Skip to main content

Design of Reversible Hardware BinDCT

  • Chapter
  • First Online:
Book cover Design and Testing of Reversible Logic

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 577))

  • 509 Accesses

Abstract

Recently, reversible logic computation has attracted researchers’ attention for implementing low-power digital logic designs. In fact, no information is wasted in this approach, i.e., it performs a bijective function. This chapter introduces a hardware design of reversible BinDCT. It is a new proposal in reversible approach. In this study, we dealt with a variety of sub-modules, which have a better performance in terms of constant inputs (CIs), garbage output (GO), power and quantum cost (QC) as well as the delay than that of existing designs. This work can offer a vital step in the design of reversible designs for in the field of image processing. It could also be present as an essential step in this area since the image processing systems are known to be the biggest energy consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landauer R (1961) Irreversibility and heat generation in computing process. IBM J Res Dev 183–191

    Google Scholar 

  2. Bennett CH (1973) Logical reversibility of computation IBM J Res Dev 525–532

    Article  MathSciNet  Google Scholar 

  3. Shende VV, Prasad AK, Markov IL (2003) Synthesis of reversible logic circuits. IEEE Trans CAD 710–722

    Article  Google Scholar 

  4. Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 46–52

    Article  Google Scholar 

  5. Chandana S, Navya C, Nagamani AN (2016) Design of register file using re versible logic. IEEE Int Conf Circuit Power Comput Technol (ICCPCT)

    Google Scholar 

  6. Chenga CS, Singh AK, Gopala L (2015) Efficient three variables reversible logic synthesis using mixed polarity Toffoli gate. Procedia Comput Sci 362–368

    Article  Google Scholar 

  7. Maslov D, Dueck GW, Miller M (2008) Quantum circuit simplification and level compaction. IEEE Trans Comput-Aided Des. Integr. Circuits Syst 436–444

    Article  Google Scholar 

  8. Saeedi M, Markov IL (2014) Synthesis and optimization of reversible circuits a survey. ACM Comput Surv (CSUR) 1–34

    Article  Google Scholar 

  9. Cheng CS, Singh AK (2015) Heuristic synthesis of reversible logic–a comparative study. Adv Electr Electron Eng 210–225

    Google Scholar 

  10. Babu HM, Islam MR, Chowdhury AR, Chowdhury SMA (2004) Synthesis of full-adder circuit using reversible logic. In: 17th International conference on VLSI design, pp 757–760

    Google Scholar 

  11. Thapliyal H, Ranganathan N (2013) Design of efficient reversible logic-based binary and BCD adder circuits. ACM J Emerg Technol Comput Syst 1–31

    Article  Google Scholar 

  12. Biswas AK, Hasan MM, Chowdhury AR, Babu HMH. (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 1693–1703

    Article  Google Scholar 

  13. Nagamani A, Ashwin S, Vinod KA (2014) Design of optimized reversible binary adder/subtractor and BCD adder. In: International conference on contemporary computing and informatics (IC3I)

    Google Scholar 

  14. Moghadam MZ, Navi K (2012) Ultra-area-efficient reversible multiplier. Microelectron. J 377–385

    Google Scholar 

  15. Morrison M, Ranganathan N (2011) Design of a reversible ALU based on novel programmable reversible logic gate structures. In: IEEE computer society annual symposium on VLSI

    Google Scholar 

  16. Rangaraju HG, Hegde V, Raja KB, Muralidhara KN (2012) Design of efficient reversible binary comparator. In: International conference on communication technology and system design, pp 897–904

    Article  Google Scholar 

  17. Morrison M, Lewandowski M, Ranganathan N (2012) Design of a tree-based comparator and memory unit based on a novel reversible logic structure. In: IEEE Computer Society Annual Symposium on VLSI, pp 331–336

    Google Scholar 

  18. Antonino T, Matteo M, Gianluca P, Fabrizio F, Donatella S (2007) Pipelined fast 2D-DCT accelerator for FPGA-based SoCs. In: IEEE Computer Society Annual Symposium on VLSI, pp 9–11

    Google Scholar 

  19. Primechaev S, Frolov A, Simak B (2007) Scene changedetection using DCT features in transform domain videoindexing. In: 14th International workshop systems, signals and image processing and 6th EURASIP conference focused on speech and image processing, multi media communications and services, pp 369–372

    Google Scholar 

  20. Murphy C, Harvey M (2002) Reconfigurable hardware implementation of BinDCT. Electron Lett 1012–1013

    Article  Google Scholar 

  21. Liang J, Tran T (2001) Fast multiplierless approximations of the DCT with the lifting scheme. IEEE Trans Signal Process 3032–3044

    Google Scholar 

  22. Philip PD, Paul MC, Truong QN (2005) BinDCT and its efficient VLSI Architectures for real-time embedded applications. J Imaging Sci Technol 124–137

    Google Scholar 

  23. Mahmoud FK (2007) Image compression using BinDCT for dynamic hardware FPGA’s, thesis. Liverpool John Moores University

    Google Scholar 

  24. Abdessalem BA, Ichraf C, Abdellatif M (2016) Efficient BinDCT hardware architecture exploration and implementation on FPGA. J Adv Res 909–922

    Google Scholar 

  25. Lamjed T, Bouraoui O (2017) Design of hardware RGB to HMMD converter based on reversible logic. IET Image Process 646–655

    Google Scholar 

  26. Bikash D, Jadav CD, Debashis D (2017) Reversible logic-based image ste ganography using quantum dot cellular automata for secure nanocommunication. IET Circuits Devices Syst 1–10

    Google Scholar 

  27. Toffoli T (1980) Reversible computing. Technical memo MIT/LCS/TM-151, MIT lab for computer science

    Google Scholar 

  28. Feynman RP (1985) Quantum mechanical computers. Opt News 11–20

    Article  Google Scholar 

  29. Chanderkanta AB, Santosh K (2017) Ultrafast optical reversible double Feynman logic gate using electro-optic effect in lithium-niobate based Mach Zehnder interferometers. In: Proceeding of SPIE, oxide-based materials and devices VIII, vol 10105, pp 1010520

    Google Scholar 

  30. Moraga C (2014) Mixed polarity reversible peresgates. IET Electron. Lett 987–989

    Article  Google Scholar 

  31. Kaye P, Laflamme R, Mosca M (2007) An introduction to quantum computing Oxford University Press, Oxford, eBook-LinG, ISBN 0-19-857000-7

    Google Scholar 

  32. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theoreical Phys 219–253

    Article  MathSciNet  Google Scholar 

  33. Mohammadi M, Eshghi M, Haghparast M, Bahrololoom A (2008) Design and optimization of reversible BCD adder/subtractor circuit for quantum and nanotechnology based systems. World Appl Sci J 787–792

    Google Scholar 

  34. Haghparast M, Navi K (2008) A novel reversible BCD adder for nanotechnology based systems. Am J Appl Sci 282–288; Peres A (1985) Reversible logic and quantum computers. Phys Rev A 3266–3276

    Article  Google Scholar 

  35. Ali NB, Sajjad W, Nazir H (2015) A new approach of presenting reversible logic gate in nanoscale. SpringerPlus 153

    Google Scholar 

  36. Guowu Y, Hung WNN, Xiaoyu S (2005) Majority-based reversible logic gates. Theor. Comput. Sci, 259–274

    Google Scholar 

  37. Lenin G, Nor S, Mohd M (2014) Design and synthesis of reversible arithmetic and logic unit (ALU). In: IEEE conference computer, communications, and control technology (I4CT)

    Google Scholar 

  38. Stolze J, Suter D (2004) Quantum computing: a short course from theory to experiment. Wiley, Weinheim

    Book  Google Scholar 

  39. Bruce J, Thornton M, Shivakumaraiah L, Kokate P, Li X (2002) Efficient adder circuits based on a conservative reversible logic gate. In: Proceedings IEEE computer society annual symposium on VLSI, pp 74–79

    Google Scholar 

  40. Murphy C, Harvey M (2002) Reconfigurable hardware implementation BinDCT. Electron Lett 1012–1013

    Google Scholar 

  41. Rangaraju HG, Venugopal U, Muralidhara KN, Raja KB (2010) Low power reversible parallel binary adder/subtractor. Int J VLSI Des Commun Syst 23–34

    Article  Google Scholar 

  42. Shekoofeh M, Mohammad R, Reshadinezhad (2015) A Novel 4x4 Universal reversible gate as a cost efficient full adder/subtractor in terms of re versible and quantum metrics. Int J Mod Educ Comput Sci 28–34

    Google Scholar 

  43. Microwind DSCH—schematic editor and digital simulator. http://www.microwind.net/dsch.ph

  44. Thersesal T, Sathish K, Aswinkumor R (2015) A new design of optical reversible adder and subtractor using MZI. Int J Sci Res Publ 1–6

    Google Scholar 

  45. Gupta A, Singla P, Gupta J, Maheshwari N (2013) An improved structure of reversible adder and subtractor. Int J Electron Comput Sci Eng 712–718

    Google Scholar 

  46. Shamsujjoha MH, Hasan M, Lafifa J (2013) Design of a compact reversible fault tolerant field programmable gate array: a novel approach in reversible logic synthesis. Microelectron J 519–537

    Article  Google Scholar 

  47. Nazma TH, Hasan, BM, Lafifa J (2017) Power efficient optimum design of the reversible plessey logic block of a field-programmable gate array. J Sustain Comput 1–35

    Google Scholar 

  48. Dastan F, Haghparas M (2012) A novel nanometric reversible signed divider with overflow checking capability. Res J Appl Sci Eng Technol 535–543

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gassoumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gassoumi, I., Touil, L., Ouni, B. (2020). Design of Reversible Hardware BinDCT. In: Singh, A., Fujita, M., Mohan, A. (eds) Design and Testing of Reversible Logic. Lecture Notes in Electrical Engineering, vol 577. Springer, Singapore. https://doi.org/10.1007/978-981-13-8821-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8821-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8820-0

  • Online ISBN: 978-981-13-8821-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics