Skip to main content

Plant Growth Regulators and Salt Stress: Mechanism of Tolerance Trade-Off

  • Chapter
  • First Online:

Abstract

With the advent of sophisticated technology and techniques in farming sectors, the problem of salt stress has increased manifold. Salt stress causes various alterations ranging from genetic to morphological level in crop plants. In order to improve salt stress tolerance, some sustainable strategies should be chalked out which on one hand engineer tolerance to salt stress and on the other side enhance photosynthesis, growth, and yield of crop plants. Plants have developed numerous strategies of tolerance to overcome the menace of salt stress. Among various practices adopted, the signalling crosstalk of plant growth regulators (PGRs) has received special attention recently among plant physiologists. In the present chapter, an appraisal has been prepared to explore the tolerance trade-off mediated by PGRs, viz. salicylic acid (SA), nitric oxide (NO), brassinosteroids (BRs), abscisic acid (ABA), methyl jasmonate (MeJ), and melatonin (Mel), in plants under salt-challenged environments. The present chapter highlights the role of PGRs for engineering tolerance against salt stress in various crop plants. Furthermore, the underlying mechanisms by which plants perceive signals of stress, which trigger signal transduction cascades, have also been elaborated. Moreover, the role of tolerance trade-off under salinity stress by PGRs, namely, SA, NO, BRs, ABA, MeJ, and Mel, has also been dissected in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afzal I, Basra SMA, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol 8:23–28

    CAS  Google Scholar 

  • Agami RA (2013) Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South Afr J Bot 88:171–177

    Article  CAS  Google Scholar 

  • Agrawal GK, Tamogami S, Iwahashi H, Agrawal VP, Rakwal R (2003) Transient regulation of jasmonic acid inducible rice MAP kinase gene (OsBWMK1) by diverse biotic and abiotic stresses. Plant Physiol Biochem 41:355–361

    Article  CAS  Google Scholar 

  • Ahamed G, Xia X, Li X, Shi K, Yu J, Zhou Y (2014) Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Curr Protein Pep Sci 16:462–473

    Article  CAS  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018) Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul:1–18

    Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd-Allah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2018) Silicon (Si) Supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physiobiochemical attributes and key antioxidant enzymes. J Plant Growth Regul 1:13

    Google Scholar 

  • Alavi SMN, Arvin MJ, Kalantari KM (2014) Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings. J Plant Interact 9:683–688

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ Exp Bot 59:217–223

    Article  CAS  Google Scholar 

  • Amjad M, Akhtar J, Anwar-ul-Haq M, Yang A, Akhtar SC, Jacobsen E (2014) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    Article  CAS  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann Bot 121:195–207

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2017) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pollut Res 24:2273–2285

    Article  CAS  Google Scholar 

  • Azooz MM (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int J Agric Biol 11:343–350

    CAS  Google Scholar 

  • Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 17:659–667

    Article  CAS  Google Scholar 

  • Beligni M, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Bertazzini M, Sacchi GA, Forlani G (2018) A differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na+ exclusion from shoots. J Plant Physiol 226:145–153

    Article  CAS  PubMed  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Y, Zhang ZW, Xue LW, Du JB, Shang J, Xu F (2009) Lack of salicylic acid in Arabidopsis protects plants against moderate salt stress. Z Naturforsch C 64:231–238

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Ann Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  • Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Xie Y, Gu Q, Zhao G, Zhang Y, Cui W (2017) The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Rad Biol Med 108:465–477

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Manganaris GA, Fotopoulos V (2014) Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ Exp Bot 107:46–54

    Article  CAS  Google Scholar 

  • Chrysargyris A, Michailidi E, Tzortzakis N (2018) Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front Plant Sci 9:489

    Article  PubMed  PubMed Central  Google Scholar 

  • Çoban Ö, Baydar NG (2016) Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind Crop Prod 86:251–258

    Article  CAS  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S (2014) Glutathione transferase super gene family in tomato: salt stress- regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Da-Silva CJ, Mollica DC, Vicente MH, Peres LE, Modolo LV (2017) NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide 76:164–173

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2010) Plant hormones: biosynthesis, signal transduction, action! 3rd edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong F, Simon J, Rienks M, Lindermayr C, Rennenberg H (2015) Effects of rhizospheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source. Tree Physiol 35:910–920

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PM, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endo dermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • FAO (2015) FAO cereal supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/. Accessed 17 Nov 2018

  • Fariduddin Q, Khalil RR, Mir BA, Yusuf M, Ahmad A (2013a) 24-epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 185:7845–7856

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A (2013b) Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiol Plant 35:2037–2053

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17

    Article  CAS  Google Scholar 

  • Fatma M, Khan NA (2014) Nitric oxide protects photosynthetic capacity inhibition by salinity in Indian mustard. J Funct Environ Bot 4:106–116

    Article  Google Scholar 

  • Fatma M, Khan MIR, Masood A, Khan NA (2013) Coordinate changes in assimilatory sulphate reduction are correlated to salt tolerance: involvement of phytohormones. Ann Rev Res Biol 3:267–295

    CAS  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55

    Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Gadelha CG, De Souza MR, Alencar NLM, Costa JH, Prisco JT, Gomes-Filho E (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Srivastava S, Seth CS (2017) 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil 411:483–498

    Article  CAS  Google Scholar 

  • Gurmani AR, Bano A, Salim M (2007) Effect of abscisic acid and benzyladenine on growth and ion accumulation of wheat under salinity stress. J Bot 39:141–149

    Google Scholar 

  • Gururani MA, Mohanta TK, Bae H (2015) Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int J Mol Sci 16:19055–19085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tran L-SP (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856

    Article  PubMed  CAS  Google Scholar 

  • Hachicha M (2007) Salty soils and their development in Tunisia. Sci Glob Change Drought 18:45–50

    Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  PubMed  Google Scholar 

  • Harrison MA (2012) Cross-talk between phytohormone signalling pathways under both optimal and stressful environmental conditions. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 49–76

    Chapter  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Nitric oxide modulates antioxidant defense and methylglyoxal detoxification system and reduces salinity induced damage in wheat seedling. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Hasanuzzaman M, Alam MM, Nahar K, Ahamed KU, Fujita M (2014) Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust J Crop Sci 8:631

    CAS  Google Scholar 

  • Hassine AB, Ghanem ME, Bouzid S, Lutts S (2009) Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Ann Bot 104:925–936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Heidelberg, pp 1–14

    Chapter  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    Article  CAS  Google Scholar 

  • Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A (2012) Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol Biochem 53:61–68

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Yadav S, Alyemeni MN, Irfan M, Wani AS, Ahmad A (2013) Alleviation of salinity stress with sodium nitroprusside in tomato. Int J Veg Sci 19:164–176

    Article  Google Scholar 

  • Horváth E, Brunner S, Bela K, Papdi C, Szabados L, Tari I, Csiszár J (2015) Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Funct Plant Biol 42:1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    PubMed  PubMed Central  Google Scholar 

  • Hossain MS, ElSayed AI, Moore M, Dietz KJ (2017) Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. J Exp Bot 68:1283–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Masood A, Khan NA (2012) Phytohormones in salinity tolerance: ethylene and gibberellins cross talk. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 77–98

    Chapter  Google Scholar 

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci 2:22–28

    Article  Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Jia Q, Zheng C, Sun S, Amjad H, Liang K, Lin W (2018) The role of plant cation/proton antiporter gene family in salt tolerance. Biol Plant:1–13

    Google Scholar 

  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:82

    Article  CAS  Google Scholar 

  • Kang D-J, Seo Y-J, Lee J-D, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee I-J (2005) Jasmonic acid differentially affects growth, ion uptake and Abscisic acid concentration in salt-tolerant and salt-sensitive Rice cultivars. J Agron Crop Sci 191(4):273–282

    Article  CAS  Google Scholar 

  • Kausar F, Shahbaz M, Ashraf M (2013) Protective role of foliar-applied nitric oxide in Triticum aestivum under saline stress. Turk J Bot 37:1155–1165

    Article  CAS  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010a) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121

    Article  CAS  Google Scholar 

  • Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010b) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:1

    Article  CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Siddiqui MH (2017) Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Mun B-G, Khan AL, Waqas M, Kim H-H, Shahzad R (2018) Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS ONE 13:e0192650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong X, Wang T, Li W, Tang W, Zhang D, Dong H (2016) Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Acta Physiol Plant 38:61

    Article  CAS  Google Scholar 

  • Koornneef M, Leon-Kloosterziel KM, Schwartz SH, Zeevaart JA (1998) The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem 36:83–89

    Article  CAS  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Ma F (2012) The mitigation effects of exogenous melatonin on salinity induced stress in Malus hupehensis. J Pineal Res 53:298–306

    Article  CAS  PubMed  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529:321–325

    Article  CAS  PubMed  Google Scholar 

  • Li T, Hu Y, Du X, Tang H, Shen C, Wu J (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS One 9:e109492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Li W, Nishiyama R, Watanabe Y, Van Ha C, Kojima M, An P, Tran LSP (2018) Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes. Plant Physiol Biochem 128:170–177

    Article  CAS  PubMed  Google Scholar 

  • Liotenberg S, North H, Marion-Poll A (1999) Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiol Biochem 37:341–350

    Article  CAS  Google Scholar 

  • Liu A, Fan J, Gitau MM, Chen L, Fu J (2016) Nitric oxide involvement in bermudagrass response to salt stress. J Am Soc Hortic Sci 141:425–433

    Article  CAS  Google Scholar 

  • López-Gómez M, Hidalgo-Castellanos J, Lluch C, Herrera-Cervera JA (2016) 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiol Biochem 108:212–221

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Maswada HF, Djanaguiraman M, Prasad PVV (2018) Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J Agric Crop Sci. https://doi.org/10.1111/jac.12280

    Article  CAS  Google Scholar 

  • Minoch R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship1. Front Plant Sci 5:175

    Google Scholar 

  • Mir BA, Khan TA, Fariduddin Q (2015) 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. Int J Adv Res 3:592–608

    CAS  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371–406

    Article  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops what is the cost. New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10:e1003751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie W, Gong B, Chen Y, Wang J, Wei M, Shi Q (2018) Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Sci Hortic 235:413–423

    Article  CAS  Google Scholar 

  • Ohori T, Fujiyama H (2011) Water deficit and abscisic acid production of under salinity stress. Soil Sci Plant Nutr 57:566–572

    Google Scholar 

  • Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol Plant 138:10–21

    Article  CAS  PubMed  Google Scholar 

  • Pál M, Janda T, Szalai G (2018a) Interactions between plant hormones and thiol-related heavy metal chelators. Plant Growth Regul:1–13

    Google Scholar 

  • Pál M, Majláth I, Németh E, Hamow KÁ, Szalai G, Rudnóy S, Janda T (2018b) The effects of putrescine are partly overlapping with osmotic stress processes in wheat. Plant Sci 268:67–76

    Article  PubMed  CAS  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Singh J, Achary V, Reddy MK (2015) Redox homeostasis via gene families of ascorbate-glutathione pathway. Front Environ Sci 3:25

    Article  Google Scholar 

  • Paul S, Roychoudhury A (2017) Seed priming with spermine and spermidine regulates the expression of diverse groups of abiotic stress-responsive genes during salinity stress in the seedlings of Indica rice varieties. Plant Gene 11:124–132

    Article  CAS  Google Scholar 

  • Pilet PE (1998) Some cellular and molecular properties of abscisic acid: its particular involvement in growing plant roots. Cell Mol Life Sci 54:851–865

    Article  CAS  Google Scholar 

  • Poór P, Gémes K, Horváth F, Szepesi A, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13:105–114

    Article  PubMed  CAS  Google Scholar 

  • Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38:282–295

    Article  Google Scholar 

  • Qayyum B, Shahbaz M, Akram NA (2007) Interactive effect of foliar application of 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticum aestivum L.). Int J Agric Biol 9:584–589

    CAS  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    Article  CAS  PubMed  Google Scholar 

  • Rattan A, Kapoor D, Kapoor N, Bhardwaj R (2014) Application of brassinosteroids reverses the inhibitory effect of salt stress on growth and photosynthetic activity of Zea mays plants. Int J Theor Appl Sci 6:13

    Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi F, Shekafandeh A (2014) Effect of 24-epibrassinolide on salinity-induced changes in loquat (Eriobotrya japonica Lindl). J Appl Bot Food Qual 87:182–189

    Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide. https://doi.org/10.1016/j.niox.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  • Serna M, Coll Y, Zapata PJ, Botella MÁ, Pretel MT, Amorós A (2015) A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Sci Hortic 185:105–112

    Article  CAS  Google Scholar 

  • Sharif R, Xie C, Zhang H, Arnao M, Ali M, Ali Q, Li Y (2018) Melatonin and its effects on plant systems. Molecules 23:2352

    Article  PubMed Central  CAS  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protects cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45:542–550

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H (2015) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Exp Bot 66:681–694

    Article  CAS  Google Scholar 

  • Siddiqui H, Ahmed KBM, Hayat S (2018) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiol Biochem 129:198–212

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Dwivedi P (2018) Modulation of salt stress induced responses in pea (Pisum sativum L.) through salicylic acid and Trichoderma application. Int J Curr Microbiol App Sci 7:3173–3185

    Article  CAS  Google Scholar 

  • Sirhindi G (2013) Brassinosteroids: biosynthesis and role in growth, development, and thermotolerance responses. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, New Delhi, pp 309–329

    Chapter  Google Scholar 

  • Surgun Y, Altunlu H, Türkekul S, Bürün B, Yokaş I (2015) Effects of 24-epibrassinolide on growth and some antioxidant enzymes of cotton (Gossypium hirsutum L.) cultivars under NaCl stress. J Appl Biol Sci 9:9–17

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Talaat NB, Shawky BT (2012) 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ Exp Bot 82:80–88

    Article  CAS  Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Change Biol 20:3313–3328

    Article  Google Scholar 

  • Trivedi D, Illa P (2016) Effect of brassinosteroids on protein profiling of salinity susceptible and resistance cultivars of groundnut under salinity stress. Eur J Biotechnol Biosci 4:38–46

    Google Scholar 

  • Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Ann Rev Cell Dev Biol 28:463–487

    Article  CAS  Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67

    Article  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30(4):410–421

    Article  CAS  Google Scholar 

  • Wang Y, Reiter RJ, Chan Z (2017) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69:963–974

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V (2015) Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics 3:113

    Article  Google Scholar 

  • Wani SH, Kumar V, Shriram V (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Gao T, Liang B, Zhao Q, Ma F, Li C (2018) Effects of exogenous melatonin on methyl viologen-mediated oxidative stress in apple leaf. Int J Mol Sci 19

    Google Scholar 

  • Wu XX, Ding HD, Chen JL, Zhang HJ, Zhu WM (2010) Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. Afr J Biotechnol 9:7837–7846

    Article  CAS  Google Scholar 

  • Wu X, Zhu W, Zhang H, Ding H, Zhang HJ (2011) Exogenous nitric oxide protects against salt induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicon esculentum Mill.). Acta Physiol Plant 33:1199–1209

    Article  CAS  Google Scholar 

  • Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457–469

    Article  CAS  PubMed  Google Scholar 

  • Yadu S, Dewangan TL, Chandrakar V, Keshavkant S (2017) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plants 23:43–58

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Pan C, Du Y, Li D, Liu W (2018) Exogenous salicylic acid regulates reactive oxygen species metabolism and ascorbate–glutathione cycle in Nitraria tangutorum Bobr. under salinity stress. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-018-0540-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Wang P, Li M, Ke X, Li C, Liang D, Ma F (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54:426–434

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Igarashi E, Mukai M, Hirata K, Miyamoto K (2003) Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ 26(3):451–457

    Article  CAS  Google Scholar 

  • Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Sun J (2018) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+–ATPase activity and K+/Na+ homeostasis in sweet potato. Front Plant Sci 9:256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaid A, Mohammad F (2018) Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J Plant Growth Regul 37:1331–1348

    Article  CAS  Google Scholar 

  • Zhang D (2014) Abscisic acid: metabolism, transport and signaling. Springer, New York

    Google Scholar 

  • Zhang N, Sun QQ, Zhang HJ, Cao YY, Weeda S, Ren SX, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xia G (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164:1068–1076

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  • Zhu Y, Wang B, Tang K, Hsu CC, Xie S, Du H (2017) An Arabidopsis nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet 13:e1007124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170:220–224

    Article  PubMed  CAS  Google Scholar 

  • Zwanenburg B, Pospíšil T, Ćavar Zeljković S (2016) Strigolactones: new plant hormones in action. Planta 243:1311–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Abbu Zaid is thankful to Aligarh Muslim University, Aligarh, and UGC-New Delhi, India, for financial assistance in the form of research fellowship No. BTM-2015-04-GH-7403. We apologize to those colleagues who have contributed to this field but were not cited because of space limitations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fariduddin, Q., Zaid, A., Mohammad, F. (2019). Plant Growth Regulators and Salt Stress: Mechanism of Tolerance Trade-Off. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer, Singapore. https://doi.org/10.1007/978-981-13-8801-9_4

Download citation

Publish with us

Policies and ethics