Skip to main content

Charging of the Ice/FCS Interface Revealed by Ice Zeta Potential Measurements

  • Chapter
  • First Online:
Ice Microfluidics

Part of the book series: Springer Theses ((Springer Theses))

  • 181 Accesses

Abstract

This chapter proposes a simple and versatile method for the determination of the zeta potentials of frozen solvents (Inagawa et al. in J Colloid Interface Sci 532:231–235, [1]; J Phys Chem C 123:6062–6069, [2]). A microchannel was fabricated in a solidified solvent. The zeta potential of the frozen solvent was determined by measuring the apparent mobility of the probe microspheres. Thus, the ice zeta potentials under various conditions, including the dependences of temperature, salt concentration, and pH, were determined. Based on the above results, the charging mechanism at the ice/solution interface as well as the ionic behavior was revealed using the Stern double-layer model. The zeta potential of ice is generated by the deprotonation of dangling OH bonds, ion adsorption on the ice surface, and ion uptake in the ice crystal lattice. The deprotonation of the dangling OH bonds on the ice surface (pKa, ∼3) is enhanced compared to that in bulk liquid water. Interestingly, only 1.41% of the total dangling OH bonds on the ice surface are deprotonated, even at pH > 6, suggesting that the deprotonation of a dangling bond suppresses further dissociation of the neighboring OH sites. This is caused by the facilitated reorientation of the water molecules in ice in the presence of L-defects. The ion adsorption constants indicate that the interaction of ions, other than H+ ions, with the ice surface is mainly driven by the coordination of the dangling bonds with the ions. Therefore, smaller ions are adsorbed more readily on the ice surface than their larger counterparts. Additionally, the uptake of F ions in the ice crystal lattice is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inagawa A, Fukuyama M, Hibara A, Harada M, Okada T (2018) Zeta potential determination with a microchannel fabricated in solidified solvents. J Colloid Interface Sci 532:231–235

    Article  CAS  Google Scholar 

  2. Inagawa A, Harada M, Okada T (2019) Charging of the Ice/Solution Interface by Deprotonation of Dangling Bonds, Ion Adsorption, and Ion Uptake in an Ice Crystal as Revealed by Zeta Potential Determination. J Phys Chem C 123:6062–6069

    Article  CAS  Google Scholar 

  3. Xu R (2008) Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology 6(2):112–115

    Article  CAS  Google Scholar 

  4. White B, Banerjee S, Brien SO, Turro NJ, Herman IP (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111:13684–13690

    Article  CAS  Google Scholar 

  5. Bousse L, Mostarshed S, Shoot B, van der De Rooij NF, Gimmel P, Göpel W (1991) Zeta potential measurements of Ta2O5 and SiO2 Thin Films. J Colloid Interface Sci 147(1):22–32

    Article  CAS  Google Scholar 

  6. Suzawa T, Ishimoto R (1978) Absorbability of Sodium Polyacrylate onto Nylon 6 Fiber Surface by ζ-Potential Method. Nippon Kagaku Kaishi 1:7–10

    Article  Google Scholar 

  7. Takenaka N, Ueda A, Maeda Y (1992) Acceleration of the rate of nitrite oxidation by freezing in aqueous solution. Nature 358:736–738

    Article  CAS  Google Scholar 

  8. Anzo K, Harada M, Okada T (2013) Enhanced kinetics of pseudo first-order hydrolysis in liquid phase coexistent with ice. J Phys Chem A 117(41):10619–10625

    Article  CAS  Google Scholar 

  9. Hansler M, Jakubke H (1996) Nonconventional protease catalysis in frozen aqueous solutions. J Pept Sci 2:279–289

    Article  CAS  Google Scholar 

  10. Langford VS, Mckinley AJ, Quickenden TI (2000) Luminescent Photoproducts in UV-Irradiated Ice. Acc Chem Res 33(10):665–671

    Article  CAS  Google Scholar 

  11. Terefe NS, Loey van A, Hendrickx M (2004) Modelling the kinetics of enzyme-catalysed reactions in frozen systems : the alkaline phosphatase catalysed hydrolysis of di-sodium-p-nitrophenyl phosphate. Innov Food Sci Emerg Technol 5:335–344

    Google Scholar 

  12. Bogdan A, Molina MJ, Tenhu H, Mayer E, Loerting T (2010) Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nat. Chem. 2:197–201

    Article  CAS  Google Scholar 

  13. Kahan TF, Zhao R, Donaldson DJ (2009) Hydroxyl radical reactivity at the air-ice interface. Atmos. Chem. Phys. Discuss. 10:843–854

    Article  Google Scholar 

  14. Stähler J, Gahl C, Wolf M (2012) Dynamics and reactivity of trapped electrons on supported ice crystallites. Acc Chem Res 45(1):131–138

    Article  Google Scholar 

  15. Takenaka N, Ueda A, Daimon T, Bandow H, Dohmaru T, Maeda Y (1996) Acceleration mechanism of chemical reaction by freezing: the reaction of nitrous acid with dissolved Oxygen. J Phys Chem 100(32):13874–13884

    Article  CAS  Google Scholar 

  16. Drzymala J, Sadowski Z, Holysz L, Chibowski E (1999) Ice/water interface: zeta potential, point of zero charge, and hydrophobicity. J Colloid Interface Sci 220(2):229–234

    Article  CAS  Google Scholar 

  17. Kallay N, Čop A, Chibowski E, Holysz L (2003) Reversible charging of the ice-water interface: II. Estimation of equilibrium parameters. J Colloid Interface Sci 259(1):89–96

    Google Scholar 

  18. Zhang L, Yin X, Fang Z (2006) Negative pressure pinched sample injection for microchip-based electrophoresis. Lab Chip 6(2):258–264

    Article  CAS  Google Scholar 

  19. D’Aniello MJ (1981) Anion adsorption on Alumina. J Catal 69(1):9–17

    Article  Google Scholar 

  20. Randon J, Larbot A, Cot L, Lindheimer M, Partyka S (1991) Sulfate adsorption on zirconium dioxide. Langmuir 7(11):2654–2658

    Article  CAS  Google Scholar 

  21. Hiemstra T, De Wit JCM, Van Riemsdijk WH (1989) Multisite proton adsorption modeling at the solid/solution interface of (Hydr)Oxides: a new approach. II. Application to various important (Hydr)Oxides. J. Colloid Interface Sci 133(1):105–117

    Article  CAS  Google Scholar 

  22. Okada T (1998) Interpretation of ion-exchange chromatographic retention based on an electrical double-layer model. Anal Chem 70(9):1692–1700

    Article  CAS  Google Scholar 

  23. De Lint WBS, Benes NE, Lyklema J, Bouwmeester HJM, Van der Linde AJ, Wessling M (2003) Ion adsorption parameters determined from zeta potential and titration data for a γ-alumina nanofiltration membrane. Langmuir 19(14):5861–5868

    Article  Google Scholar 

  24. Smith AL (1976) Electrokinetics of the oxide-solution interface. J Colloid Interface Sci 55(3):525–530

    Article  CAS  Google Scholar 

  25. Watanabe H, Otsuka T, Harada M, Okada T (2014) Imbalance between anion and cation distribution at ice interface with liquid phase in frozen electrolyte as evaluated by fluorometric measurements of pH. J Phys Chem C 118(29):15723–15731

    Article  CAS  Google Scholar 

  26. Chemical Society of Japan (1993) Kagaku Binran (Chemical Index), 4th edn. Maruzen, Tokyo

    Google Scholar 

  27. Roobottom HK, Jenkins HDB, Passmore J, Glasser L (1979) Thermochemical Radii of Complex Ions. J Chem Educ 56(9):576–577

    Article  Google Scholar 

  28. Workman EJ, Reynolds SE (1949) Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Phys Rev 78:254–260

    Article  Google Scholar 

  29. Wilson PW, Haymet ADJ (2008) Workman—reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces. J Phys Chem B 112:11750–11755

    Article  CAS  Google Scholar 

  30. Tsukahara Y, Okada T (2003) Electrostatic approach to chromatographic retention of ionic solutes. J. Ion Exch. 14:9–12

    Article  Google Scholar 

  31. Marx D (2006) Proton transfer 200 Years after Von Grotthuss: insights from Ab Initio simulations. ChemPhysChem 7(9):1849–1870

    Google Scholar 

  32. Podeszwa R, Buch V (1999) Structure and dynamics of orientational defects in ice. Phys Rev Lett 83(22):4570–4573

    Article  CAS  Google Scholar 

  33. Koga K, Tanaka H, Nakanishi K (1996) Rearrangement of the hydrogen-bonded network of the clathrate hydrates encaging polar guest. J Chem Phys 104:263–272

    Article  CAS  Google Scholar 

  34. De Koning M, Antonelli A, Da Silva AJR, Fazzio A (2006) Orientational defects in ice ih: an interpretation of electrical conductivity measurements. Phys Rev Lett 96(7):1–4

    Article  Google Scholar 

  35. Kato HS, Shiraki S, Nantoh M, Kawai M (2003) Water reaction on SrTiO3(0 0 1): promotion effect due to condensation. Surf Sci 544(2–3):L722–L728

    Article  CAS  Google Scholar 

  36. Johnson MA, Stefanovich EV, Truong TN, Günster J, Goodman DW (1999) Dissociation of water at the MgO(100)-Water Interface: comparison of theory with experiment. J Phys Chem B 103(17):3391–3398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arinori Inagawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inagawa, A. (2019). Charging of the Ice/FCS Interface Revealed by Ice Zeta Potential Measurements. In: Ice Microfluidics. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8809-5_4

Download citation

Publish with us

Policies and ethics