Skip to main content

CPG-Based Swimming Control

  • Chapter
  • First Online:
Motion Control of Biomimetic Swimming Robots

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 629 Accesses

Abstract

Generally, there are mainly two categories control method for robotic fish , including sine-based trajectory tracking and online gait generation (Low et al. in Adv. Robot. 23:805–829 (2012), [1]; Yu et al. in IEEE/ASME Trans. Mechatronics 17:847–856 (2012), 2]. The former, represented by fish body wave method, is usually employed through offline planning and online tracking control. In comparison, the latter method generates real-time swimming gaits online. Inspired by the salamander, whose swimming locomotion is governed by CPG , more CPG -based controllers are constructed to generate the desired swimming gaits online. In biology, CPGs are neural circuits located in the spinal cord which are responsible for generation of cyclic muscle activation patterns such as respiration, swimming, and crawling [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Low, K.H., Zhou, C., Zhong, Y.: Gait planning for steady swimming control of biomimetic fish robots. Adv. Robot. 23, 805–829 (2012)

    Article  Google Scholar 

  2. Yu, J., Ding, R., Yang, Q., Tan, M.: On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatronics 17, 847–856 (2012)

    Article  Google Scholar 

  3. Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on CPG-inspired control models and system implementation. IEEE Trans. Neural Netw. Learn. 25, 441–456 (2014)

    Article  Google Scholar 

  4. Bliss, T., Lwasaki, T., Bart-Smith, H.: Central pattern generator control of a tensegrity swimmer. IEEE/ASME Trans. Mechatronics 18, 586–597 (2013)

    Article  Google Scholar 

  5. Wang, T., Guo, W., Li, M., Zha, F., Sun, L.: CPG control for biped hopping robot in unpredictable environment. J. Bionic Eng. 9, 29–38 (2013)

    Article  Google Scholar 

  6. Zhao, W., Hu, Y., Wang, L.: Construction and central pattern generator-based control of a flipper-actuated turtle-like underwater robot. Adv. Robot. 23, 19–43 (2009)

    Article  Google Scholar 

  7. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural. Netw. 21, 642–653 (2008)

    Article  Google Scholar 

  8. Héliot, R., Espiau, B.: Multisensor input for CPG-based sensory-motor coordination. IEEE Trans. Robot. 24, 191–195 (2008)

    Article  Google Scholar 

  9. Fukuoka, Y., Mimura, T., Yasuda, N., Kimura. H.: Integration of multi sensors for adaptive walking of a quadruped robot. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 21–26 (2003)

    Google Scholar 

  10. Simoni, M.F., Deweerth, S.: Sensory feedback in a half-center oscillator model. IEEE Trans. Biomed. Eng. 54, 193–204 (2007)

    Article  Google Scholar 

  11. Wang, M., Yu, J., Tan, M.: Parameter design for a Central Pattern Generator based locomotion controller. In: Proceedings of 1st International Conference on Intelligent Robotics and Applications, Part I, LNAI 5314, pp. 352–361 (2008)

    Chapter  Google Scholar 

  12. Na, K.I., Park, C.S., Jeong, I., Seungbeom, H., Jong, H.K.: Locomotion generator for robotic fish using an evolutionary optimized central pattern generator. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, Tianjin, China, pp. 1069–1074 (2010)

    Google Scholar 

  13. Hu, Y., Liang, J., Wang, T.: Parameter synthesis of coupled nonlinear oscillators for CPG-based robotic locomotion. IEEE Trans. Ind. Electron. 61, 6183–6191 (2014)

    Article  Google Scholar 

  14. Crespi, A., Ijspeert, A.J.: Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans. Robot. 24, 75–87 (2008)

    Article  Google Scholar 

  15. Wu, Z., Yu, J., Tan, M.: CPG parameter search for a biomimetic robotic fish based on particle swarm optimization. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, pp. 563–568 (2012)

    Google Scholar 

  16. Zhou, C., Low, K.H.: On-line optimization of biomimetic undulatory swimming by an experiment-based approach. J. Bionic Eng. 11, 213–225 (2014)

    Article  Google Scholar 

  17. Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 34, 1798–1810 (2004)

    Article  Google Scholar 

  18. Yu, J., Wang, L., Zhao, W., Tan, M.: Optimal design and motion control of biomimetic robotic fish. Sci. China Ser. F-Inf. Sci. 51, 535–549 (2008)

    Article  Google Scholar 

  19. Zhou, C., Low, K.H.: Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans. Mechatronics 17, 25–35 (2012)

    Article  Google Scholar 

  20. Drazin, P.G.: Nonlinear Systems (Cambridge Texts in Applied Mathematics). Cambridge University Press (2008)

    Google Scholar 

  21. Cohen, A.H., Holmes, P.J., Rand, R.H.: The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model. J. Math. Biol. 13, 345–369 (1982)

    Article  MathSciNet  Google Scholar 

  22. Patela, L.N., Murraya, A., Hallamb, J.: Super-lampreys and wave energy: optimised control of artificially-evolved, simulated swimming lamprey. Neurocomputing 70, 1139–1154 (2007)

    Article  Google Scholar 

  23. Yu, J., Wang, K., Tan, M., Zhang, J.: Design and control an embedded vision guided robotic fish with multiple control surfaces. Sci. World J. 2014, 1–13 (2014)

    Google Scholar 

  24. Xu, D., Zhang, S., Wen, L.: A stiffness-adjusting method to improve thrust efficiency of a two-joint robotic fish. Adv. Mech. Eng. 2014, 1–7 (2014)

    Article  Google Scholar 

  25. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)

    Article  Google Scholar 

  26. Yu, J., Fang, Y., Wang, L., Liu, L.: Visual tracking of multiple robotic fish for cooperative control. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, Kunming, China, pp. 85–90 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Tan, M. (2020). CPG-Based Swimming Control. In: Motion Control of Biomimetic Swimming Robots. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-8771-5_4

Download citation

Publish with us

Policies and ethics