Skip to main content

Viscosity Measurements of the Freeze Concentration Solution Confined in the Space Surrounded by Ice Crystals

  • Chapter
  • First Online:
Ice Microfluidics

Part of the book series: Springer Theses ((Springer Theses))

  • 218 Accesses

Abstract

In this chapter, the viscosities of the FCS in frozen glycerol/water solutions are evaluated by two spectrometric methods of different principles: (1) the reaction rate of the diffusion-controlled emission quenching and (2) fluorescence correlation (FCor) spectroscopy (Inagawa et al. in J Phys Chem C 121:12321–12328, 2017 [1]). Thermodynamics indicates that the concentration of glycerol in the FCS is constant at a constant temperature, regardless of the glycerol concentration in the original solution before freezing (\(c_{\text{gly}}^{\text{ini}}\)). However, the viscosity of the FCS measured at a given temperature increases with decreasing \(c_{\text{gly}}^{\text{ini}}\) and becomes more pronounced with decreasing measurement temperature. Further, the viscosity of the FCS in a rapidly frozen solution is higher than that observed in a slowly frozen solution. These results suggest that the viscosity of the FCS depends on the size of the space in which the FCS is confined and increases in smaller spaces. This result agrees well with several reports of anomalous phenomena in a microspace confined in ice. These phenomena originate from the fluctuation of the ice/FCS interface, which is macroscopically stable but microscopically dynamic and undergoes continuous freezing and thawing. Thus, the FCS near the interface displays ice-like physicochemical properties and structures, thereby affording higher viscosity than the corresponding bulk solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inagawa A, Ishikawa T, Kusunoki T, Harada M, Otsuka T, Okada T (2017) Viscosity of freeze-concentrated solution confined in micro/nanospace surrounded by ice. J Phys Chem C 121:12321–12328

    Article  CAS  Google Scholar 

  2. Liu L, Faraone A, Mou CY, Yen CW, Chen SH (2004) Slow dynamics of supercooled water confined in nanoporous silica materials. J Phys Condens Matter 16(45):S5403–S5436

    Article  CAS  Google Scholar 

  3. Suzuki A, Yui H (2014) Crystallization of confined water pools with radii greater than 1 nm in AOT reverse micelles. Langmuir 30(25):7274–7282

    Article  CAS  PubMed  Google Scholar 

  4. Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu Rev Phys Chem 59:713–740

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi A, Namekawa M, Itoh T, Teramae N (2012) Microviscosity of supercooled water confined within aminopropyl-modified mesoporous silica as studied by time-resolved fluorescence spectroscopy. Anal Sci 28(11):1065–1070

    Article  CAS  PubMed  Google Scholar 

  6. Koga K, Zeng XC, Tanaka H (1998) Effects of confinement on the phase behavior of supercooled water. Chem Phys Lett 285:278–283

    Article  CAS  Google Scholar 

  7. Bergman R, Swenson J (2000) Dynamics of supercooled water in confined geometry. Nature 403:283–286

    Article  CAS  PubMed  Google Scholar 

  8. Giovambattista N, Rossky PJ, Debenedetti PG (2006) Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys Rev E 73:0401604

    Article  CAS  Google Scholar 

  9. Bai J, Zeng XC (2012) Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. Proc Natl Acad Sci 109(52):21240–21245

    Article  CAS  PubMed  Google Scholar 

  10. Kimmel GA, Matthiesen J, Baer M, Mundy CJ, Petrik NG, Smith RS, Dohnálek Z, Kay BD (2009) No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J Am Chem Soc 131(35):12838–12844

    Article  CAS  PubMed  Google Scholar 

  11. Tsukahara T, Hibara A, Ikeda Y, Kitamori T (2007) NMR study of water molecules confined in extended nanospaces. Angew Chem Int Ed 46:1180–1183

    Article  CAS  Google Scholar 

  12. Tsukahara T, Mizutani W, Mawatari K, Kitamori T (2009) NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces. J Phys Chem B 113(31):10808–10816

    Article  CAS  PubMed  Google Scholar 

  13. Ponjavic A, Dench J, Morgan N, Wong JSS (2015) In situ viscosity measurement of confined liquids. RSC Adv 5(121):99585–99593

    Article  CAS  Google Scholar 

  14. Han J, Herzfeld J (1993) Macromolecular diffusion in crowded solutions. Biophys J 65(3):1155–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luby-Phelps K (1994) Physical properties of cytoplasm. Curr Opin Cell Biol 6(1):3–9

    Article  CAS  PubMed  Google Scholar 

  16. Shawn Goodwin J, Drake KR, Remmert CL, Kenworthy AK (2005) Ras diffusion is sensitive to plasma membrane viscosity. Biophys J 89(2):1398–1410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Deliconstantinos G, Villiotou V, Stavrides J (1995) Modulation of particulate nitric-oxide synthase activity and peroxynitrite synthesis in cholesterol-enriched endothelial-cell membranes. Biochem Pharmacol 49(11):1589–1600

    Article  CAS  PubMed  Google Scholar 

  18. Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts CT, LeRoith D, Zick Y (1994) Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats. Biochem J 298(Pt 2):443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zubenko G, Kopp U, Seto T, Firestone L (1999) Platelet membrane fluidity individuals at risk for Alzheimer’s disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacol 145(2):175–180

    Article  CAS  Google Scholar 

  20. Scheuer K, Maras A, Gattaz WF, Cairns N, Förstl H, Müller WE (1996) Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer’s disease. Dement Geriatr Cogn Disord 7:210–214

    Article  CAS  Google Scholar 

  21. Sakuma H, Otsuki K, Kurihara K (2006) Viscosity and lubricity of aqueous NaCl solution confined between mica surfaces studied by shear resonance measurement. Phys Rev Lett 96:046104

    Article  PubMed  CAS  Google Scholar 

  22. Fukushi D, Kasuya M, Sakuma H, Kurihara K (2011) Fluorescent dye probe for monitoring local viscosity of confined liquids. Chem Lett 40:776–778

    Article  CAS  Google Scholar 

  23. Kasuya M, Hino M, Yamada H, Mizukami M, Mori H, Kajita S, Ohmori T, Suzuki A, Kurihara K (2013) Characterization of water confined between silica surfaces using the resonance shear measurement. J Phys Chem C 117(26):13540–13546

    Article  CAS  Google Scholar 

  24. Hibara A, Saito T, Kim HB, Tokeshi M, Ooi T, Nakao M, Kitamori T (2002) Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal Chem 74(24):6170–6176

    Article  CAS  PubMed  Google Scholar 

  25. Hashimoto T, Tasaki Y, Harada M, Okada T (2011) Electrolyte-doped ice as a platform for atto- to femtoliter reactor enabling zeptomol detection. Anal Chem 83(10):3950–3956

    Article  CAS  PubMed  Google Scholar 

  26. Hansler M, Jakubke H (1996) Nonconventional protease catalysis in frozen aqueous solutions. J Pept Sci 2:279–289

    Article  CAS  PubMed  Google Scholar 

  27. Langford VS, Mckinley AJ, Quickenden TI (2000) Luminescent photoproducts in UV-irradiated ice. Acc Chem Res 33(10):665–671

    Article  CAS  PubMed  Google Scholar 

  28. Terefe NS, Loey A, Van Hendrickx M (2004) Modelling the kinetics of enzyme-catalysed reactions in frozen systems : the alkaline phosphatase catalysed hydrolysis of di-sodium-p-nitrophenyl phosphate. Innov Food Sci Emerg Technol 5:335–344

    Article  CAS  Google Scholar 

  29. Bogdan A, Molina MJ, Tenhu H, Mayer E, Loerting T (2010) Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nat Chem 2:197–201

    Article  CAS  PubMed  Google Scholar 

  30. Kahan TF, Zhao R, Donaldson DJ (2009) Hydroxyl radical reactivity at the air-ice interface. Atmos Chem Phys Discuss 10:843–854

    Article  Google Scholar 

  31. Stӓhler J, Gahl C, Wolf M (2012) Dynamics and reactivity of trapped electrons on supported ice crystallites. Acc Chem Res 45(1):131–138

    Article  CAS  Google Scholar 

  32. Tasaki Y, Okada T (2006) Ice chromatography. Characterization of water-ice as a chromatographic stationary phase. Anal Chem 78(12):4155–4160

    Article  CAS  PubMed  Google Scholar 

  33. Shamoto T, Tasaki Y, Okada T (2010) Chiral Ice chromatography. J Am Chem Soc 132(38):13135–13137

    Article  CAS  PubMed  Google Scholar 

  34. Inagawa A, Harada M, Okada T (2015) Fluidic grooves on doped-ice surface as size-tunable channels. Sci Rep 5:17308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qu H, Harada M, Okada T (2017) Voltammetry of viologens revealing reduction of hydrophobic interaction in frozen aqueous electrolyte solutions. ChemElectroChem 4(1):35–38

    Article  CAS  Google Scholar 

  36. Tasaki Y, Okada T (2012) Up to 4 orders of magnitude enhancement of crown ether complexation in an aqueous phase coexistent with ice. J Am Chem Soc 134(14):6128–6131

    Article  CAS  PubMed  Google Scholar 

  37. Takenaka N, Ueda A, Maeda Y (1992) Acceleration of the rate of nitrite oxidation by freezing in aqueous solution. Nature 358:736–738

    Article  CAS  Google Scholar 

  38. Takenaka N, Ueda A, Daimon T, Bandow H, Dohmaru T, Maeda Y (1996) Acceleration mechanism of chemical reaction by freezing: the reaction of nitrous acid with dissolved oxygen. J Phys Chem 100(32):13874–13884

    Article  CAS  Google Scholar 

  39. Anzo K, Harada M, Okada T (2013) Enhanced kinetics of pseudo first-order hydrolysis in liquid phase coexistent with ice. J Phys Chem A 117(41):10619–10625

    Article  CAS  PubMed  Google Scholar 

  40. Tokumasu K, Harada M (2017) Freezing-facilitated dehydration allowing deposition of ZnO from aqueous electrolyte. ChemPhysChem 18:329–333

    Article  CAS  PubMed  Google Scholar 

  41. Sakai K, Hirano T, Hosoda M (2010) Electromagnetically spinning sphere viscometer. Appl Phys Express 3(1):16602

    Article  CAS  Google Scholar 

  42. Srivastava N, Burns MA (2006) Analysis of non-newtonian liquids using a microfluidic capillary viscometer. Anal Chem 78(5):1690–1696

    Article  CAS  PubMed  Google Scholar 

  43. DeLaMarre M, Keyzer A, Shippy SA (2015) Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids. Anal Chem 87(9):4649–4657 150331162924006

    Article  CAS  PubMed  Google Scholar 

  44. Pipe CJ, McKinley GH (2009) Microfluidic rheometry. Mech Res Commun 36(1):110–120

    Article  Google Scholar 

  45. Nelson WC, Kavehpour HP, Kim C-J “CJ” (2011) A miniature capillary breakup extensional rheometer by electrostatically assisted generation of liquid filaments. Lab Chip 11(14):2424

    Article  CAS  PubMed  Google Scholar 

  46. Levitt JA, Kuimova MK, Yahioglu G, Chung P, Suhling K, Phillips D (2009) Membrane-bound molecular rotors measure viscosity in live cells via fluorescence lifetime imaging. J Phys Chem C 113:11634–11642

    Article  CAS  Google Scholar 

  47. Chen S, Hong Y, Zeng Y, Sun Q, Liu Y, Zhao E, Bai G, Qu J, Hao J, Tang BZ (2015) Mapping live cell viscosity with an aggregation-induced emission fluorogen by means of two-photon fluorescence lifetime imaging. Chem A Eur J 21(11):4315–4320

    Article  CAS  Google Scholar 

  48. Liang L, Wang X, Xing D, Chen T, Chen WR (2009) Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy. J Biomed Opt 14(2):24013

    Article  CAS  Google Scholar 

  49. Watanabe H, Otsuka T, Harada M, Okada T (2014) Imbalance between anion and cation distribution at ice interface with liquid phase in frozen electrolyte as evaluated by fluorometric measurements of pH. J Phys Chem C 118(29):15723–15731

    Article  CAS  Google Scholar 

  50. Takayasu S, Suzuki T, Shinozaki K (2013) Intermolecular interactions and aggregation of fac-tris(2-phenylpyridinato-C2, N)Iridium(III) in nonpolar solvents. J Phys Chem B 117(32):9449–9456

    Article  CAS  PubMed  Google Scholar 

  51. Kim SW, Lee JR (2011) Measurement of the diffusion coefficients of single molecules using fluorescence correlation spectroscopy with a software correlator. J Korean Phys Soc 59(51):3171–3176

    Google Scholar 

  52. Uyama M, Harada M, Tsukahara T, Okada T (2013) Behavior of polyhydric alcohols at ice/liquid interface. J Phys Chem C 117(47):24873–24882

    Article  CAS  Google Scholar 

  53. Chiorboli C, Indelli MT, Scandola AMR, Scandola F (1998) Salt effects on nearly diffusion controlled electron-transfer reactions. Bimolecular rate constants and cage escape yields in oxidative quenching of tris(2,2′-bipyridine)ruthenium(II). J Phys Chem 92(1):156–163

    Article  Google Scholar 

  54. Iwamura M, Otsuka T, Kaizu Y (2002) Specific cation effect on quenching reactions of excited tris(α, α′-diimine)ruthenium(II) and chromium(III) complexes by cyanide complexes in aqueous solutions. Inorg Chim Acta 333:57–62

    Article  CAS  Google Scholar 

  55. Smoluchowski MZ (1917) Smoluchowski. Phys Chem Streochiom Verwandtschatsl 92:129

    Google Scholar 

  56. Sutin N (1982) Nuclear, electronic, and frequency factors in electron transfer reactions. Acc Chem Res 15(9):275–282

    Article  CAS  Google Scholar 

  57. Debye P (1942) Reaction rates in ionic solutions. J Electrochem Soc 82(1):265–272

    Article  Google Scholar 

  58. Iwamura M, Otsuka T, Kaizu Y (2004) Specific cation effect on quenching reactions of excited tris(α,α′-diimine)ruthenium(II) and tris(2,2′-bipyridine)chromium(III) by tris(oxalato)- and tris(malnato)chromates(III) in aqueous solutions. Inorg Chim Acta 357:1565–1570

    Article  CAS  Google Scholar 

  59. Conde MM, Rovere M, Gallo P (2017) Spontaneous NaCl-doped ice at seawater conditions: focus on the mechanisms of ion inclusion. Phys Chem Chem Phys 19(14):9566–9574

    Article  CAS  PubMed  Google Scholar 

  60. Nada H, Furukawa Y (2005) Anisotropy in growth kinetics at interfaces between proton-disordered hexagonal ice and water: a molecular dynamics study using the six-site model of H2O. J Cryst Growth 283(1–2):242–256

    Article  CAS  Google Scholar 

  61. Bullock G, Molinero V (2013) Low-density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions. Faraday Discuss 167:371–388

    Article  PubMed  CAS  Google Scholar 

  62. Banerjee D, Bhat SN, Bhat SV, Leporini D (2012) Molecular probe dynamics reveals suppression of ice-like regions in strongly confined supercooled water. PLoS ONE 7(9):44382

    Article  CAS  Google Scholar 

  63. Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22(3):169–175

    Article  CAS  Google Scholar 

  64. Fradin C, Luzet D, Braslau A, Alba M, Muller F, Daillant J, Petit JM, Rieutord F (1998) X-ray study of the fluctuations and the interfacial structure of a phospholipid monolayer at an alkane-water interface. Langmuir 14(26):7327–7330

    Article  CAS  Google Scholar 

  65. Schlossman ML (2002) Liquid–liquid interfaces: studied by X-ray and neutron scattering. Curr Opin Colloid Interface Sci 7:235–243

    Article  CAS  Google Scholar 

  66. Doerr AK, Tolan M, Seydel T, Press W (1998) The interface structure of thin liquid hexane films. Phys B 248(1–4):263–268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arinori Inagawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inagawa, A. (2019). Viscosity Measurements of the Freeze Concentration Solution Confined in the Space Surrounded by Ice Crystals. In: Ice Microfluidics. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8809-5_5

Download citation

Publish with us

Policies and ethics