Advertisement

An Enigma in the Genetic Responses of Plants to Salt Stresses

  • Parisa AziziEmail author
  • Mohamed Musa Hanafi
  • Siti Nor Akmar Abdullah
  • Mahbod Sahebi
  • Sima Taheri
Chapter
  • 253 Downloads

Abstract

Soil salinity is one of the main factors restricting crop production throughout the world. Various salt tolerance traits and the genes controlling these traits are responsible for coping with salinity stress in plants. These coping mechanisms include osmotic tolerance, ion exclusion, and tissue tolerance. Plants exposed to salinity stress sense the stress conditions, convey specific stimuli signals, and initiate responses against stress through the activation of tolerance mechanisms that include multiple genes and pathways. Advances in our understanding of the genetic responses of plants to salinity and their connections with yield improvement are essential for attaining sustainable agriculture. Although a wide range of studies have been conducted that demonstrate genetic variations in response to salinity stress, numerous questions need to be answered to fully understand plant tolerance to salt stress. This chapter provides an overview of previous studies on the genetic control of salinity stress in plants, including signaling, tolerance mechanisms, and the genes, pathways, and epigenetic regulators necessary for plant salinity tolerance.

Keywords

Salinity stress Osmotic tolerance Tolerance mechanism and signaling pathways 

Notes

Acknowledgments

The authors wish to acknowledge Universiti Putra Malaysia (UPM) for the financial supports.

References

  1. Agarwal M, Katiyar-Agarwal S, Sahi C, Gallie DR, Grover A (2001) Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chaperones 6:219–224PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agarwal P, Agarwal PK, Nair S, Sopory S, Reddy M (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Gen Genomics 277:189–198CrossRefGoogle Scholar
  3. Agarwal PK, Gupta K, Lopato S, Agarwal P (2017) Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68:2135–2148PubMedCrossRefGoogle Scholar
  4. Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ (2012) TsHKT1; 2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol 158:1463–1474PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aneja M, Gianfagna T, Ng E (1999) The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regul 27:149–155CrossRefGoogle Scholar
  7. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254PubMedCrossRefGoogle Scholar
  8. Asensi-Fabado MA, Amtmann A, Perrella G (2017) Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochim Biophys Acta 1860:106–122CrossRefGoogle Scholar
  9. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752PubMedCrossRefGoogle Scholar
  10. Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811PubMedCrossRefGoogle Scholar
  11. Azizi P, Rafii MY, Abdullah SN, Nejat N, Maziah M, Hanafi MM, Latif MA, Sahebi M (2016) Toward understanding of rice innate immunity against Magnaporthe oryzae. Crit Rev Biotechnol 36:165–174PubMedCrossRefGoogle Scholar
  12. Badenoch-Jones J, Parker C, Letham D, Singh S (1996) Effect of cytokinins supplied via the xylem at multiples of endogenous concentrations on transpiration and senescence in derooted seedlings of oat and wheat. Plant Cell Environ 19:504–516CrossRefGoogle Scholar
  13. Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 1:63–75CrossRefGoogle Scholar
  14. Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264PubMedCrossRefGoogle Scholar
  15. Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011a) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011b) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PA, Richard F, Persad R, Bowden L, Hickman R, Martin C, Beynon JL, Buchanan-Wollaston V, Baker NR, Morison JI, Schöffl F, Ott S, Mullineaux PM (2013) Arabidopsis heat shock transcription factorA1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot 64:3467–3481PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bhowmick R (2012) Study of genes involved in salt tolerance during early growth stages in kharchia local wheat. IARI, National Research Centre on Plant Biotechnology, New DelhiGoogle Scholar
  20. Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7:e30515PubMedPubMedCentralCrossRefGoogle Scholar
  21. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434PubMedCrossRefGoogle Scholar
  22. Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification—heritable responses to environmental stress. Curr Opin Plant Biol 14:260–266PubMedCrossRefGoogle Scholar
  23. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, KimYS PCA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894PubMedPubMedCentralCrossRefGoogle Scholar
  24. Breiman A (2014) Plant Hsp90 and its co-chaperones. Curr Protein Pept Sci 15:232–244PubMedCrossRefGoogle Scholar
  25. Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199CrossRefGoogle Scholar
  26. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366PubMedCrossRefGoogle Scholar
  27. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928PubMedPubMedCentralCrossRefGoogle Scholar
  28. Casaretto JA, El-kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi Y-M, Rothstein SJ (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 17:312PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chakraborty K, Sairam RK, Bhattacharya R (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101PubMedCrossRefGoogle Scholar
  30. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefGoogle Scholar
  31. Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsi s histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845PubMedPubMedCentralCrossRefGoogle Scholar
  33. Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600PubMedCrossRefGoogle Scholar
  34. Cong L, Chai TY, Zhang YX (2008) Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem Biophys Res Commun 371:702–706PubMedCrossRefGoogle Scholar
  35. Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82CrossRefGoogle Scholar
  36. Craig Plett D, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626PubMedCrossRefGoogle Scholar
  37. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53CrossRefGoogle Scholar
  38. Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913PubMedPubMedCentralCrossRefGoogle Scholar
  39. De Michele R, Formentin E, Todesco M, Toppo S, Carimi F, Zottini M, Barizza E, Ferrarini A, Delledonne M, Fontana P, Lo Schiavo F (2009) Transcriptome analysis of Medicago truncatula leaf senescence: similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. New Phytol 181:563–575PubMedCrossRefGoogle Scholar
  40. Debat V, David P (2001) Mapping phenotypes: canalization, plasticity and developmental stability. Trends Ecol Evol 16:555–561CrossRefGoogle Scholar
  41. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dewey DR (1962) Breeding crested wheatgrass for salt tolerance. Crop Sci 2:403–407CrossRefGoogle Scholar
  43. Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I (2016) Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 39:329–338PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  45. Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288PubMedCrossRefGoogle Scholar
  46. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fernandez P, Di Rienzo J, Fernandez L, Hopp HE, Paniego N, Heinz RA (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:11PubMedPubMedCentralCrossRefGoogle Scholar
  48. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefGoogle Scholar
  49. Flowers T, Yeo A (1995) Breeding for salinity resistance in crop plants: where next. Funct Plant Biol 22:875–884CrossRefGoogle Scholar
  50. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612CrossRefGoogle Scholar
  51. Fragkostefanakis S, Simm S, Paul P, Bublak D, SCHARF KD, Schleiff E (2015) Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ 38:693–709PubMedCrossRefGoogle Scholar
  52. Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125PubMedCrossRefGoogle Scholar
  53. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525PubMedCrossRefGoogle Scholar
  54. Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27PubMedCrossRefGoogle Scholar
  55. Gao M-J, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471PubMedCrossRefGoogle Scholar
  56. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefGoogle Scholar
  57. Gilroy S, Trewavas A (2001) Signal processing and transduction in plant cells: the end of the beginning. Nat Rev Mol Cell Biol 2:307PubMedCrossRefGoogle Scholar
  58. Gilroy S, Suzuki N, Miller G, Choi W-G, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630PubMedCrossRefGoogle Scholar
  59. Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5:192–206PubMedCrossRefGoogle Scholar
  60. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35PubMedCrossRefGoogle Scholar
  61. Gu Y-Q, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–785PubMedPubMedCentralCrossRefGoogle Scholar
  62. Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114PubMedPubMedCentralGoogle Scholar
  63. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int’l J Genom 2014:701596.  https://doi.org/10.1155/2014/701596CrossRefGoogle Scholar
  64. Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274PubMedPubMedCentralCrossRefGoogle Scholar
  65. Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang G (2018) A sodium transporter HvHKT1; 1 confers salt tolerance in Barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol 59:1976–1989PubMedCrossRefGoogle Scholar
  66. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499CrossRefGoogle Scholar
  67. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565PubMedCrossRefGoogle Scholar
  68. Havlov AM, Dobrev PI, Motyka V, Storchová H, Libus J, Dobrá J, Malbeck J, Gaudinová A, Vanková R (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 31:341–353CrossRefGoogle Scholar
  69. He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128PubMedCrossRefGoogle Scholar
  70. Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752CrossRefGoogle Scholar
  71. Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988PubMedCrossRefGoogle Scholar
  73. Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74:730–745PubMedCrossRefGoogle Scholar
  74. Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237PubMedCrossRefGoogle Scholar
  75. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987CrossRefGoogle Scholar
  76. Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199PubMedPubMedCentralGoogle Scholar
  77. Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD (2014) Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant Cell Environ 37:1202–1222PubMedCrossRefGoogle Scholar
  78. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153PubMedCrossRefGoogle Scholar
  79. Jagadish KS, Kishor K, Polavarapu B, Bahuguna RN, von Wirén N, Sreenivasulu N (2015) Staying alive or going to die during terminal senescence-an enigma surrounding yield stability. Front Plant Sci 6:1070PubMedPubMedCentralCrossRefGoogle Scholar
  80. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547PubMedPubMedCentralCrossRefGoogle Scholar
  81. James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618CrossRefGoogle Scholar
  82. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286PubMedCrossRefGoogle Scholar
  83. Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233:749–762PubMedCrossRefGoogle Scholar
  85. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287PubMedCrossRefGoogle Scholar
  86. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229PubMedCrossRefGoogle Scholar
  88. Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278PubMedCrossRefGoogle Scholar
  89. Kim J, Yenari M (2017) Heat shock proteins and the stress response. In: Primer on cerebrovascular diseases, 2nd edn. Elsevier, Amsterdam, pp 273–275CrossRefGoogle Scholar
  90. Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588PubMedCrossRefGoogle Scholar
  91. Kim J-M, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53:847–856PubMedCrossRefGoogle Scholar
  92. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349PubMedCrossRefGoogle Scholar
  93. Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162CrossRefGoogle Scholar
  94. Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6:238–246PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117:721–733CrossRefGoogle Scholar
  97. Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. In: Abiotic stress response in plants-physiological, biochemical and genetic perspectives. InTech https://www.intechopen.com/books/abiotic-stress-response-in-plants-physiological-biochemical-and-genetic-perspectives/role-of-plant-transcription-factors-in-abiotic-stress-tolerance. Accessed on 23 Feb 2019
  98. Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391PubMedPubMedCentralCrossRefGoogle Scholar
  99. Leng L, Liang Q, Jiang J, Zhang C, Hao Y, Wang X, Su W (2017) A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. J Plant Res 130:349–363CrossRefGoogle Scholar
  100. Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362PubMedCrossRefGoogle Scholar
  101. Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14:105PubMedPubMedCentralCrossRefGoogle Scholar
  102. Li WW, Chen M, Zhong L, Liu JM, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ (2015) Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem Biophys Res Commun 468:800–806PubMedCrossRefGoogle Scholar
  103. Li N, Wang X, Ma B, Du C, Zheng L, Wang Y (2017) Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. J Plant Physiol 218:109–120PubMedCrossRefGoogle Scholar
  104. Lim GH, Zhang X, Chung MS, Lee DJ, Woo YM, Cheong HS, Kim CS (2010) A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytol 185:103–113PubMedCrossRefGoogle Scholar
  105. Liu HC, Charng YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163:276–290PubMedPubMedCentralCrossRefGoogle Scholar
  106. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  107. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Nat Acad Sci 97:3730–3734PubMedCrossRefGoogle Scholar
  108. Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226:827–838PubMedCrossRefGoogle Scholar
  109. Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y (2008) Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol 67:37–55PubMedCrossRefGoogle Scholar
  110. López-Pérez L, del Carmen Martínez-Ballesta M, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 70:492–500PubMedCrossRefGoogle Scholar
  111. Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B–like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389–S400PubMedPubMedCentralCrossRefGoogle Scholar
  112. Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136PubMedCrossRefGoogle Scholar
  113. Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107PubMedCrossRefGoogle Scholar
  114. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158CrossRefGoogle Scholar
  115. Mahajan S, Pandey GK, Tuteja N (2008) Calcium-and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158PubMedCrossRefGoogle Scholar
  116. Maischak H, Zimmermann MR, Felle HH, Boland W, Mithöfer A (2010) Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav 5:988–990PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174:1747–1763PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161PubMedCrossRefGoogle Scholar
  120. Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149PubMedCrossRefGoogle Scholar
  121. Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431CrossRefGoogle Scholar
  122. Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+ -and K+ -permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479Google Scholar
  123. Milioni D, Hatzopoulos P (1997) Genomic organization of hsp90 gene family in Arabidopsis. Plant Mol Biol 35:955–961PubMedCrossRefGoogle Scholar
  124. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274PubMedCrossRefGoogle Scholar
  125. Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567PubMedPubMedCentralCrossRefGoogle Scholar
  126. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave. Trends Plant Sci 16:300–309CrossRefGoogle Scholar
  127. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96CrossRefGoogle Scholar
  128. Møller I, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Salinity tolerance engineered by cell type-specific over-expression of a Na+ transporter in the Arabidopsis root. Plant Cell 21:2163–2178PubMedPubMedCentralCrossRefGoogle Scholar
  129. Moore CA, Bowen HC, Scrase-Field S, Knight MR, White PJ (2002) The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling. Plant J 30:457–465PubMedCrossRefGoogle Scholar
  130. Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29Google Scholar
  131. Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6:18PubMedPubMedCentralCrossRefGoogle Scholar
  132. Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216CrossRefGoogle Scholar
  133. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefGoogle Scholar
  134. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  135. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360PubMedCrossRefGoogle Scholar
  136. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630PubMedCrossRefGoogle Scholar
  137. Nations U (2013) World population prospects: the 2012 revision, highlights and advance tables, Working Paper No. ESA/P/WP. 228. United Nations Publications, New YorkGoogle Scholar
  138. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547PubMedCrossRefGoogle Scholar
  139. Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52:933–945CrossRefGoogle Scholar
  140. Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need. Cell Stress Chaperones 6:177–189PubMedPubMedCentralCrossRefGoogle Scholar
  141. Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383CrossRefGoogle Scholar
  142. Oh D-H, Dassanayake M, Bohnert HJ, Cheeseman JM (2013) Life at the extreme: lessons from the genome. Genome Biol 13:241CrossRefGoogle Scholar
  143. Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Andrew Staehelin L, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844PubMedCrossRefGoogle Scholar
  144. Pardo JM, Rubio F (2011) Na+ and K+ transporters in plant signaling. In: Transporters and pumps in plant signaling. Springer, Berlin, pp 65–98CrossRefGoogle Scholar
  145. Parrott DL, McInnerney K, Feller U, Fischer AM (2007) Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol 176:56–69PubMedCrossRefGoogle Scholar
  146. Peleg Z, Apse MP, Blumwald E (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv Bot Res 57:405–443CrossRefGoogle Scholar
  147. Pérez-Salamó I, Papdi C, Rigó G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horváth B, Domoki M, Darula Z, Medzihradszky K, Bögre L, Koncz C, Szabados L (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol 165:319–334PubMedPubMedCentralCrossRefGoogle Scholar
  148. Perrella G, Lopez-Vernaza MA, Carr C, Sani E, Gosselé V, Verduyn C, Kellermeier F, Hannah MA, Amtmann A (2013) Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell 25:3491–3505PubMedPubMedCentralCrossRefGoogle Scholar
  149. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527PubMedCrossRefGoogle Scholar
  150. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69PubMedCrossRefGoogle Scholar
  151. Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492PubMedPubMedCentralCrossRefGoogle Scholar
  152. Ray S, Mondal W, Choudhuri M (1983) Regulation of leaf senescence, grain-filling and yield of rice by kinetin and abscisic acid. Physiol Plant 59:343–346CrossRefGoogle Scholar
  153. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141PubMedCrossRefGoogle Scholar
  154. Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441PubMedPubMedCentralCrossRefGoogle Scholar
  155. Roshandel P, Flowers T (2009) The ionic effects of NaCl on physiology and gene expression in rice genotypes differing in salt tolerance. Plant Soil 315:135–147CrossRefGoogle Scholar
  156. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124PubMedCrossRefGoogle Scholar
  157. RoyChoudhury A, Gupta B, Sengupta DN (2008) Trans-acting factor designated OSBZ8 interacts with both typical abscisic acid responsive elements as well as abscisic acid responsive element-like sequences in the vegetative tissues of indica rice cultivars. Plant Cell Rep 27:779–794PubMedCrossRefGoogle Scholar
  158. Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet 2:e210PubMedPubMedCentralCrossRefGoogle Scholar
  159. Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9CrossRefGoogle Scholar
  160. Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, Hörtensteiner S, Paek NC (2014) Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol Plant 7:1288–1302PubMedCrossRefGoogle Scholar
  161. Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59PubMedPubMedCentralCrossRefGoogle Scholar
  162. Scandalios J (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014PubMedCrossRefGoogle Scholar
  163. Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119CrossRefGoogle Scholar
  164. Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131PubMedPubMedCentralCrossRefGoogle Scholar
  165. Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60PubMedPubMedCentralCrossRefGoogle Scholar
  166. Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira MM, Saibo NJ (2013) OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol 82:439–455PubMedCrossRefGoogle Scholar
  167. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedCrossRefGoogle Scholar
  168. Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641PubMedPubMedCentralCrossRefGoogle Scholar
  169. Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219PubMedPubMedCentralCrossRefGoogle Scholar
  170. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Nat Acad Sci 97:6896–6901PubMedCrossRefGoogle Scholar
  171. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477PubMedPubMedCentralCrossRefGoogle Scholar
  172. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81PubMedCrossRefGoogle Scholar
  173. Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254PubMedCrossRefGoogle Scholar
  174. Song N-H, Ahn Y-J (2011) DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. New Biotechnol 28:698–704CrossRefGoogle Scholar
  175. Song SY, Chen Y, Chen J, Dai X-Y, Zhang W-H (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345CrossRefGoogle Scholar
  176. Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274PubMedPubMedCentralCrossRefGoogle Scholar
  177. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948CrossRefGoogle Scholar
  178. Suárez R, Calderón C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49:1791–1799CrossRefGoogle Scholar
  179. Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. PlJ 35:452–464Google Scholar
  180. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203PubMedCrossRefGoogle Scholar
  181. Suzuki K et al (2016) OsHKT1; 4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biol 16:22PubMedPubMedCentralCrossRefGoogle Scholar
  182. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, SunderlandGoogle Scholar
  183. Tang M, Liu X, Deng H, Shen S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181:623–631PubMedCrossRefGoogle Scholar
  184. Tang T, Yu A, Li P, Yang H, Liu G, Liu L (2016) Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses. Sci Rep 6:33650PubMedPubMedCentralCrossRefGoogle Scholar
  185. Teakle NL, Tyerman SD (2010) Mechanisms of Cl-transport contributing to salt tolerance. Plant Cell Environ 33:566–589PubMedCrossRefGoogle Scholar
  186. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527PubMedPubMedCentralCrossRefGoogle Scholar
  187. Thomas H, Ougham H (2014) The stay-green trait. J Environ Biol 65:3889–3900Google Scholar
  188. Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31:1063–1073PubMedCrossRefGoogle Scholar
  189. Trivedi DK, Huda KM, Gill SS, Tuteja N (2016) Molecular chaperone: structure, function, and role in plant abiotic stress tolerance. In: Abiotic Stress Response in Plants. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 135–154CrossRefGoogle Scholar
  190. Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438PubMedCrossRefGoogle Scholar
  191. Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376PubMedCrossRefGoogle Scholar
  192. Verslues PE (2016) ABA and cytokinins: challenge and opportunity for plant stress research. Plant Mol Biol 91:629–640PubMedCrossRefGoogle Scholar
  193. von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457CrossRefGoogle Scholar
  194. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223CrossRefGoogle Scholar
  195. Wang S, Blumwald E (2014) Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles. Plant Cell 26:4875–4888PubMedPubMedCentralCrossRefGoogle Scholar
  196. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252CrossRefGoogle Scholar
  197. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602PubMedCrossRefGoogle Scholar
  198. Wang M et al (2014) Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol 55:1354–1365PubMedCrossRefGoogle Scholar
  199. Wang W, Xu M, Wang G, Galili G (2017) Autophagy: an important biological process that protects plants from stressful environments. Front Plant Sci 7:2030PubMedPubMedCentralGoogle Scholar
  200. Wei Q et al (2017) A Wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci 8:1374PubMedPubMedCentralCrossRefGoogle Scholar
  201. Weinl S, Kudla J (2009) The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528PubMedCrossRefGoogle Scholar
  202. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718PubMedPubMedCentralCrossRefGoogle Scholar
  203. Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death–regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833PubMedCrossRefGoogle Scholar
  204. Xie Q, Michaeli S, Peled-Zehavi H, Galili G (2015) Chloroplast degradation: one organelle, multiple degradation pathways. Trends Plant Sci 20:264–265PubMedCrossRefGoogle Scholar
  205. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139PubMedCrossRefGoogle Scholar
  206. Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42:535–546PubMedCrossRefGoogle Scholar
  207. Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339PubMedCrossRefGoogle Scholar
  208. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859CrossRefGoogle Scholar
  209. Xue S, Yao X, Luo W, Jha D, Tester M, Horie T, Schroeder JI (2011) AtHKT1; 1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS One 6:e24725PubMedPubMedCentralCrossRefGoogle Scholar
  210. Yamada A, Sekiguchi M, Mimura T, Ozeki Y (2002) The role of plant CCTα in salt-and osmotic-stress tolerance. Plant Cell Physiol 43:1043–1048PubMedCrossRefGoogle Scholar
  211. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedPubMedCentralGoogle Scholar
  212. Yamburenko MV, Zubo YO, Vanková R, Kusnetsov VV, Kulaeva ON, Börner T (2013) Abscisic acid represses the transcription of chloroplast genes. J Exp Bot 64:4491–4502PubMedPubMedCentralCrossRefGoogle Scholar
  213. Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631CrossRefGoogle Scholar
  214. Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368:515–521PubMedCrossRefGoogle Scholar
  215. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332PubMedCrossRefGoogle Scholar
  216. Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12CrossRefGoogle Scholar
  217. Zhai Y et al (2016) Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Front Plant Sci 7:131PubMedPubMedCentralGoogle Scholar
  218. Zhang Z, Quick MK, Kanelakis KC, Gijzen M, Krishna P (2003) Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant Physiol 131:525–535PubMedPubMedCentralCrossRefGoogle Scholar
  219. Zhang H, Li L, Ye T, Chen R, Gao X, Xu Z (2016) Molecular characterization, expression pattern and function analysis of the OsHSP90 family in rice. Biotechnol Biotechnol Equip 30:669–676CrossRefGoogle Scholar
  220. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedCrossRefGoogle Scholar
  221. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedPubMedCentralCrossRefGoogle Scholar
  222. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar
  223. Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166:851–861PubMedCrossRefGoogle Scholar
  224. Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17. 0 and OsHsp23. 7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Parisa Azizi
    • 1
    Email author
  • Mohamed Musa Hanafi
    • 1
    • 2
    • 3
  • Siti Nor Akmar Abdullah
    • 1
  • Mahbod Sahebi
    • 3
  • Sima Taheri
    • 4
  1. 1.Laboratory of Plantation Science and Technology, Institute of Plantation StudiesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Land Management, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food SecurityUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations