Skip to main content

Adaptive Mechanisms of Plants Against Salt Stress and Salt Shock

  • Chapter
  • First Online:
Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches

Abstract

Salinization process occurs when soil is contaminated with salt, which consequently influences plant growth and development leading to reduction in yield of many food crops. Responding to a higher salt concentration than the normal range can result in plant developing complex physiological traits and activation of stress-related genes and metabolic pathways. Many studies have been carried out by different research groups to understand adaptive mechanism in many plant species towards salinity stress. However, different methods of sodium chloride (NaCl) applications definitely give different responses and adaptive mechanisms towards the increase in salinity. Gradual increase in NaCl application causes the plant to have salt stress or osmotic stress, while single step and high concentration of NaCl may result in salt shock or osmotic shock. Osmotic shock can cause cell plasmolysis and leakage of osmolytes in plant. Also, the gene expression pattern is influenced by the type of methods used in increasing the salinity. Therefore, this chapter discusses the adaptive mechanism in plant responding to both types of salinity increment, which include the morphological changes of plant roots and aerial parts, involvement of signalling molecules in stress perception and regulatory networks and production of osmolyte and osmoprotective proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiri R, Shaharuddin A, Maziah M, Yusof NBY, Atabaki N, Sahebi M, Valdiani A, Kalhori N, Azizi P, Hanafi MM (2017) Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ Exp Bot 134:33–44

    Article  CAS  Google Scholar 

  • Acosta-Motos JR, Ortuno MF, Bernal-Vicente B, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:1–38

    Article  CAS  Google Scholar 

  • Ahmadi FI, Karimi K, Struik PC (2018) Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. S Afr J Bot 115:5–11

    Article  CAS  Google Scholar 

  • Alam MZ, Carpenter-Boggs L, Mitra S, Haque MM, Halsey J, Rokonuzzaman M, Saha B, Moniruzzaman M (2017) Effect of salinity intrusion on food crops, livestock, and fish species at Kalapara Coastal Belt in Bangladesh. J Food Qual 2017:2045157. https://doi.org/10.1155/2017/2045157

    Article  CAS  Google Scholar 

  • Alves RC, de Medeiros AS, Nicolau MCM, Neto AP, de Assis oliveira F, Lima LW, Tezotto T, Gratao PL (2018) The partial root-zone saline irrigation system and antioxidant responses in tomato plants. Plant Physiol Biochem 127:366–379

    Article  CAS  PubMed  Google Scholar 

  • An JP, Zhang XW, Xu RR, You CX, Wang XF, Hao YJ (2018) Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Sci 276:181–188

    Article  CAS  PubMed  Google Scholar 

  • Arias-Baldrich C, Bosch N, Begines D, Feria AB, Monreal JA, Garcia-Maurino S (2015) Proline synthesis in barley under iron deficiency and salinity. J Plant Physiol 183:121–129

    Article  CAS  PubMed  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509. https://doi.org/10.3389/fphys.2017.00509

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamin JJ, Lucini L, Jothiramshekar S, Parida A (2018) Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes. Plant Physiol Biochem (Online). https://doi.org/10.1016/j.plaphy.2018.11.006

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni AA, Bouzayen M, Zouine M (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response. PLoS One 13:e0193517. https://doi.org/10.1371/journal.pone.0193517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderon A, Sevilla F, Jimenez A (2018) Redox proteins thioredoxins: function under salinity, drought and extreme temperature conditions. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 123–162

    Chapter  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Gao J, Feng Y, Zhang Z, Liu Y, Fang W, Chen S, Chen F, Jiang J (2018a) The chrysanthemum leaf and root transcript profiling in response to salinity stress. Gene 674:161–169

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zhu H, Banuelos G, Yan B, Shutes B, Liang Y, Chen X (2018b) Saline-alkaline tolerance of hygrophilous plant species during their asexual propagation and continued growth stages. S Afr J Bot 118:129–137

    Article  CAS  Google Scholar 

  • Chourey K, Ramani S, Apte SK (2003) Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress. J Plant Physiol 160:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Farhana S, Rashid P, Karmoker JL (2014) Salinity induced anatomical changes in maize (Zea mays L. Cv Bari-7). Dhaka Univ J Biol Sci 23:93–95

    Article  Google Scholar 

  • Gall HL, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plan Theory 4:112–166

    Google Scholar 

  • Guan Z, Feng Y, Song A, Shi X, Mao Y, Chen S, Jiang J, Ding L, Chen F (2017) Expression profiling of Chrysanthemum crassum under salinity stress and the initiation of morphological changes. PLoS One 12:e0175972. https://doi.org/10.1371/journal.pone.0175972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Jiang Q, Hu Z, Sun X, Fan S, Zhang H (2018) Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J 6:181–190

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:701596. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. https://doi.org/10.3389/fpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry W, Hak Wan (2012) Effects of salinity on fresh fruit bunch (FFB) production and oil-to-bunch ratio of oil palm (Elaeis guineensis) planted in reclaimed mangrove swamp areas in Sabah. Oil Palm Bull 65:12–20

    Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8:e0062085. https://doi.org/10.1371/journal.pone.0062085

    Article  CAS  Google Scholar 

  • Hussain S, Zhang J, Zhing C, Zhu L, Cao X, Yu S, Bohr JA, Hu J, Jin Q (2017) Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. J Integr Agric 16:2357–2374

    Article  CAS  Google Scholar 

  • Jamalian S, Gholami M, Esna-Ashari M (2013) Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoret Exp Plant Physiol 25:291–299

    Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40

    Article  CAS  Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Jini D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24:97–108

    Article  Google Scholar 

  • Junghans U, Polle A, Duchting P, Weiler E, Kuhlman B, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Kahlaoui B, Hachicha M, Misle E, Fidalgo F, Teixeira J (2018) Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. J Saudi Soc Agric Sci 17:17–23

    Google Scholar 

  • Keshishian EA, Hallmark HT, Ramaraj T, Plackova L, Sundarajan A, Schilkey F, Novak O, Rashotte AM (2018) Salt and oxidative stresses uniquely regulate tomato cytokinin levels and transcriptomic response. Plant Direct 2018:e00071. https://doi.org/10.1002/pld3.71

    Article  CAS  Google Scholar 

  • Khalid KA, Cai W (2011) The effects of mannitol and salinity stresses on growth and biochemical accumulations in lemon balm. Acta Ecol Sin 31:112–120

    Article  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J 2014:167681. https://doi.org/10.1155/2014/167681

    Article  CAS  Google Scholar 

  • Kosova K, Prasil IT, Vitamvas P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Singh S, Singh M, Srivastava PK, Mishra RK, Singh VP, Prasad SM (2017) Transcriptional regulation of salinity stress in plants: a short review. Plant Gene 11:160–169

    Article  CAS  Google Scholar 

  • Kumari A, Parida AK (2018) Metabolomics and network analysis reveal the potential metabolites and biological pathways involved in salinity tolerance of the halophyte Salvadora persica. Environ Exp Bot 148:85–99

    Article  CAS  Google Scholar 

  • Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front Plant Sci 6:427. https://doi.org/10.3389/fpls.2015.00427

    Article  PubMed  PubMed Central  Google Scholar 

  • Laohavisit A, Richards SL, Shabala L, Chen C, Colaco RDDR, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM (2013) Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol 163:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang W, Ma X, Wan P, Li L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Han S-W, Hwang IS, Kim DS, Hwang BK, Lee SC (2015) The pepper lipoxygenase CaLOX1 plays a role in osmotic, drought and high salinity stress response. Plant Cell Physiol 56:930–942

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang W, Zhang Y, Yuan H, Huang S (2018) Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila Pall. To high environmental salinity. Ecotoxicol Environ Saf 165:250–260

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Dicke M, Schnitzler J-P, Turlings TCJ (2014) Plant volatiles and the environment. Plant Cell Environ 37:1905–1908

    Article  PubMed  Google Scholar 

  • Lu X, Zhang X, Duan H, Lian C, Liu C, Yin W, Xia X (2018) Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. Physiol Plant 162:73–97

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wang P, Wang M, Sun M, Gu Z, Yang R (2019) GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chem 270:593–601

    Article  CAS  PubMed  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulture 3:30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  • Malekzadeh P (2015) Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol Mol Biol Plants 21:225–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri M, Naghavi MR, Alizadeh H, Mohammadi-Nejad G, Mousavi SA, Salekdeh GH, Tada Y (2018) Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Funct Integr Genomics. https://doi.org/10.1007/s10142-018-0623-y

  • Marakli G, Gozukirmizi N (2017) Analyses of abiotic stress and brassinosteroid-related some genes in barley roots grown under salinity stress and HBR treatments: expression profiles and phylogeny. Plant Biosyst 152:324–332

    Article  Google Scholar 

  • Nath M, Yadav S, Sahoo RK, Passrichaa N, Tuteja R, Tuteja N (2016) PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. J Plant Physiol 191:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nath M, Bhatt D, Jain A, Saxena SC, Saifi SK, Yadav S, Negi M, Prasad R, Tuteja N (2018) Salt stress triggers augmented levels of Na+, Ca2+ and ROS and alter stress-responsive gene expression in roots of CBL9 and CIPK23 knockout mutants of Arabidopsis thaliana. Environ Exp Bot 161:265–276

    Google Scholar 

  • Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Neves GYS, Marchiosi R, Ferrarese MLL, Siqueira-Soares RC, Ferrarese-Filho O (2010) Root growth inhibition and lignification induced by salt. J Agron Crop Sci 196:467–473

    Article  CAS  Google Scholar 

  • Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124. https://doi.org/10.1371/journal.pone.00321241-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nxele X, Klein A, Ndimba BK (2017) Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S Afr J Bot 108:261–266

    Article  CAS  Google Scholar 

  • Ohori T, Fujiyama H (2011) Water deficit and abscisic acid production of Salicornia bigelovii under salinity stress. Soil Sci Plant Nutr 57:566–572

    Article  CAS  Google Scholar 

  • Omamt EN, Hames PS, Robbertse PJ (2006) Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. N Z J Crop Hortic Sci 34:11–22

    Article  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LP (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Article  PubMed  Google Scholar 

  • Park HJ, Kin WY, Yun DJ (2016) A new insight of salt stress signaling in plant. Mol Cell 39:447–459

    Article  CAS  Google Scholar 

  • Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiol 144:1029–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postnikova OA, Shao J, Nemchinov LG (2013) Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol 54:1041–1055

    Article  CAS  PubMed  Google Scholar 

  • Rady MOA, Semida WM, El-Mageed TAA, Hemida A, Rady MM (2018) Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress. Sci Hortic 240:614–622

    Article  CAS  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487

    Article  CAS  Google Scholar 

  • Rasool S, Hameed A, Azooz MM, Muneeb-u-Rehman, Siddiqi TO, Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, Berlin, pp 1–25

    Google Scholar 

  • Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S (2012) Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J Exp Bot 63:2717–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezende RALS, Rodrigues FA, Soares JDR, Silveira HRO, Pasqual M, Dias GMG (2018) Salt stress and exogenous silicon influence physiological and anatomical features of in vitro-grown cape gooseberry. Cienc Rural 48:1–14

    Article  Google Scholar 

  • Robin AHK, Matthew C, Uddin MJ, Bayazid KN (2016) Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J Exp Bot 67:3719–3729

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, Gonzalez JA, Hilal M, Prado FE (2009) Soluble sugars – metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4:388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sola MA, Arbona V, Gomez-Cadenas VAA, Rodriguez-Concepcion M, Rodriguez-Villalon A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS One 9:e90765. https://doi.org/10.1371/journal.pone.0090765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saneoka H, Ishiguro S, Moghaieb REA (2001) Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in Sorghum leaves (Sorghum bicolor). J Plant Physiol 158:853–859

    Article  CAS  Google Scholar 

  • Sathiyavani E, Prabaharan NK, Surendar KK (2017) Role of mineral nutrition on root growth of crop plants – a review. Int’l J Curr Microbiol App Sci 6:2810–2837

    Google Scholar 

  • Sharma I, Kaur N, Pati PK (2017) Brassinosteroids: a promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Front Plant Sci 8:2151. https://doi.org/10.3389/fpls.2017.02151

    Article  PubMed  PubMed Central  Google Scholar 

  • Shavrukov Y (2013) Salt stress or salt shock: which genes are we studying? J Exp Bot 64:119–127

    Article  CAS  PubMed  Google Scholar 

  • Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, Gupta SK, Liu S, Takano T (2018) Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot 155:619–627

    Article  CAS  Google Scholar 

  • Shoeva, Khlestkina (2015) Differently expressed ‘early’ flavonoid synthesis genes in wheat seedlings become to be co-regulated under salinity stress. Cereal Res Commun 43:537–543

    Article  CAS  Google Scholar 

  • Shoresh M, Spivak M, Bernstein N (2011) Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radic Biol Med 51:122–1234

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Skliros D, Kalloniati C, Karalias G, Skaracis GN, Rennenberg H, Flemetakis E (2018) Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress. Plant Soil 429:451–468

    Article  CAS  Google Scholar 

  • Suhaib M, Ahmad I, Munir M, Iqbal MB, Abuzar MK, Safdar A (2018) Salicylic acid induced physiological and ionic efficiency in wheat under salt stress. Pak J Agric 31:79–85

    Google Scholar 

  • Sui J, Jiang P, Qin G, Gai S, Zhu D, Qiao L, Wang J (2018) Transcriptome profiling and digital gene expression analysis of genes associated with salinity resistance in peanut. Electron J Biotechnol 32:19–25

    Article  CAS  Google Scholar 

  • Sun X, Wang Y, Sui N (2018) Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun 501:397–401

    Article  CAS  Google Scholar 

  • Tao J-J, Chen H-W, Ma B, Zhang W-K, Chen S-Y, Zhang JS (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6:1–12

    Article  Google Scholar 

  • Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM (2016) Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67:4209–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:1–16

    Article  Google Scholar 

  • Wakeel A, Farooq M, Qadir M, Schubert S (2011) Potassium substitution by sodium in plants. Crit Rev Plant Sci 30:401–413

    Article  CAS  Google Scholar 

  • Wang Y, Zhang W, Li K, Sun F, Han C, Wang Y, Li X (2007) Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. J Plant Res 121:87–96

    Article  PubMed  Google Scholar 

  • Wang Y, Shen W, Chan Z, Wu Y (2015) Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana. Front Plant Sci 6:1004. https://doi.org/10.3389/fpls.2015.01004

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Hou C, Zheng K, Li Q, Chen S, Wang S (2017) Overexpression of ERF96, a small ethylene response factor gene, enhances salt tolerance in Arabidopsis. Biol Plant 61:693–701

    Article  CAS  Google Scholar 

  • Wang L, Chen Q, Xin D, Qi Z, Zhang C, Li S, Jin Y, Li M, Mei H, Su A, Wu X (2018a) Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J Integr Agric 17:1959–1971

    Article  CAS  Google Scholar 

  • Wang W, Wu Z, He Y, Huang Y, Li X, Ye BC (2018b) Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicol Environ Saf 164:520–529

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance – role of glycine betaine. Curr Genomics 14:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LJ, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ, Zhang DW, Lin HH (2015) Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci 6:982. https://doi.org/10.3389/fpls.2015.00982

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei D, Zhang W, Wang C, Meng Q, Li G, Chen THH, Yang X (2018) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83

    Article  CAS  Google Scholar 

  • Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 6:215–225

    Article  Google Scholar 

  • Wu YH, Wang T, Wang K, Liang QY, Bai Z-Y, Liu QL, Pan YZ, Jiang BB, Zhang L (2016) Comparative analysis of the chrysanthemum leaf transcript profiling in response to salt stress. PLoS One 11:e0159721. https://doi.org/10.1371/journal.pone.0159721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Jiang Y, Liang Y, Chen L, Chen W, Cheng B (2019) Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Biochem (Online). https://doi.org/10.1016/j.plaphy.2019.02.010

  • Wungrampha S, Joshi R, Singla-Pareek SL, Pareek A (2018) Photosynthesis and salinity: are these mutually exclusive? Photosynthetica 56:366–381

    Article  CAS  Google Scholar 

  • Xiong JL, Wang HC, Tana XY, Zhang CL, Naeem MS (2018) 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiol Biochem 124:88–99

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6:348. https://doi.org/10.3389/fpls.2015.00348

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Lu R, Dai Z, Yan A, Tang Q, Cheng C, Xu Y, Yang W, Su J (2017) Salt-stress response mechanisms using de novo transcriptome sequencing of salt-tolerant and sensitive corchorus spp. genotypes. Genes 8:E226. https://doi.org/10.3390/genes8090226

    Article  CAS  PubMed  Google Scholar 

  • Yang X, He K, Chi X, Chai G, Wang Y, Jia C, Zhang H, Zhou G, Hu R (2018) Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis. Plant Sci 277:229–241

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhao L, Yan J, Zhang J, Guo F, Geng Y, Wang Q, Yang F, Wan S, Li X (2019) Peanut genes encoding tetrapyrrole biosynthetic enzymes, AhHEMA1 and AhFC1, alleviating the salt stress in transgenic tobacco. Plant Physiol Biochem 137:14–24

    Article  CAS  PubMed  Google Scholar 

  • Yer EN, Baloglub MC, Ayana S (2018) Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene 678:324–336

    Article  CAS  PubMed  Google Scholar 

  • Yoon JY, Hamayun M, Lee S-K, Lee I-J (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Article  Google Scholar 

  • Yu Y, Ni Z, Chen Q, Qu Y (2017) The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 491:642–648

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen C, Shi Z, Cheng H, Bing J, Ma X, Zheng C, Li H, Zhang G (2018a) Identification of salinity-related genes in ENO2 mutant (eno2–) of Arabidopsis thaliana. J Integr Agric 17:94–110

    Article  CAS  Google Scholar 

  • Zhang J, Chen S, Sun H, Ma S (2018b) Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. Plant Physiol Biochem 126:11–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lv Y, Jahan N, Chen G, Ren D, Guo L (2018c) Sensing of abiotic stress and ionic stress responses in plants. Int’l J Mol Sci 19:1–16

    Google Scholar 

  • Zong N, Li X, Wang L, Wang Y, Wen H, Li L, Zhang X, Fan Y, Zhao J (2018) Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis. J Integr Agric 17:2379–2393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzreena Mohamad Azzeme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azzeme, A.M., Abdullah, S.N.A. (2019). Adaptive Mechanisms of Plants Against Salt Stress and Salt Shock. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Springer, Singapore. https://doi.org/10.1007/978-981-13-8805-7_2

Download citation

Publish with us

Policies and ethics