1-7

    Google Scholar 

  • Verma ML, Naebe M, Barrow CJ, Puri M (2013) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One 8(9):e73642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36(1):108–119

    CAS  PubMed  Google Scholar 

  • Wangikar PP, Graycar TP, Estell DA, Clark DS, Dordick JS (1993) Protein and solvent engineering of subtilisin BPN in nearly anhydrous organic media. J Am Chem Soc 115:12231–12237

    CAS  Google Scholar 

  • Wangikar PP, Rich JO, Clark DS, Dordick JS (1995) Probing enzymic transition state hydrophobicities. Biochemistry 34:12302–12310

    CAS  PubMed  Google Scholar 

  • Watanabe Y, Adachi S, Matsuno R (1999) Condensation of L-ascorbic acid and medium-chain fatty acids by immobilized lipase in acetonitrile with low water content. Food Sci Technol Res 5:188–192

    CAS  Google Scholar 

  • Wehtje E, Adlercreutz P (1997) Water activity and substrate concentration effects on lipase activity. Biotechnol Bioeng 55:798–806

    CAS  PubMed  Google Scholar 

  • Welsh FW, Williams RE, Dawson KH (1990) Lipase-mediated synthesis of low molecular weight flavor esters. J Food Sci 55:1679–1682

    CAS  Google Scholar 

  • Wescott CR, Klibanov AM (1993) Solvent variation inverts substrate specificity of an enzyme. J Am Chem Soc 115:1629–1631

    CAS  Google Scholar 

  • Wescott CR, Klibanov AM (1997) Thermodynamic analysis of solvent effect on substrate specificity of lyophilized enzymes suspended in organic media. Biotechnol Bioeng 56:340–344

    CAS  PubMed  Google Scholar 

  • Winkler FK, d’Arey A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774

    CAS  PubMed  Google Scholar 

  • Woundenberg-van Oosterom M, van Rantwijk F, Sheldon RA (1996) Regioselective acylation of disaccharides in tert-butyl alcohol catalyzed by Candida antarctica lipase. Biotechnol Bioeng 49:328–333

    Google Scholar 

  • Xu Y, Wang D, Qing Mu X, Ao-Zhao G, Zhang KC (2002) Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinensis CCTCC M201021 in nonaqueous phase. J Mol Catal B Enzym 18:29–37

    Google Scholar 

  • Yadav GD, Devi KM (2004) Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem Eng Sci 59:373–383

    CAS  Google Scholar 

  • Yadav GD, Lathi PS (2003) Kinetics and mechanism of synthesis of butyl isobutyrate over immobilized lipases. Biochem Eng J 16:245–252

    CAS  Google Scholar 

  • Yadav GD, Trivedi AH (2003) Kinetic modeling of immobilized lipase catalyzed transesterification of n-octanol with vinyl acetate in non-aqueous media. Enzym Microb Technol 32:783–789

    CAS  Google Scholar 

  • Zacharis E, Omar IC, Partridge J, Robb DA, Halling PJ (1997) Selection of salt hydrate pairs for use in water control in enzyme catalysis in organic solvents. Biotechnol Bioeng 55:367–374

    CAS  PubMed  Google Scholar 

  • Zaks A, Klibanov AM (1988) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263:3194–3201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the director of the Centre for Chemistry and Biotechnology, Deakin University, Australia, for the kind support to pursue this research work. The financial support from the Department of Biotechnology, Ministry of Science and Technology, Government of India, in the form of predoctoral fellowship to pursue this study is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, M.L. (2019). Biotechnological Applications of Lipases in Flavour and Fragrance Ester Production. In: Arora, P. (eds) Microbial Technology for the Welfare of Society. Microorganisms for Sustainability, vol 17. Springer, Singapore. https://doi.org/10.1007/978-981-13-8844-6_1

Download citation

Publish with us

Policies and ethics