Skip to main content

Search-Based Reversible Logic Synthesis Using Mixed-Polarity Gates

  • Chapter
  • First Online:
Design and Testing of Reversible Logic

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 577))

Abstract

Synthesis methods of irreversible circuits cannot be used for reversible circuits because of their logical differences. An algorithm for the synthesis of reversible circuits using its Positive-Polarity Reed–Muller (PPRM) expansions is presented in this chapter. The proposed algorithm used Hamming Distance (HD) approach to select the transformation path. A variety of reversible gates are selected through finding the possible matching reversible gate for path selection. It has the capability to allow the algorithm to synthesize reversible function in terms of quantum cost, which is a challenging task for existing synthesis algorithms. The proposed algorithm has been applied to synthesize all 3-variable reversible functions and has shown to obtain a good result. From the experimental results, it has been shown that with the m-NCT gate library added, the results are improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iwama K, Kambayashi Y, Yamashita S (2002) Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th annual design automation conference, New York, pp 419–424

    Google Scholar 

  2. Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In: Proceedings of the 40th annual design automation conference, New York, pp 318–323

    Google Scholar 

  3. Dueck GW, Maslov D, Miller DM (2003) Transformation-based synthesis of networks of Toffoli, Fredkin gates. In: Canadian conference on 2003 electrical and computer engineering, IEEE CCECE, pp 211–214

    Google Scholar 

  4. Maslov D, Dueck GW, Miller DM (2005) Synthesis of Fredkin-Toffoli reversible networks. IEEE Trans Very Large Scale Integr (VLSI) Syst 13:765–769

    Article  Google Scholar 

  5. Maslov D, Dueck GW, Miller DM (2005) Toffoli network synthesis with templates. IEEE Trans Comput-Aided Des Integr Circuits Syst 24:807–817

    Article  Google Scholar 

  6. Maslov D, Dueck GW, Miller DM (2007) Techniques for the synthesis of reversible Toffoli networks. ACM Trans Des Autom Electron Syst 12

    Article  Google Scholar 

  7. Arabzadeh M, Saeedi M, Saheb Zamani M (2010) Rule-based optimization of reversible circuits. In: Proceedings of the 2010 Asia and South Pacific design automation conference, New Jersey, pp 849–854

    Google Scholar 

  8. Datta K, Rathi G, Wille R, Sengupta I, Rahaman H, Drechsler R (2013) Exploiting negative control lines in the optimization of reversible circuits. In: Reversible computation. Springer, Berlin, pp 209–220

    Chapter  Google Scholar 

  9. Shende VV, Prasad AK, Markov IL, Hayes JP (2003) Synthesis of reversible logic circuits. IEEE Trans Comput-Aided Des Integr Circuits Syst 22:710–722

    Article  Google Scholar 

  10. Yang G, Song X, Hung WN, Xie F, Perkowski M (2006) Group theory based synthesis of binary reversible circuits, pp 365–374

    Google Scholar 

  11. Prasad AK, Shende VV, Markov IL, Hayes JP, Patel KN (2006) Data structures and algorithms for simplifying reversible circuits. ACM J Emerg Technol Comput Syst 2:277–293

    Article  Google Scholar 

  12. Sasanian Z, Saeedi M, Sedighi M, Zamani MS (2009) A cycle-based synthesis algorithm for reversible logic. In: Design automation conference, pp 745–750

    Google Scholar 

  13. Saeedi M, Saheb Zamani M, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. ACM J Emerg Technol Comput Syst 6

    Article  Google Scholar 

  14. Saeedi M, Sedighi M, Saheb Zamani M (2010) A library-based synthesis methodology for reversible logic. Microelectron J 41:185–194

    Article  Google Scholar 

  15. Kerntopf P (2004) A new heuristic algorithm for reversible logic synthesis. In: Proceedings of 41st design automation conference, Poland, pp 843–837

    Google Scholar 

  16. Wille R, Drechsler R (2009) BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th annual design automation conference, New York, pp 270–275

    Google Scholar 

  17. Wille R, Soeken M, Drechsler R (2010) Reducing the number of lines in reversible circuits. In: Proceedings of the 47th design automation conference, New York, pp 647–652

    Google Scholar 

  18. Krishna M, Chattopadhyay A (2014) Efficient reversible logic synthesis via isomorphic subgraph matching. In: 2014 IEEE 44th international symposium on multiple-valued logic (ISMVL), pp 103–108

    Google Scholar 

  19. Soeken M, Tague L, Dueck GW, Drechsler R (2016) Ancilla-free synthesis of large reversible functions using binary decision diagrams. J Symb Computat 73:1–26

    Article  MathSciNet  Google Scholar 

  20. Gupta P, Agrawal A, Jha NK (2006) An algorithm for synthesis of reversible logic circuits. IEEE Trans Comput-Aided Des Integr Circuits Syst 25:2317–2330

    Article  Google Scholar 

  21. Saeedi M, Saheb Zamani M, Sedighi M (2007) On the behavior of substitution-based reversible circuit synthesis algorithm investigation and improvement, Washington, pp 428–436

    Google Scholar 

  22. Donald J, Jha NK (2008) Reversible logic synthesis with Fredkin and Peres gates. ACM J Emerg Technol Comput Syst 4

    Article  Google Scholar 

  23. Yexin Z, Chao H (2009) A novel Toffoli network synthesis algorithm for reversible logic. In: Design automation conference, ASP-DAC 2009. Asia and South Pacific, pp 739–744

    Google Scholar 

  24. Golubitsky O, Falconer SM, Maslov D (2010) Synthesis of the optimal 4-bit reversible circuits. In: Proceedings of the 47th design automation conference, pp 653–656

    Google Scholar 

  25. Golubitsky O, Maslov D (2012) A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans Comput 61:1341–1353

    Article  MathSciNet  Google Scholar 

  26. Szyprowski M, Kerntopf P (2011) Reducing quantum cost in reversible Toffoli circuits. arXiv:1105.5831

  27. Szyprowski M, Kerntopf P (2011) An approach to quantum cost optimization in reversible circuits. In: 2011 11th IEEE conference on nanotechnology (IEEE-NANO), pp 1521–1526

    Google Scholar 

  28. Szyprowski M, Kerntopf P (2013) Optimal 4-bit reversible mixed-polarity Toffoli circuits. In: GlĂ¼ck R, Yokoyama T (eds) Reversible computation, vol 7581, pp 138–151. Springer, Berlin

    Chapter  Google Scholar 

  29. Li Z, Chen H, Song X, Perkowski M (2014) A synthesis algorithm for 4-bit reversible logic circuits with minimum quantum cost. ACM J Emerg Technol Comput Syst (JETC) 11:29

    Article  Google Scholar 

  30. Mishchenko A, Perkowski M (2001) Fast heuristic minimization of exclusive-sums-of-products. In: International workshop on applications of the reed-muller expansion in circuit design, pp 242–250

    Google Scholar 

  31. Maslov D, Dueck G, Scott N (2005) Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/~dmaslov

  32. Wille R, GroĂŸe D, Teuber L, Dueck GW, Drechsler R (2008) RevLib: an online resource for reversible functions and reversible circuits. In: 2008 38th international symposium on multiple valued logic, ISMVL 2008, pp 220–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chua, S.C., Singh, A.K. (2020). Search-Based Reversible Logic Synthesis Using Mixed-Polarity Gates. In: Singh, A., Fujita, M., Mohan, A. (eds) Design and Testing of Reversible Logic. Lecture Notes in Electrical Engineering, vol 577. Springer, Singapore. https://doi.org/10.1007/978-981-13-8821-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8821-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8820-0

  • Online ISBN: 978-981-13-8821-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics