Skip to main content

Implementing Flexible and Fast Turning Maneuvers of Multijoint Robotic Fish

  • Chapter
  • First Online:
  • 651 Accesses

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

Abstract

Fast-starts are quick, high-energy swimming bursts starting either from repose or imposed upon periods of steady swimming (Domenici and Blake in J Exp Biol 200:1165–1178 (1997) [1]). Classified as unsteady motions, fast-starts are commonly executed by fish propelled by BCF, i.e., BCF swimmers, which are central to understanding the dynamics of fish predator-prey interactions. Classified as unsteady motions, fast-starts are commonly executed by fish propelled by BCF, i.e., BCF swimmers, which are central to understanding the dynamics of fish predator-prey interactions. Generally, fast-starts are categorized into C- or S-starts in reference to the initial body shape adopted by the fish with C-starts being used for escape responses and S-starts for prey capture (Webb in J Exp Biol 74:211–226 (1978) [2]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Domenici, P., Blake, R.W.: Review: the kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997)

    Google Scholar 

  2. Webb, P.W.: Fast-start performance and body form in seven species of teleost fish. J. Exp. Biol. 74, 211–226 (1978)

    Google Scholar 

  3. Weihs, D.: The mechanism of rapid starting of a slender fish. Biorheology 10, 343–350 (1973)

    Article  Google Scholar 

  4. Ahlborn, B., Chapman, S., Stafford, R., Blake, R.W., Harper, D.G.: Experimental simulation of the thrust phases of fast-start swimming of fish. J. Exp. Biol. 200, 2301–2312 (1997)

    Google Scholar 

  5. Domenici, P.: Webb scales fast-start maneuvers. J. Exp. Biol. 2011(214), 875–877 (2011)

    Article  Google Scholar 

  6. Tytell, E.D., Lauder, G.V.: The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J. Exp. Biol. 205, 2591–2603 (2002)

    Google Scholar 

  7. Borazjani, I., Sotiropoulos, F., Tytell, E.D., Lauder, G.V.: Hydrodynamics of the bluegill sunfish C-start escape response: three dimensional simulations and comparison with experimental data. J. Exp. Biol. 215, 671–684 (2012)

    Article  Google Scholar 

  8. McClenahan, P., Troup, M., Scott, E.K.: Fin-tail coordination during escape and predatory behavior in larval zebrafish. PLoS ONE 7, e32295 (2012)

    Article  Google Scholar 

  9. Conte, J., Modarres-Sadeghi, Y., Watts, M.N., Hover, F.S., Triantafyllou, M.S.: A fast-starting mechanical fish that accelerates at 40 m s−2. Bioinsp. Biomim. 5, 035004 (2010)

    Article  Google Scholar 

  10. Wöhl, S., Schuster, S.: The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start. J. Exp. Biol. 210, 311–324 (2007)

    Article  Google Scholar 

  11. Crespi, A., Lachat, D., Pasquier, A., Ijspeert, A.J.: Controlling swimming and crawling in a fish robot using a central pattern generator. Auton. Robot. 25, 3–13 (2008)

    Article  Google Scholar 

  12. Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Trans. Mechatronics 15, 448–459 (2010)

    Article  Google Scholar 

  13. Curet, O.M., Patankar, N.A., Lauder, G.V., MacIver, M.A.: Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinsp. Biomim. 6, 026004 (2011)

    Article  Google Scholar 

  14. Liu, F., Lee, K., Yang, C.: Hydrodynamics of an undulating fin for a wave-like locomotion system design. IEEE/ASME Trans. Mechatronics 17, 554–562 (2012)

    Article  Google Scholar 

  15. Zhou, C., Low, K.H.: Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans. Mechatronics 17, 25–35 (2012)

    Article  Google Scholar 

  16. Kitts, C., Bingham, B., Chen, Y., Griffiths, G., Kirkwood, W.S.: Guest editorial. IEEE/ASME Trans. Mechatronics 17, 1–7 (2012)

    Article  MathSciNet  Google Scholar 

  17. Abdelnour, K., Stinchcombe, A., Porfiri, M., Zhang, J., Childress, S.: Wireless powering of ionic polymer metal composites towards hovering micro-swimmers. IEEE/ASME Trans. Mechatronics 17, 924–935 (2012)

    Article  Google Scholar 

  18. Prince, C., Lin, W., Lin, J., Peterson, S.D., Porfiri, M.: Temporally-resolved hydrodynamics in the vicinity of a vibrating ionic polymer metal composite. J. Appl. Phys. 107, 094908 (2010)

    Article  Google Scholar 

  19. Aureli, M., Porfiri, M.: Low frequency and large amplitude oscillations of cantilevers in viscous fluids. Appl. Phys. Lett. 96, 164102 (2010)

    Article  Google Scholar 

  20. Abaid, N., Bartolini, T., Macri, S., Porfiri, M.: Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behav. Brain Res. 224, 545–553 (2012)

    Article  Google Scholar 

  21. Marras, S., Porfiri, M.: Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J. R. Soc. Interface 9, 1856–1868 (2012)

    Article  Google Scholar 

  22. Triantafyllou, M.S., Techet, A.H., Hover, F.S.: Review of experimental work in biomimetic foils. IEEE J. Oceanic Eng. 29, 585–594 (2004)

    Article  Google Scholar 

  23. Colgate, J.E., Lynch, K.M.: Mechanics and control of swimming: a review. IEEE J. Oceanic Eng. 29, 660–673 (2004)

    Article  Google Scholar 

  24. Roper, D.T., Sharma, S., Sutton, R., Culverhouse, P.: A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 225, 77–96 (2011)

    Google Scholar 

  25. Chu, W., Lee, K., Song, S., Han, M., Lee, J., Kim, H.S., Kim, M.S., Park, Y.J., Cho, K.J., Ahn, S.H.: Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 13, 1281–1292 (2012)

    Article  Google Scholar 

  26. Liu, J., Hu, H.: Mimicry of sharp turning behaviours in a robotic fish. In: Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 3318–3323 (2005)

    Google Scholar 

  27. Liu, J., Hu, H.: Biological inspiration: from carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7, 35–48 (2010)

    Article  Google Scholar 

  28. Yu, J., Liu, L., Wang, L., Tan, M., Xu, D.: Turning control of a multilink biomimetic robotic fish. IEEE Trans. Robot. 24, 201–206 (2008)

    Article  Google Scholar 

  29. Yu, J., Wang, M., Tan, M., Li, Y.F.: Step function based turning maneuvers in biomimetic robotic fish. In: Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3431–3436 (2009)

    Google Scholar 

  30. Liang, J., Wang, T., Wen, L.: Development of a two-joint robotic fish for real-world exploration. J. Field Robot. 28, 70–79 (2011)

    Article  Google Scholar 

  31. Sillar, K.T., Robertson, R.M.: Thermal activation of escape swimming in post-hatching Xenopus laevis frog larvae. J. Exp. Biol. 212, 2356–2364 (2009)

    Article  Google Scholar 

  32. Tytell, E.D., Lauder, G.V.: Hydrodynamics of the escape response in bluegill sunfish Lepomis macrochirus. J. Exp. Biol. 211, 3359–3369 (2008)

    Article  Google Scholar 

  33. Lighthill, M.J.: Hydrodynamics of aquatic animal propulsion. Ann. Rev. Fluid Mech. 1, 413–446 (1969)

    Article  Google Scholar 

  34. Su, Z., Yu, J., Tan, M., Zhang, J.: Bio-inspired design of body wave and morphology in fish swimming based on linear density. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, Guilin, China, pp. 1803–1808 (2009)

    Google Scholar 

  35. Su, Z., Yu, J., Tan, M., Zhang, J.: Closed-loop precise turning control for a BCF-mode robotic fish. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, pp. 946–951 (2010)

    Google Scholar 

  36. Maresh, J.L., Fish, F.E., Nowacek, D.P., Nowacek, S.M., Wells, R.S.: High performance turning capabilities during foraging by bottlenose dolphins. Mar. Mammal Sci. 20, 498–509 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Tan, M. (2020). Implementing Flexible and Fast Turning Maneuvers of Multijoint Robotic Fish. In: Motion Control of Biomimetic Swimming Robots. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-8771-5_3

Download citation

Publish with us

Policies and ethics