Advertisement

Crop Improvement Through Microbial Biotechnology: A Cross Talk

  • Khushboo Goyal
  • Tarun Kumar
  • Pinki Sharma
  • Monika Rao
  • Vasim Ahmed
  • Nar Singh ChauhanEmail author
Chapter
  • 260 Downloads

Abstract

Salt is a basic necessity of all living beings; however, a paradoxical increase in salt concentration has a detrimental effect on almost all life forms. Increasing cellular salinity induces bimolecular deformations that result in growth inhibition and cell death in both plants and animals. Despite the detrimental effects of salinity, microorganisms evolved mechanisms to successfully survive in extreme salt stress environments like salt brines, saline lakes, sea, effluent treatment plants, saline soils, etc. Microbes were identified to harbor various gene/gene clusters connected to salt stress tolerance, some of which were employed to develop salt stress tolerant/osmotolerant transgenic crops. The goal of this chapter is to summarize the soil salinity, mechanisms of microbial salt stress tolerance, and biotechnological applications of the salt stress tolerance for crop improvement.

Keywords

Genes Osmotolerance Salinity Salt stress tolerance Transgenic crops 

References

  1. Alkoby D, Rimon A, Burdak M, Patino-Ruiz M, Calinescu O, Fendler K, Padan E (2014) NhaA Na+/H+ antiporter mutants that hardly react to the membrane potential. PLoS One 9:e93200.  https://doi.org/10.1371/journal.pone.0093200CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056PubMedPubMedCentralCrossRefGoogle Scholar
  3. An J, Song A, Guan Z, Jiang J, Chen F, Lou W (2014) The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum. Mol Biol Rep 41:4155–4162PubMedCrossRefGoogle Scholar
  4. Andronov EE, Petrova SN, Pinaev AG, Pershina EV, Rakhimgalieva SZ, Akhmedenov KM, Sergaliev NK (2012) Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques. Eur Soil Sci 45:147–156CrossRefGoogle Scholar
  5. Arrillaga I, Gil-Mascarell R, Gisbert C, Sales E, Montesinos CSR, Moreno V (1998) Expression of the yeast HAL2 gene in tomato increases in vitro salt tolerance of transgenic progenies. Plant Sci 136:219–266CrossRefGoogle Scholar
  6. Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36PubMedCrossRefGoogle Scholar
  7. Azam F, Ifzal M (2006) Microbial populations immobilizing NH4+-N and NO3-N differ in their sensitivity to sodium chloride salinity in soil. Soil Biol Biochem 38:2491–2494CrossRefGoogle Scholar
  8. Bae J, Kim SY, Hoe Y, Jin EC Yoon S (2013) Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions. Mol Breed 31:931CrossRefGoogle Scholar
  9. Bittsanszky A, Pilinszky K, Gyulai G, Komives T (2015) Overcoming ammonium toxicity. Plant Sci 231:184–190PubMedCrossRefGoogle Scholar
  10. Bond WJ (1998) Effluent irrigation-an environmental challenge for soil science. Soil Res 36:543–556CrossRefGoogle Scholar
  11. Boutraa T (2010) Improvement of water use efficiency in irrigated agriculture: a review. J Agron 9:1–8CrossRefGoogle Scholar
  12. Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Phys Cell Physiol 288:223–239CrossRefGoogle Scholar
  13. Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000) Generation of transgenic citrus plant with tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30CrossRefGoogle Scholar
  14. Chaitanya K, Krishna C, Ramana GV, Beebi SK (2014) Salinity stress and sustainable agriculture-a review. Agric Rev 35:34–41CrossRefGoogle Scholar
  15. Chattopadhyay MK, Kern R, Mistou MY, Dandekar AM, Uratsu SL, Richarme G (2004) The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42C. J Bacteriol 186:8149–8152PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen C, Beattie GA (2008) Pseudomonas syringae BetT is a low-affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine. J Bacteriol 190:2717–2725PubMedCrossRefGoogle Scholar
  17. Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 12:e0181450PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chowdhury N, Marschner P, Burns R (2011) Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant Soil 344:241–254CrossRefGoogle Scholar
  19. Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976CrossRefGoogle Scholar
  20. Culligan EP, Marchesi JR, Hill SRD (2012a) Mining the human gut microbiome for novel stress resistance genes. Gut Microbes 3:394–397PubMedPubMedCentralCrossRefGoogle Scholar
  21. Culligan EP, Sleator RD, Marchesi J, Hill C (2012b) Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME J 6:1916–1925PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cyrus DP, Martin TJ, Reavell PE (1997) Salt-water intrusion from the Mzingazi River and its effects on adjacent swamp forest at Richards Bay, Zululand, South Africa. Water SA 23:101–108Google Scholar
  23. Do DT, Chen H, Hien TV, Yamada T (2016) Ncl synchronously regulates Na+, K+, and Cl in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147.  https://doi.org/10.1038/srep19147CrossRefPubMedPubMedCentralGoogle Scholar
  24. Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int J Microbiol 11:151–161Google Scholar
  25. Epstein W (1986) Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol Lett 39:73–78CrossRefGoogle Scholar
  26. Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320PubMedCrossRefGoogle Scholar
  27. Garca-Orenes F, Guerrero C, Roldan A, Mataix-Solera J, Cerda A, Campoy M, Caravaca F (2010) Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res 109:110–115CrossRefGoogle Scholar
  28. Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178:255–263CrossRefGoogle Scholar
  29. Gill JS, Sale PWG, Peries RR, Tang C (2009) Changes in soil physical properties and crop root growth in dense sodic subsoil following incorporation of organic amendments. Field Crop Res 114:137–146CrossRefGoogle Scholar
  30. Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168:1286–1294PubMedCrossRefGoogle Scholar
  31. Gouiaa S, Khoudi H (2015) Co-expression of vacuolar Na+/H+ antiporter and H+-pyrophosphatase with an IRES-mediated dicistronic vector improves salinity tolerance and enhances potassium biofortification of tomato. Phytochemistry 117:537–546PubMedCrossRefGoogle Scholar
  32. Griffiths E, Gupta RS (2006) Lateral transfers of serine hydroxymethyltransferase (glyA) and UDP-N-acetylglucosamine enolpyruvyl transferase (murA) genes from free-living Actinobacteria to the parasitic chlamydiae. J Mol Evol 63:283–296PubMedCrossRefGoogle Scholar
  33. Guenon R, Vennetier M, Dupuy N, Roussos S, Pailler A, Gros R (2013) Trends in recovery of Mediterranean soil chemical properties and microbial activities after infrequent and frequent wildfires. Land Degrad Dev 24:115–128CrossRefGoogle Scholar
  34. Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142PubMedCrossRefGoogle Scholar
  35. He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854PubMedCrossRefGoogle Scholar
  36. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372PubMedPubMedCentralCrossRefGoogle Scholar
  37. Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185PubMedCrossRefGoogle Scholar
  38. Homaee M, Feddes RA, Dirkse C (2002) A macroscopic water extraction model for non uniform transient salinity and water stress. Soil Sci Soc Am J 66:1764–1772CrossRefGoogle Scholar
  39. Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42:567–575CrossRefGoogle Scholar
  40. Inoue H, Sakurai T, Ujike S, Tsuchiya T, Murakami H, Kanazawa H (1999) Expression of functional Na+/H+ antiporters of Helicobacter pylori in antiporter-deficient Escherichia coli mutants. FEBS Lett 443:11–16PubMedCrossRefGoogle Scholar
  41. James RA, Blake C, Zwart AB, Hare RA, Rathjen AJ, Munns R (2012) Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Funct Plant Biol 39:609–618CrossRefGoogle Scholar
  42. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621PubMedCrossRefGoogle Scholar
  43. Joseph TC, Raja LA, Thampuran N, James R (2010) Functional characterization of trehalose biosynthesis genes from E. coli: an osmolyte involved in stress tolerance. Mol Biotechnol 46:20–25PubMedCrossRefGoogle Scholar
  44. Kapardar RK, Ranjan R, Grover A, Puri M, Sharma R (2010a) Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome. Bioresour Technol 101:3917–3924PubMedCrossRefGoogle Scholar
  45. Kapardar RK, Ranjan R, Puri M, Sharma R (2010b) Sequence analysis of a salt tolerant metagenomic clone. Indian J Microbiol 50:212–215PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  47. Kim JA et al (2016) Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Plant Cell Rep 35:1943–1954PubMedCrossRefGoogle Scholar
  48. Kim SG, Bae HS, Oh HM, Lee S (2003) Isolation and characterization of novel halotolerant and/or halophilic denitrifying bacteria with versatile metabolic pathways for the degradation of trimethylamine. FEMS Microbiol Lett 225:263–269PubMedCrossRefGoogle Scholar
  49. Kishore PBK, Hong Z, Miao G, Hu CA, Verma DPS (1995) Overexpression of δ-pyrroline-5-carboxylase synthase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394CrossRefGoogle Scholar
  50. Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli. J Mol Microbiol Biotechnol 5:46–56PubMedCrossRefGoogle Scholar
  51. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696.  https://doi.org/10.4061/2011/280696CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kumar D, Shekhar S, Bisht S, Kumar V, Varma A, Kumar M (2015) Ectopic overexpression of lectin in transgenic Brassica juncea plants exhibit resistance to fungal phytopathogen and showed alleviation to salt and drought stress. J Bioeng Biomed Sci 5:147.  https://doi.org/10.4172/2155-9538.1000147CrossRefGoogle Scholar
  53. Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38:1049–1106PubMedCrossRefGoogle Scholar
  54. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4:6.  https://doi.org/10.1186/1746-1448-4-6CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lai SJ, Lai MC (2011) Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis. PLoS One 6:e25090.  https://doi.org/10.1371/0025090CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lentes CJ, Mir SH, Boehm M, Ganea C, Fendler K, Hunte C (2014) Molecular characterization of the Na+/H+-antiporter NhaA from Salmonella Typhimurium. PLoS One 9:239–250.  https://doi.org/10.1371/journal.pone.0101575CrossRefGoogle Scholar
  57. Lioubimtseva E, Cole R, Adams JM, Kapustin G (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285–308CrossRefGoogle Scholar
  58. Liu J, Zhang S, Dong L, Chu J (2014) Incorporation of Na+/H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max). Indian J Biochem Biophys 51:58–65PubMedGoogle Scholar
  59. Liu W, Zhang ZHE, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195.  https://doi.org/10.1111/j.1365-2468.2008.01728CrossRefGoogle Scholar
  60. Llamas DP, de Cara Gonzalez M, Gonzalez CI, Lopez GR, Marquina JT (2008) Effects of water potential on spore germination and viability of Fusarium species. J Ind Microbiol Biotechnol 35:1411–1418CrossRefGoogle Scholar
  61. Mager T, Rimon A, Padan E, Fendler K (2011) Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli an electrophysiological study. J Biol Chem 286:23570–23581PubMedPubMedCentralCrossRefGoogle Scholar
  62. Makoi JH, Ndakidemi PA (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol 7:181–191Google Scholar
  63. Mandeel QA (2006) Biodiversity of the genus Fusarium in saline soil habitats. J Basic Microbiol 46:480–494PubMedCrossRefGoogle Scholar
  64. Mavi MS, Sanderman J, Chittleboroug DJ, Cox JW, Marschner P (2012) Sorption of dissolved organic matter in salt-affected soils: effect of salinity, sodicity and texture. Sci Total Environ 435:337–344PubMedCrossRefGoogle Scholar
  65. Metwali EMR, Fuller MP, Jellings AJ (2012) Agrobacterium mediated transformation of anti-stress genes into cauliflower (Brassica oleracea var. botrytis L.) transformation and confirmation of stress tolerance. Aust J Basic Appl Sci 6:31–39Google Scholar
  66. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57PubMedCrossRefGoogle Scholar
  67. Morrissey EM, Gillespi JL, Morina JC, Frankli R (2014) Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob Chang Biol 20:1351–1362PubMedCrossRefGoogle Scholar
  68. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Plett D (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364PubMedCrossRefGoogle Scholar
  69. Oldeman LR, Hakkeling RU, Sombroek WG (2017) World map of the status of human-induced soil degradation: an explanatory note. Int Soil Ref Inf Cent 3:68–69Google Scholar
  70. Omamt EN, Hammes PS, Robbertse PJ (2006) Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. N Z J Crop Hortic Sci 34:1122.  https://doi.org/10.1080/01140671.2006.9514382CrossRefGoogle Scholar
  71. Omar SA, Ismail MA (1999) Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts. Folia Microbiol 44:205–212CrossRefGoogle Scholar
  72. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  73. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of saltlake ecosystems. Dev Hydrobiol 466:61–72.  https://doi.org/10.1007/978-94-017-2934-5-6CrossRefGoogle Scholar
  74. Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7.  https://doi.org/10.1111/j.1574-6941.2002.tb00900CrossRefPubMedGoogle Scholar
  75. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2.  https://doi.org/10.1186/1746-1448-4-2CrossRefPubMedPubMedCentralGoogle Scholar
  76. Padan E (2014) Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Biochem Biophys Acta 1837:1047–1062PubMedGoogle Scholar
  77. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88PubMedPubMedCentralCrossRefGoogle Scholar
  78. Padan E, Tzubery T, Herz K, Kozachkov L, Rimon A, Galili L (2004) NhaA of Escherichia coli, as a model of a pH-regulated Na+/H+ antiporter. Biochim Biophys Acta 1658:2–13.  https://doi.org/10.1016/j.bbabio.2004.04.018CrossRefPubMedGoogle Scholar
  79. Pan C, Liu C, Zhao H, Wang Y (2013) Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. Eur J Soil Biol 55:13–19.  https://doi.org/10.1016/j.ejsobi.2012.09.009CrossRefGoogle Scholar
  80. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349.  https://doi.org/10.1016/j.ecoenv.2004.06.010CrossRefGoogle Scholar
  81. Pasapula V, Shen G, Kuppu S, Paze-Valencia J, Mendosa M (2011) Expression of Arabidopsis vacuolar H+ pyrophosphatase gene (AVP1) in cotton improve salt tolerance and increase fiber yield in the field condition. Plant Biol J 3:88–99.  https://doi.org/10.1111/j.1467-7652.2010.00535CrossRefGoogle Scholar
  82. Pilon-Smits EA, Terry N, Sears T, Kim H, Zayed A, Hwang S, Goddijn OJ (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532.  https://doi.org/10.1016/S0176-1617(98)80273-3CrossRefGoogle Scholar
  83. Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Salinity: environment – plants – molecules. Kluwer Academic Publishers, Dordrecht, pp 3–20.  https://doi.org/10.1007/0-306-48155-3-1CrossRefGoogle Scholar
  84. Ponnamperuma FN (1984) Role of cultivar tolerance in increasing rice production in saline lands. In: Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 255–271Google Scholar
  85. Paul U, Wurm R, Wagner R (2007) The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol 366:900–915CrossRefGoogle Scholar
  86. Qamarunnisa S, Jamil I, Raza S, Azhar A, Naqvi SHM (2015) Genetic improvement of canola against abiotic stress through incorporation of DREB gene. Asian J Agric Biol 3:77–104Google Scholar
  87. Rahnama H, Vakilian H, Fahimi H, Ghareyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Plant 33:1521–1532.  https://doi.org/10.1007/s11738-010-0690-8CrossRefGoogle Scholar
  88. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:6.  https://doi.org/10.1186/2193-1801-2-6CrossRefPubMedGoogle Scholar
  89. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023PubMedCrossRefGoogle Scholar
  90. Rengasamy P (2008) Salinity in the landscape: a growing problem in Australia. Geotimes 53:34–39Google Scholar
  91. Reshetnikov AS, Khmelenina VN, Mustakhimov II, Trotsenko YA (2011) Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods Enzymol 495:15–30.  https://doi.org/10.1016/B978-0-12-386905-0.00002-4
  92. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Mol Biol 44:357–384CrossRefGoogle Scholar
  93. Richards LA (1954) Diagnosis and improvement of saline and alkali soils. In: Allisen EL, Brown JW, Hayward HE (eds) Agriculture handbook. U.S. Dept. of Agriculture, Washington, D.C.Google Scholar
  94. Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854CrossRefGoogle Scholar
  95. Roebler M, Muller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754CrossRefGoogle Scholar
  96. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Meta 4:49–56Google Scholar
  98. Rousk J, Elyaagubi FK, Jones DL, Godbold DL (2011) Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem 43:1881–1887CrossRefGoogle Scholar
  99. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124PubMedCrossRefGoogle Scholar
  100. Saha N, Anwar S, Xu J, Hou Z, Salah A, Khan S, Gong J, Shang Z, Qian L, Zhang C (2018) The response of transgenic Brassica species to salt stress: a review. Biotechnol Lett 40:1159–1165CrossRefGoogle Scholar
  101. Said-Al Ahl HAH, Omer EA (2011) Medicinal and aromatic plants production under salt stress. A review. Herba Pol 57:72–87Google Scholar
  102. Sakamoto S, Murata N (1998) The use of bacterial choline oxidase, a glycinebetaine synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:1–180.  https://doi.org/10.1104/pp.125.1.180CrossRefGoogle Scholar
  103. Sardinha M, Muller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244CrossRefGoogle Scholar
  104. Schilling RK, Marschne P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12:378–386PubMedCrossRefGoogle Scholar
  105. Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52PubMedCrossRefGoogle Scholar
  106. Setia R, Marschner P, Baldock J, Chittleborough D, Verma V (2011) Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biol Biochem 43:667–674CrossRefGoogle Scholar
  107. Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W (2015) The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38:2766–2779.  https://doi.org/10.1111/pce.12586CrossRefPubMedGoogle Scholar
  108. Shi DC, Wang DL (2005) Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil 271:15–26CrossRefGoogle Scholar
  109. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shinozaki K, Yamaguchi SK, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedCrossRefGoogle Scholar
  111. Singh K (2016) Microbial and enzyme activities of saline and sodic soils. Land Degrad Dev 27:706–718CrossRefGoogle Scholar
  112. Singh K, Singh B, Singh RR (2013) Effect of land rehabilitation on physicochemical and microbial properties of a sodic soil. Catena 109:49–57CrossRefGoogle Scholar
  113. Singh K, Trivedi P, Singh G, Singh B, Patra DD (2016) Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degrad Dev 27:1215–1226CrossRefGoogle Scholar
  114. Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71PubMedCrossRefGoogle Scholar
  115. Sun XE, Feng XX, Li C, Zhang ZP, Wang LJ (2015) Study on salt tolerance with YHem1 transgenic canola (Brassica napus). Physiol Plant 154:223–242PubMedCrossRefGoogle Scholar
  116. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters. Extremophiles 9:345–354PubMedCrossRefGoogle Scholar
  117. Szaboles I (1994) Soils and salinization. In: Pessarakli M, Dekker M (eds) Handbook of plant and crop stress, vol 3. Marcel Dekker, New York, p 11Google Scholar
  118. Szaboles I (1992) Salinization of soils and water and its relation to desertification. Desertification Control Bull 21:32–37Google Scholar
  119. Taglicht D, Padan E, Schuldiner S (1991) Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. J Biol Chem 266:11289–11294Google Scholar
  120. Taglicht D, Padan E, Schuldiner S (1993) Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J Biol Chem 268:5382–5387PubMedGoogle Scholar
  121. Tanaka S, Ikeda K, Miyasaka H (2001) Enhanced tolerance against salt-stress and freezing-stress of Escherichia coli cells expressing algal bbc1 gene. Curr Microbiol 42:173–177PubMedCrossRefGoogle Scholar
  122. Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci U S A 89:2600–2604PubMedPubMedCentralCrossRefGoogle Scholar
  123. Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806CrossRefGoogle Scholar
  124. Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210:25–31PubMedCrossRefGoogle Scholar
  125. Tzubery T, Rimon A, Padan E (2004) Mutation E252C increases drastically the km value for Na+ and causes an alkaline shift of the pH dependence of NhaA Na+/H+ antiporter of Escherichia coli. J Biol Chem 279:3265–3272Google Scholar
  126. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedPubMedCentralGoogle Scholar
  127. Wanjogu SN, Muya EM, Gicheru PT, Waruru BK (2001) Soil degradation: management and rehabilitation in Kenya. In: Proceedings of the FAO/ISCW expert consultation on Management of Degraded Soil in Southern and Eastern Africa (MADS-SEA) 2nd Networking meeting, Pretoria, South Africa, PR, pp 102–113Google Scholar
  128. Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108CrossRefGoogle Scholar
  129. Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188PubMedPubMedCentralCrossRefGoogle Scholar
  130. Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685PubMedGoogle Scholar
  131. Yan C, Zhang D, RaygozaGaray JA, Mwangi MM, Bai L (2015b) Decoupling of divergent gene regulation by sequence-specific DNA binding factors. Nucleic Acids Res 43:7292–7305PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yan N, Marschner P, Cao W, Zuo C, Qin W (2015a) Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv Res 3:316–323CrossRefGoogle Scholar
  133. Yancey P (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830PubMedCrossRefGoogle Scholar
  134. Yuan BC, Li ZZ, Li H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328CrossRefGoogle Scholar
  135. Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31.  https://doi.org/10.1007/s11103-011-9788-7
  136. Zhang- Xia H, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Khushboo Goyal
    • 1
  • Tarun Kumar
    • 1
  • Pinki Sharma
    • 1
  • Monika Rao
    • 1
  • Vasim Ahmed
    • 1
  • Nar Singh Chauhan
    • 1
    Email author
  1. 1.Department of BiochemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations