Skip to main content

Reversible Circuit Synthesis Using Evolutionary Algorithms

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 577))

Abstract

With the unprecedented growth in VLSI technology in recent years, managing power dissipation has become a challenging task for many researchers. In this aspect, reversible logic emerges as one of the basis of future lossless computing system that promises zero energy dissipation, meanwhile classical physics cannot survive due to constant scaling of transistors and the exponential growth of transistor density in integrated circuits. It has applications in various domain such as low power VLSI, fault-tolerant designs, quantum computing, nanotechnology, DNA computing, optical computing, cryptography, and informatics. There are many existing works for the synthesis of reversible logic circuits; some are exact methods while others based on heuristic approaches. In this survey, we review a range of evolutionary computation approaches to the problem of optimal synthesis of reversible Logic—GA (Genetic Algorithm) based, PSO (Particle Swarm Optimization) based, ACO (Ant Colony Optimization)-based circuits where aim is to obtain a near-optimal solution by efficiently exploring the entire search space. This study provides an algorithmic review with comparative study on metaheuristic-based reversible logic synthesis methods proposed in existing literatures. Comparison of experimental results based on large number of benchmark circuits conform that evolutionary algorithms-based technique enables optimal or near-optimal solutions with lesser synthesis time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdollahi A, Pedram M (2006) Analysis and synthesis of quantum circuits by using quantum decision diagrams. In: Proceedings of design, automation and test in Europe (DATE), vol 1, pp 1–6

    Google Scholar 

  2. Al-Rabadi AN (2004) New classes of Kronecker-based reversible decision trees and their group theoretic representations. In: Proceedings of the international workshop on spectral methods and multirate signal processing (SMMSP), pp 233–243

    Google Scholar 

  3. Datta K, Sengupta I, Rahaman H (2012) Particle swarm optimization based circuit synthesis of reversible logic. In: Proceedings of international symposium on electronic system design (ISED), pp 226–230

    Google Scholar 

  4. Datta K, Sengupta I, Rahaman H (2012) Reversible circuit synthesis using a evolutionary algorithm. In: Proceedings of 25th international conference on computers and devices for communication (CODEC), pp 1–4

    Google Scholar 

  5. De Vos A, Van Rentergem Y (2009) Multiple-valued reversible logic circuits. J Mult-Valued Log Soft Comput 15(5/6):489–505

    MathSciNet  MATH  Google Scholar 

  6. De Vos A, Van Rentergem Y, De Keyser K (2006) The decomposition of an arbitrary reversible logic circuit. J Phys A Math Gen 39(18):5015–035

    Article  MathSciNet  Google Scholar 

  7. Dirac PAM (1939) A new notation for quantum mechanics. Math Proc Camb Philos Soc 144:416–418

    Article  MathSciNet  Google Scholar 

  8. Donald J, Jha NK (2008) Reversible logic synthesis with fredkin and peres gates. J Emerg Technol Comput Syst 4

    Article  Google Scholar 

  9. Dorigo M (1995) Optimization, learning and natural algorithms, PhD thesis, Politecnico di Milano

    Google Scholar 

  10. Drechsler R, Finder A, Wille R (2011) Improving ESOP-based synthesis of reversible logic using evolutionary algorithms. In: EvoApplications, vol 2, pp 151–161

    Chapter  Google Scholar 

  11. Dueck GW, Maslov D, Miller DM (2003) Transformation-based synthesis of networks of Toffoli/Fredkin gates. In: Proceedings of the IEEE Canadian conference on electrical and computer engineering, vol 1, pp 211–214

    Google Scholar 

  12. Fazel K, Thornton M, Rice JE (2007) ESOP-based Toffoli gate cascade generation. In: Proceedings of the IEEE Pacic Rim conference on communications, computers and signal processing (PACRIM), pp 206–209

    Google Scholar 

  13. Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional, Boston

    Google Scholar 

  14. Gupta P, Agrawal A, Jha NK (2006) An algorithm for synthesis of reversible logic circuits. IEEE Trans Comput-Aided Des Integr Circuits Syst 25:2317–2330

    Article  Google Scholar 

  15. Hamza Z, Dueck GW (2010) Near-optimal ordering of ESOP cubes for Toffoli networks. In: Proceedings of the 2nd annual workshop on reversible computation (RC)

    Google Scholar 

  16. Hung WNN, Song X, Yang G, Yang J, Perkowski M (2006) Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans Comput-Aided Des 25(9):1652–1663

    Article  Google Scholar 

  17. Iwama K, Kambayashi Y, Yamashita S (2002) Transformation rules for designing CNOT based quantum circuits. In: Proceedings of the 39th design automation conference, pp 419–424

    Google Scholar 

  18. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, IEEE Service Center, pp 1942–1948

    Google Scholar 

  19. Kerntopf P (2004) A new heuristic algorithm for reversible logic synthesis. In: Proceedings of the design automation conference, pp 834–837

    Google Scholar 

  20. Khan MHA, Perkowski M (2004) Genetic algorithm based synthesis of multi-output ternary functions using quantum cascade of generalized ternary gates. In: Proceedings of the 2004 congress on evolutionary computation

    Google Scholar 

  21. Kole D, Rahaman H, Das DK, Bhattacharya B (2010) Optimal reversible logic circuits synthesis based on a hybrid dfs-bfs technique. In: International symposium on electronic system design (ISED 2010), pp 208–212

    Google Scholar 

  22. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM Res. Dev. 5:183–191

    Article  MathSciNet  Google Scholar 

  23. Likharev KK (1982) Classical and quantum limitations on energy-consumption in computation. Int J Theor Phys 21:311–325

    Article  Google Scholar 

  24. Li M, Zheng Y, Hsiao MS, Huang C (2010) Reversible logic synthesis through and colony optimization. In: Proceedings of design automation test in Europe (DATE 2010), pp 208–212

    Google Scholar 

  25. Lukac M, Perkowski M, Gol H (2003) Evolutionary approach to quantum and reversible circuits synthesis. Artif Intell Rev 20(3–4):361–417

    Article  Google Scholar 

  26. Lukac M, Perkowski M (2002) Evolving quantum circuits using genetic algorithm. In: Proceedings of the 2002 NASA/DoD conference on evolvable hardware

    Google Scholar 

  27. Lukac M, Pivtoraiko M, Mishchenko A, Perkowski M (2002) Automated synthesis of generalized reversible cascades using genetic algorithms. In: Proceedings of the 5th international workshop on Boolean problems, Freiberg, pp 33–45

    Google Scholar 

  28. Manna P, Kole DK, Rahaman H, Das DK Bhattacharya BB (2012) Reversible logic circuit synthesis using genetic algorithm and particle swarm optimization. In: Proceedings of international symposium on electronic system design, pp 246–250

    Google Scholar 

  29. Maslov D (2005) Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/~dmaslov/

  30. Maslov D, Dueck GW, Miller DM (2005) Toffoli network synthesis with templates. IEEE Trans Comput-Aided Des Integr Circuits Syst (TCAD) 24(6):807–817

    Article  Google Scholar 

  31. Maslov D, Dueck GW, Miller DM (2003) Fredkin/Toffoli templates for reversible logic synthesis. In: International conference on computer aided design (ICCAD), pp 256–261

    Google Scholar 

  32. Maslov D, Dueck GW, Miller DM (2003) Simplification of Toffoli networks via templates. In: Proceedings of the 16th symposium on integrated circuits and system design

    Google Scholar 

  33. Maslov D, Dueck GW, Miller DM (2003) Templates for Tffoli network synthesis. In: Proceedings of the international workshop on logic synthesis

    Google Scholar 

  34. Maslov D, Dueck GW, Miller DM (2005) Synthesis of Fredkin-Toffoli reversible networks. IEEE Trans Very Large Scale Integr (VLSI) Syst 13(6):765–769

    Article  Google Scholar 

  35. Maslov D, Dueck GW, Miller DM (2007) Techniques for the synthesis of reversible Toffoli networks. ACM Trans Des Autom Electron Syst (TODAES) 12(4):42

    Article  Google Scholar 

  36. Merkle RC (1993) Two types of mechanical reversible logic. Nanotechnology 4(2):114–131

    Article  Google Scholar 

  37. Merkle RC (1993) Reversible electronic logic using switches. Nanotechnology 7:21–40

    Article  Google Scholar 

  38. Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In Proceedings of the design automation conference, pp 318–323

    Google Scholar 

  39. Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In: DAC ’03: proceedings of the 40th conference on design automation, pp 318–323. ACM

    Google Scholar 

  40. Miller DM, Thornton MA (2006) QMDD: a decision diagram structure for reversible and quantum circuits. In: Proceedings of the IEEE international symposium on multiple-valued logic (ISMVL), p #30 on Proceedings CDROM

    Google Scholar 

  41. Mohamadi M, Eshghi M (2008) Heuristic methods to use don’t cares in automated design of reversible and quantum logic circuits. Quantum Inf Process J (Springer) 7:175–192

    Article  MathSciNet  Google Scholar 

  42. Mohammadi M (2012) Efficient genetic based methods for optimizing the reversible and quantum logic circuits. JACR 3(3):85–96

    Google Scholar 

  43. Mohammadi M, Eshghi M (2009) On figures of merit in reversible and quantum logic designs. Quantum Inf Process J (Springer) 8(4):297–318

    Article  MathSciNet  Google Scholar 

  44. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8)

    Google Scholar 

  45. Nayeem NM, Rice JE (2011) Improved ESOP-based synthesis of reversible logic. In: Proceedings of the 2011 Reed-Muller workshop, pp 57–62

    Google Scholar 

  46. Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  47. Rice JE, Nayeem N (2011) Ordering techniques for ESOP-based Toffoli cascade generation. In: Proceedings of the IEEE Pacific Rim conference on communications, computers and signal processing (PACRIM), pp 274–279

    Google Scholar 

  48. Rice JE, Suen V (2010) Using autocorrelation coefficients-based cost functions in ESOP based Toffoli gate cascade generation. In: Proceedings of the 23rd IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1–6

    Google Scholar 

  49. Saeedi M, Sedighi M, Zamani MS (2007) A novel synthesis algorithm for reversible circuits. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp 65–68

    Google Scholar 

  50. Saeedi M, Sedighi M, Zamani MS (2010) A library-based synthesis methodology for reversible logic. Microelectron J 41(4):185–194

    Article  Google Scholar 

  51. Saeedi M, Zamani MS, Sedighi M (2007) On the behaviour of substitution-based reversible circuit synthesis algorithms: investigation and improvement. In: Proceedings ISVLSI, pp 428–436

    Google Scholar 

  52. Saeedi M, Zamani MS, Sedighi M (2008) Moving forward: a nonsearch based synthesis method toward efficient CNOT-based quantum circuit synthesis algorithms. In: ASPDAC, pp 83–88

    Google Scholar 

  53. Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. JETC 6(4):13

    Article  Google Scholar 

  54. Sanaee Y, Dueck GW (2009) Generating Toffoli networks from ESOP expressions. In: Proceedings of the IEEE Pacific Rim conference on communications, computers and signal processing (PACRIM), pp 715–719

    Google Scholar 

  55. Sanaee Y, Dueck GW (2010) ESOP-based Toffoli network generation with transformations. In: Proceedings of the 40th IEEE international symposium on multiple-valued logic (ISMVL), pp 276–281

    Google Scholar 

  56. Sanaee Y, Dueck GW (2010) ESOP-based Tooli network generation with transformations. In: Proceedings of the 40th IEEE international symposium on multiple-valued logic (ISMVL), pp 276–281

    Google Scholar 

  57. Sarkar M, Ghosal P, Mohanty SP (2013) Reversible circuit synthesis using ACO and SA based Quine-McCluskey method. In: Proceedings of 56th international midwest symposium on circuits and systems (MWSCAS), pp 416–419

    Google Scholar 

  58. Sasanian Z, Saeedi M, Sedighi M, Zamani MS (2009) A cycle-based synthesis algorithm for reversible logic. In: Proceedings of Asia South Pacific design automation conference (ASP-DAC), pp 745–750

    Google Scholar 

  59. Shende VV, Prasad AK, Markov IL, Hayes JP (2003) Synthesis of reversible logic circuits. IEEE Trans Comput Aided Des 22(6):710–722

    Article  Google Scholar 

  60. Storme L, Vos AD, Jacobs G (1999) Group theoretical aspects of reversible logic gates. J Univers Comput Sci 5(5):307–321

    MATH  Google Scholar 

  61. Thornton M, Miller DM, Goodman D (2006) A decision diagram package for reversible and quantum circuit simulation. In: Proceedings of the IEEE congress on evolutionary computation, pp 8597–8604

    Google Scholar 

  62. Van Rentergem Y, De Vos A, Storme L (2005) Implementing an arbitrary reversible logic gate. J Phys A Math Gen 38(16):3555–3577

    Article  MathSciNet  Google Scholar 

  63. Van Rentergem Y, De Vos A, De Keyser K (2006) Using group theory in reversible computing. In: Proceedings of the 2006 IEEE congress on evolutionary computation (CEC2006), pp 2397–2404

    Google Scholar 

  64. Wille Robert, Drechsler Rolf (2010) BDD-based synthesis of reversible logic. Int J Appl Metaheuristic Comput (IJAMC) 1(4):25–41

    Article  Google Scholar 

  65. Wille R, Drechsler R (2009) BDD-Based synthesis of reversible logic for large functions. In: Proceedings of the design automation conference, pp 270–275

    Google Scholar 

  66. Wille R, Drechsler R, Oswald C, Garcia-Ortiz A (2012) Automatic design of low power encoders using reversible circuit synthesis. In: Design, automation and test in Europe, pp 1036–1041

    Google Scholar 

  67. Wille R, Groe D, Miller DM, Drechsler R (2009) Equivalence checking of reversible circuits. In: Proceedings of the 39th international symposium on multiple-valued logic (IS- MVL), pp 324–330

    Google Scholar 

  68. Yang G, Song X, Hung WN, Xie F, Perkowski MA (2006) Group theory based synthesis of binary reversible circuits. Lecture notes in computer science, vol 3959. Springer, pp 365–374

    Google Scholar 

  69. Younis SG, Knight TF (1994) Asymptotically zero energy split-level charge recovery logic. In: Workshop low power design, pp 177–182

    Google Scholar 

  70. Zhang M, Zhao S, Wang X (2009) Automatic synthesis of reversible logic circuit based on genetic algorithm. In Proceedings of IEEE international conference on intelligent computing and intelligent systems (ICIS 2009), pp 542–546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Sasamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasamal, T.N., Gaur, H.M., Singh, A.K., Mohan, A. (2020). Reversible Circuit Synthesis Using Evolutionary Algorithms. In: Singh, A., Fujita, M., Mohan, A. (eds) Design and Testing of Reversible Logic. Lecture Notes in Electrical Engineering, vol 577. Springer, Singapore. https://doi.org/10.1007/978-981-13-8821-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8821-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8820-0

  • Online ISBN: 978-981-13-8821-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics