Skip to main content

Molecular Dynamics Simulations Study on the Grain Size Dependence of Deformation and Failure Behavior of Polycrystalline Cu

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The tensile deformation and failure behavior of polycrystalline Cu nanowires have been examined using molecular dynamics (MD) simulations at 10 K. MD simulations have been performed on polycrystalline Cu nanowires with grain size ranging from 1.54 to 5.42 nm. The simulation results indicate that the yielding as well plastic deformation in all the Cu nanowires proceeds by the slip of Shockley partial dislocations irrespective of grain size. Interestingly, the formation of fivefold twin and deformation induced grain growth has been observed during the plastic deformation. The polycrystalline Cu with the grain size of 5.42 nm fails through shear along the grain boundary (intergranular failure), while the shear along the slip planes within the grain (intra-granular failure) has been observed for grain size less than 5.42 nm. The variations of yield strength and flow stress at 10% strain as a function of grain size follows inverse Hall–Petch relation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  2. H.C. Postma, I. Kozinsky, A. Husain, M. Roukes, Appl. Phys. Lett. 86, 223105 (2005)

    Article  Google Scholar 

  3. A. Cao, E. Ma, Acta Mater. 56, 4816 (2008)

    Article  Google Scholar 

  4. H.S. Park, J.A. Zimmerman, Phys. Rev. B 72, 054106 (2005)

    Article  Google Scholar 

  5. Z. Wu, Y.W. Zhang, M.H. Jhon, H. Gao, D.J. Srolovitz, Nano Lett. 12, 910 (2012)

    Article  Google Scholar 

  6. H. Liang, M. Upmanyu, H. Huang, Phys. Rev. B 71, 241403 (2005)

    Article  Google Scholar 

  7. F. Sansoz, Acta Mater. 59, 3364 (2011)

    Article  Google Scholar 

  8. G. Richter, K. Hillerich, D.S. Gianola, R.M. Nig, O. Kraft, C.A. Volkert, Nano Lett. 9, 3048 (2009)

    Article  Google Scholar 

  9. C. Peng, Y. Zhan, J. Lou, Small 8, 1889 (2012)

    Article  Google Scholar 

  10. J. Han, L. Fang, J. Sun, Y. Han, K. Sun, J. Appl. Phys. 112, 114314 (2012)

    Article  Google Scholar 

  11. M. Yaghoobi, G.Z. Voyiadjis, Acta Mater. 121, 190 (2016)

    Article  Google Scholar 

  12. P. Rohith, G. Sainath, B.K. Choudhary, Comput. Mater. Sci. 138, 34 (2017)

    Article  Google Scholar 

  13. E. Hall, Proc. Phys. Soc. B64, 747 (1951)

    Article  Google Scholar 

  14. N. Petch, J. Iron Steel Inst. 174, 25 (1953)

    Google Scholar 

  15. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006)

    Article  Google Scholar 

  16. A.H. Chokshi, A. Rosen, J. Karch, H. Glieter, Scr. Mater. 23, 1679 (1989)

    Google Scholar 

  17. D. Wolf, V. Yamakova, S.R. Phillpota, A.K. Mukherjeeb, Z. Für. Met. 94, 1091 (2003)

    Google Scholar 

  18. A.J. Haslam, D. Moldovan, V. Yamakova, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 51, 2097 (2003)

    Article  Google Scholar 

  19. J. Schiøtz, F.D.D. Tolla, K.W. Jacobsen, Nature 391, 561 (1998)

    Article  Google Scholar 

  20. X. Li, W. Hu, S. Xiao, W.Q. Huang, Phys. E 40, 3030 (2008)

    Article  Google Scholar 

  21. A. Cao, Y. Wei, E. Ma, Phys. Rev. B 77, 195429 (2008)

    Article  Google Scholar 

  22. R.A. Masumura, P.M. Hazzledine, C.S. Pande, Acta Mater. 46, 4527 (1998)

    Article  Google Scholar 

  23. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  Google Scholar 

  24. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001)

    Article  Google Scholar 

  25. W. Cai, W. Fong, E. Elsen, C.R. Weinberger, J. Mech. Phys. Solids 56, 3242 (2008)

    Article  MathSciNet  Google Scholar 

  26. J.A. Zimmerman, E.B. Webb, J.J. Hoyt, R.E. Jones, P.A. Klein, D.J. Bammann, Modell. Simul. Mater. Sci. Eng. 12, S319 (2003)

    Article  Google Scholar 

  27. J. Li, Modell. Simul. Mater. Sci. Eng. 11, 173 (2003)

    Article  Google Scholar 

  28. D. Faken, H. Jonsson, Comput. Mater. Sci. 2, 279 (1994)

    Article  Google Scholar 

  29. G.W. Nieman, J.R. Weertman, R.W. Siegel, Nanostruct. Mater. 1, 185 (1992)

    Article  Google Scholar 

  30. X. Tian, J. Cui, B. Li, M. Xiang, Modell. Simul. Mater. Sci. Eng. 18, 055011 (2010)

    Article  Google Scholar 

  31. S. Saha, M.A. Motalab, M. Mahboob, Comput. Mater. Sci. 136, 52 (2017)

    Article  Google Scholar 

  32. T.G. Nieh, J. Wadsworth, Scr. Met. Mater. 25, 955 (1991)

    Article  Google Scholar 

  33. J. Lian, B. Baudelet, A.A. Nazarov, Mater. Sci. Eng. A 172, 23 (1993)

    Article  Google Scholar 

  34. T.G. Langdon, Mater. Sci. Forum 189, 31 (1995)

    Article  Google Scholar 

  35. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Science 305, 654 (2004)

    Article  Google Scholar 

  36. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 3, 43 (2004)

    Article  Google Scholar 

  37. H. Van Swygenhoven, P.M. Derlet, Phy. Rev. B 64, 224105 (2001)

    Article  Google Scholar 

  38. F. Sansoz, V. Dupont, Appl. Phys. Lett. 89, 111901 (2006)

    Article  Google Scholar 

  39. G. Sainath, P. Rohith, B.K. Choudhary, Philos. Mag. 97, 2632 (2017)

    Article  Google Scholar 

  40. E.N. Hahn, M.A. Meyers, Mater. Sci. Eng. A 646, 101 (2015)

    Article  Google Scholar 

  41. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, Appl. Phys. Lett. 84, 592 (2004)

    Article  Google Scholar 

  42. A.J. Cao, Y.G. Wei, Appl. Phys. Lett. 89, 041919 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. V. S. Srinivasan for his suggestions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rohith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rohith, P., Sainath, G., Choudhary, B.K. (2020). Molecular Dynamics Simulations Study on the Grain Size Dependence of Deformation and Failure Behavior of Polycrystalline Cu. In: Prakash, R., Suresh Kumar, R., Nagesha, A., Sasikala, G., Bhaduri, A. (eds) Structural Integrity Assessment. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-8767-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8767-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8766-1

  • Online ISBN: 978-981-13-8767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics