Skip to main content

The Biological Impact of Oxidative Metabolism in Trypanosomatid Parasites: What Is the Perfect Balance Between Reactive Species Production and Antioxidant Defenses?

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

Diseases caused by trypanosomatids include leishmaniasis (Leishmania spp.), Chagas disease (Trypanosoma cruzi), and sleeping sickness (Trypanosoma brucei) that affect millions of people, especially low-income populations, being classified as neglected tropical diseases. Limitations in the clinical treatment, associated with the huge number of cases, make these infections a health and socioeconomic problem worldwide. To complete their life cycle, trypanosomatids survive to environmental changes in different hosts, including oxidative stress. A paradoxal role of reactive oxygen species (ROS) has been proposed, such as signaling as a proliferation regulator or even presenting cytotoxic activity, depending on the concentration. Mitochondrial electron transport chain, especially complex III, is figured as one of the most important ROS resources in trypanosomatids. In relation to antioxidant defenses, trypanothione pathway plays a crucial role, being a peculiar thiol-redox system responsible for the maintenance of protozoa functions mediated by thiol-dependent processes. In this chapter, we discuss the biological aspects of oxidative stress in trypanosomatids and its implications for the success of the infection. The possible ROS resources in these protozoa and their consequent antioxidant machinery involved in detoxification were also focused in this review, including alternative strategies for the development of new drugs for these diseases based on oxidative stress modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2016) Neglected tropical diseases. http://www.who.int/trypanosomiasis_african/en/index.html. Accessed 10 July 2018

  2. World Health Organization (2008) The global burden of disease: 2004 update. http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/. Accessed 10 July 2018

  3. World Health Organization (2018) What is leishmaniasis? http://www.who.int/leishmaniasis/disease/en/. Accessed 10 July 2018

  4. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, Team WLC (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671. https://doi.org/10.1371/journal.pone.0035671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14(2):229–243. https://doi.org/10.1128/cmr.14.2.229-243.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anversa L, Tiburcio MGS, Richini-Pereira VB, Ramirez LE (2018) Human leishmaniasis in Brazil: a general review. Rev Assoc Med Bras (1992) 64(3):281–289. https://doi.org/10.1590/1806-9282.64.03.281

    Article  Google Scholar 

  7. Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11(12):e0006052. https://doi.org/10.1371/journal.pntd.0006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Croft SL, Olliaro P (2011) Leishmaniasis chemotherapy – challenges and opportunities. Clin Microbiol Infect 17(10):1478–1483. https://doi.org/10.1111/j.1469-0691.2011.03630.x

    Article  CAS  PubMed  Google Scholar 

  9. Sundar S, Singh B (2018) Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin Ther Targets 22(6):467–486. https://doi.org/10.1080/14728222.2018.1472241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BP, Nakamura CV (2011) Recent advances in leishmaniasis treatment. Int J Infect Dis 15(8):e525–e532. https://doi.org/10.1016/j.ijid.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  11. Ndjonka D, Rapado LN, Silber AM, Liebau E, Wrenger C (2013) Natural products as a source for treating neglected parasitic diseases. Int J Mol Sci 14(2):3395–3439. https://doi.org/10.3390/ijms14023395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khalil NM, de Mattos AC, Carraro TC, Ludwig DB, Mainardes RM (2013) Nanotechnological strategies for the treatment of neglected diseases. Curr Pharm Des 19(41):7316–7329

    Article  CAS  PubMed  Google Scholar 

  13. Centers for Disease Control and Prevention (2018) Parasites – Leishmaniasis. https://www.cdc.gov/parasites/leishmaniasis/biology.html. Accessed 10 July 2018

  14. Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115(1–2):14–21. https://doi.org/10.1016/j.actatropica.2009.11.003

    Article  PubMed  Google Scholar 

  15. Schofield CJ, Jannin J, Salvatella R (2006) The future of Chagas disease control. Trends Parasitol 22(12):583–588. https://doi.org/10.1016/j.pt.2006.09.011

    Article  PubMed  Google Scholar 

  16. Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375(9723):1388–1402. https://doi.org/10.1016/s0140-6736(10)60061-x

    Article  PubMed  Google Scholar 

  17. Rassi A, Marcondes de Rezende J (2012) American trypanosomiasis (Chagas disease). Infect Dis Clin North Am 26(2):275–291. https://doi.org/10.1016/j.idc.2012.03.002

    Article  PubMed  Google Scholar 

  18. Urbina JA (2010) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115(1–2):55–68. https://doi.org/10.1016/j.actatropica.2009.10.023

    Article  PubMed  Google Scholar 

  19. Soeiro MN, de Castro SL (2011) Screening of potential anti-Trypanosoma cruzi candidates: in vitro and in vivo studies. Open Med Chem J 5:21–30. https://doi.org/10.2174/1874104501105010021

    Article  CAS  PubMed Central  Google Scholar 

  20. Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31(5–6):472–481

    Article  CAS  PubMed  Google Scholar 

  21. Clayton J (2010) Chagas disease: pushing through the pipeline. Nature 465(7301):S12–S15. https://doi.org/10.1038/nature09224

    Article  PubMed  Google Scholar 

  22. Welburn SC, Molyneux DH, Maudlin I (2016) Beyond tsetse-implications for research and control of human african Trypanosomiasis epidemics. Trends Parasitol 32(3):230–241. https://doi.org/10.1016/j.pt.2015.11.008

    Article  PubMed  Google Scholar 

  23. Lumsden WH (1970) Trypanosomiasis. Trop Dis Bull 67(5):465–481

    CAS  PubMed  Google Scholar 

  24. Malvy D, Chappuis F (2011) Sleeping sickness. Clin Microbiol Infect 17(7):986–995. https://doi.org/10.1111/j.1469-0691.2011.03536.x

    Article  CAS  PubMed  Google Scholar 

  25. World Health Organization (2016) Human African trypanosomiasis. http://www.who.int/trypanosomiasis_african/en/. Accessed 10 July 2018

  26. Kennedy PG (2013) Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 12(2):186–194. https://doi.org/10.1016/s1474-4422(12)70296-x

    Article  PubMed  Google Scholar 

  27. Steverding D (2010) The development of drugs for treatment of sleeping sickness: a historical review. Parasit Vectors 3(1):15. https://doi.org/10.1186/1756-3305-3-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brun R, Don R, Jacobs RT, Wang MZ, Barrett MP (2011) Development of novel drugs for human African trypanosomiasis. Fut Microbiol 6(6):677–691. https://doi.org/10.2217/fmb.11.44

    Article  CAS  Google Scholar 

  29. Simarro PP, Franco J, Diarra A, Postigo JA, Jannin J (2012) Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology 139(7):842–846. https://doi.org/10.1017/s0031182012000169

    Article  CAS  PubMed  Google Scholar 

  30. Horn D (2014) Antigenic variation in African trypanosomes. Mol Biochem Parasitol 195(2):123–129. https://doi.org/10.1016/j.molbiopara.2014.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langousis G, Hill KL (2014) Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12(7):505–518. https://doi.org/10.1038/nrmicro3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10(6):773–781. https://doi.org/10.1007/s10522-009-9234-2

    Article  CAS  PubMed  Google Scholar 

  33. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744. https://doi.org/10.1172/jci107236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossi F, Della Bianca V, de Togni P (1985) Mechanisms and functions of the oxygen radicals producing respiration of phagocytes. Comp Immunol Microbiol Infect Dis 8(2):187–204

    Article  CAS  PubMed  Google Scholar 

  35. Shaikhali J, Heiber I, Seidel T, Ströher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M (2008) The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol 8:48. https://doi.org/10.1186/1471-2229-8-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65(1):27–33

    Article  CAS  PubMed  Google Scholar 

  37. Poljsak B, Šuput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013:956792. https://doi.org/10.1155/2013/956792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, Shin I, Yoon J (2016) Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 45(10):2976–3016. https://doi.org/10.1039/c6cs00192k

    Article  CAS  PubMed  Google Scholar 

  40. Sies H (1991) Role of reactive oxygen species in biological processes. Klin Wochenschr 69(21–23):965–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 97:55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  42. Xing J, Wang G, Zhang Q, Liu X, Gu Z, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One 10(3):e0119058. https://doi.org/10.1371/journal.pone.0119058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. https://doi.org/10.1016/j.cbi.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  45. Vercesi AE, Oliveira HCF (2018) Contribution to mitochondrial research in Brazil: 10th anniversary of the mitomeeting. Cell Biol Int 42(6):626–629. https://doi.org/10.1002/cbin.10898

    Article  PubMed  Google Scholar 

  46. Guo R, Zong S, Wu M, Gu J, Yang M (2017) Architecture of Human Mitochondrial Respiratory Megacomplex I. Cell 170(6):1247–1257.e1212. https://doi.org/10.1016/j.cell.2017.07.050

    Article  CAS  PubMed  Google Scholar 

  47. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    CAS  PubMed  Google Scholar 

  48. Schägger H (2001) Respiratory chain supercomplexes. IUBMB Life 52(3–5):119–128. https://doi.org/10.1080/15216540152845911

    Article  PubMed  Google Scholar 

  49. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922. https://doi.org/10.1007/s10495-007-0756-2

    Article  CAS  PubMed  Google Scholar 

  50. Venditti P, Di Stefano L, Di Meo S (2013) Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13(2):71–82. https://doi.org/10.1016/j.mito.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  51. Boveris A, Stoppani AO (1977) Hydrogen peroxide generation in Trypanosoma cruzi. Experientia 33(10):1306–1308

    Article  CAS  PubMed  Google Scholar 

  52. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. https://doi.org/10.1042/bj20081386

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Hekimi S (2016) Understanding Ubiquinone. Trends Cell Biol 26(5):367–378. https://doi.org/10.1016/j.tcb.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  54. Gutteridge JM (1994) Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 91(2–3):133–140

    Article  CAS  PubMed  Google Scholar 

  55. Gutteridge JM, Halliwell B (1992) Comments on review of free radicals in biology and medicine, second edition, by Barry Halliwell and John M. C. Gutteridge. Free Radic Biol Med 12(1):93–95

    Article  CAS  PubMed  Google Scholar 

  56. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650. https://doi.org/10.1080/01926230290166724

    Article  CAS  PubMed  Google Scholar 

  57. Tomás AM, Castro H (2013) Redox metabolism in mitochondria of trypanosomatids. Antioxid Redox Signal 19(7):696–707. https://doi.org/10.1089/ars.2012.4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tielens AG, van Hellemond JJ (2009) Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 25(10):482–490. https://doi.org/10.1016/j.pt.2009.07.007

    Article  PubMed  Google Scholar 

  59. Marques I, Duarte M, Assunção J, Ushakova AV, Videira A (2005) Composition of complex I from Neurospora crassa and disruption of two “accessory” subunits. Biochim Biophys Acta 1707(2-3):211–220. https://doi.org/10.1016/j.bbabio.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  60. Carroll J, Fearnley IM, Walker JE (2006) Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins. Proc Natl Acad Sci U S A 103(44):16170–16175. https://doi.org/10.1073/pnas.0607719103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Galkin A, Moncada S (2017) Modulation of the conformational state of mitochondrial complex I as a target for therapeutic intervention. Interface Focus 7(2):20160104. https://doi.org/10.1098/rsfs.2016.0104

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069. https://doi.org/10.1146/annurev.bi.54.070185.005055

    Article  CAS  PubMed  Google Scholar 

  63. Opperdoes FR, Michels PA (2008) Complex I of Trypanosomatidae: does it exist? Trends Parasitol 24(7):310–317. https://doi.org/10.1016/j.pt.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  64. Turrens JF (1989) The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes. Biochem J 259(2):363–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carranza JC, Kowaltowski AJ, Mendonça MA, de Oliveira TC, Gadelha FR, Zingales B (2009) Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes. J Bioenerg Biomembr 41(3):299–308. https://doi.org/10.1007/s10863-009-9228-4

    Article  CAS  PubMed  Google Scholar 

  66. Beattie DS, Obungu VH, Kiaira JK (1994) Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei. Mol Biochem Parasitol 64(1):87–94

    Article  CAS  PubMed  Google Scholar 

  67. Beattie DS, Howton MM (1996) The presence of rotenone-sensitive NADH dehydrogenase in the long slender bloodstream and the procyclic forms of Trypanosoma brucei brucei. Eur J Biochem 241(3):888–894

    Article  CAS  PubMed  Google Scholar 

  68. Hernandez FR, Turrens JF (1998) Rotenone at high concentrations inhibits NADH-fumarate reductase and the mitochondrial respiratory chain of Trypanosoma brucei and T. cruzi. Mol Biochem Parasitol 93(1):135–137

    Article  CAS  PubMed  Google Scholar 

  69. Jasmer DP, Feagin JE, Stuart K (1985) Diverse patterns of expression of the cytochrome c oxidase subunit I gene and unassigned reading frames 4 and 5 during the life cycle of Trypanosoma brucei. Mol Cell Biol 5(11):3041–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Souza AE, Myler PJ, Stuart K (1992) Maxicircle CR1 transcripts of Trypanosoma brucei are edited and developmentally regulated and encode a putative iron-sulfur protein homologous to an NADH dehydrogenase subunit. Mol Cell Biol 12(5):2100–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verner Z, Cermáková P, Skodová I, Kriegová E, Horváth A, Lukes J (2011) Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Mol Biochem Parasitol 175(2):196–200. https://doi.org/10.1016/j.molbiopara.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  72. Fang J, Beattie DS (2003) Alternative oxidase present in procyclic Trypanosoma brucei may act to lower the mitochondrial production of superoxide. Arch Biochem Biophys 414(2):294–302

    Article  CAS  PubMed  Google Scholar 

  73. Fisher N, Bray PG, Ward SA, Biagini GA (2007) The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol 23(7):305–310. https://doi.org/10.1016/j.pt.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  74. Fang J, Beattie DS (2003) Identification of a gene encoding a 54 kDa alternative NADH dehydrogenase in Trypanosoma brucei. Mol Biochem Parasitol 127(1):73–77

    Article  CAS  PubMed  Google Scholar 

  75. Fang J, Beattie DS (2002) Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria. Mol Biochem Parasitol 123(2):135–142

    Article  CAS  PubMed  Google Scholar 

  76. Verner Z, Skodová I, Poláková S, Durišová-Benkovičová V, Horváth A, Lukeš J (2013) Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei. Parasitology 140(3):328–337. https://doi.org/10.1017/s003118201200162x

    Article  CAS  PubMed  Google Scholar 

  77. Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M (2012) Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot Cell 11(2):183–193. https://doi.org/10.1128/ec.05282-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boveris A, Hertig CM, Turrens JF (1986) Fumarate reductase and other mitochondrial activities in Trypanosoma cruzi. Mol Biochem Parasitol 19(2):163–169

    Article  CAS  PubMed  Google Scholar 

  79. Besteiro S, Biran M, Biteau N, Coustou V, Baltz T, Canioni P, Bringaud F (2002) Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. J Biol Chem 277(41):38001–38012. https://doi.org/10.1074/jbc.M201759200

    Article  CAS  PubMed  Google Scholar 

  80. Coustou V, Biran M, Besteiro S, Rivière L, Baltz T, Franconi JM, Bringaud F (2006) Fumarate is an essential intermediary metabolite produced by the procyclic Trypanosoma brucei. J Biol Chem 281(37):26832–26846. https://doi.org/10.1074/jbc.M601377200

    Article  CAS  PubMed  Google Scholar 

  81. Coustou V, Besteiro S, Rivière L, Biran M, Biteau N, Franconi JM, Boshart M, Baltz T, Bringaud F (2005) A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. J Biol Chem 280(17):16559–16570. https://doi.org/10.1074/jbc.M500343200

    Article  CAS  PubMed  Google Scholar 

  82. Coustou V, Biran M, Breton M, Guegan F, Rivière L, Plazolles N, Nolan D, Barrett MP, Franconi JM, Bringaud F (2008) Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem 283(24):16342–16354. https://doi.org/10.1074/jbc.M709592200

    Article  CAS  PubMed  Google Scholar 

  83. Mehta A, Shaha C (2004) Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 279(12):11798–11813. https://doi.org/10.1074/jbc.M309341200

    Article  CAS  PubMed  Google Scholar 

  84. Silva TM, Peloso EF, Vitor SC, Ribeiro LH, Gadelha FR (2011) O2 consumption rates along the growth curve: new insights into Trypanosoma cruzi mitochondrial respiratory chain. J Bioenerg Biomembr 43(4):409–417. https://doi.org/10.1007/s10863-011-9369-0

    Article  CAS  PubMed  Google Scholar 

  85. Evans DA, Brown RC (1973) The inhibitory effects of aromatic hydroxamic acids on the cyanide-insensitive terminal oxidase of Trypanosoma brucei. Trans R Soc Trop Med Hyg 67(2):258

    Article  CAS  PubMed  Google Scholar 

  86. Edwards C, Chance B (1982) Evidence for the presence of two terminal oxidases in the trypanosomatid Crithidia oncopelti. J Gen Microbiol 128(7):1409–1414. https://doi.org/10.1099/00221287-128-7-1409

    Article  CAS  PubMed  Google Scholar 

  87. Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J (2016) Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol 63(5):657–678. https://doi.org/10.1111/jeu.12315

    Article  CAS  PubMed  Google Scholar 

  88. Gnipová A, Panicucci B, Paris Z, Verner Z, Horváth A, Lukeš J, Zíková A (2012) Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Mol Biochem Parasitol 184(2):90–98. https://doi.org/10.1016/j.molbiopara.2012.04.013

    Article  CAS  PubMed  Google Scholar 

  89. Chaudhuri M, Ott RD, Hill GC (2006) Trypanosome alternative oxidase: from molecule to function. Trends Parasitol 22(10):484–491. https://doi.org/10.1016/j.pt.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  90. Horváth A, Horáková E, Dunajcíková P, Verner Z, Pravdová E, Slapetová I, Cuninková L, Lukes J (2005) Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol Microbiol 58(1):116–130. https://doi.org/10.1111/j.1365-2958.2005.04813.x

    Article  CAS  PubMed  Google Scholar 

  91. Santhamma KR, Bhaduri A (1995) Characterization of the respiratory chain of Leishmania donovani promastigotes. Mol Biochem Parasitol 75(1):43–53

    Article  CAS  PubMed  Google Scholar 

  92. Atwood JA, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL (2005) The Trypanosoma cruzi proteome. Science 309(5733):473–476. https://doi.org/10.1126/science.1110289

    Article  CAS  PubMed  Google Scholar 

  93. Shah-Simpson S, Pereira CF, Dumoulin PC, Caradonna KL, Burleigh BA (2016) Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology. Mol Biochem Parasitol 208(2):91–95. https://doi.org/10.1016/j.molbiopara.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  94. Gonçalves RL, Barreto RF, Polycarpo CR, Gadelha FR, Castro SL, Oliveira MF (2011) A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J Bioenerg Biomembr 43(6):651–661. https://doi.org/10.1007/s10863-011-9398-8

    Article  CAS  PubMed  Google Scholar 

  95. Tielens AG, Van Hellemond JJ (1998) Differences in energy metabolism between trypanosomatidae. Parasitol Today 14(7):265–272

    Article  CAS  PubMed  Google Scholar 

  96. Clayton CE, Michels P (1996) Metabolic compartmentation in African trypanosomes. Parasitol Today 12(12):465–471

    Article  CAS  PubMed  Google Scholar 

  97. Priest JW, Hajduk SL (1994) Developmental regulation of Trypanosoma brucei cytochrome c reductase during bloodstream to procyclic differentiation. Mol Biochem Parasitol 65(2):291–304

    Article  CAS  PubMed  Google Scholar 

  98. Bringaud F, Rivière L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149(1):1–9. https://doi.org/10.1016/j.molbiopara.2006.03.017

    Article  CAS  PubMed  Google Scholar 

  99. Silber AM, Tonelli RR, Lopes CG, Cunha-e-Silva N, Torrecilhas AC, Schumacher RI, Colli W, Alves MJ (2009) Glucose uptake in the mammalian stages of Trypanosoma cruzi. Mol Biochem Parasitol 168(1):102–108. https://doi.org/10.1016/j.molbiopara.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  100. Harington JS (1956) Histamine and histidine in excreta of the blood-sucking bug Rhodnius prolixus. Nature 178(4527):268

    Article  CAS  PubMed  Google Scholar 

  101. Harington JS (1961) Studies of the amino acids of Rhodnius prolixus I. Analysis of the haemolymph. Parasitology 51:309–318

    Article  CAS  PubMed  Google Scholar 

  102. Finzi JK, Chiavegatto CW, Corat KF, Lopez JA, Cabrera OG, Mielniczki-Pereira AA, Colli W, Alves MJ, Gadelha FR (2004) Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide. Mol Biochem Parasitol 133(1):37–43

    Article  CAS  PubMed  Google Scholar 

  103. Nogueira NP, de Souza CF, Saraiva FM, Sultano PE, Dalmau SR, Bruno RE, Gonçalves RL, Laranja GA, Leal LH, Coelho MG, Masuda CA, Oliveira MF, Paes MC (2011) Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS. PLoS One 6(10):e25935. https://doi.org/10.1371/journal.pone.0025935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nogueira NP, Saraiva FMS, Oliveira MP, Mendonça APM, Inacio JDF, Almeida-Amaral EE, Menna-Barreto RF, Laranja GAT, Torres EJL, Oliveira MF, Paes MC (2017) Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production. Free Radic Biol Med 108:183–191. https://doi.org/10.1016/j.freeradbiomed.2017.03.027

    Article  CAS  PubMed  Google Scholar 

  105. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

    Article  CAS  PubMed  Google Scholar 

  106. Vercesi AE, Martins LS, MAP S, HMF L, Cuccovia IM, Chaimovich H (1995) PUMPing plants. Nature 375:24. https://doi.org/10.1038/375024a0

    Article  CAS  Google Scholar 

  107. Vercesi AE, Borecký J, Maia IG, Arruda P, Cuccovia IM, Chaimovich H (2006) Plant uncoupling mitochondrial proteins. Annu Rev Plant Biol 57:383–404. https://doi.org/10.1146/annurev.arplant.57.032905.105335

    Article  CAS  PubMed  Google Scholar 

  108. Hassanpour SH, Dehghani MA, Karami SZ (2018) Study of respiratory chain dysfunction in heart disease. J Cardiovasc Thorac Res 10 (1):1–13. https://doi.org/10.15171/jcvtr.2018.01

  109. Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD (2017) Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 292(41):16804–16809. https://doi.org/10.1074/jbc.R117.789271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311(5766):1430–1436. https://doi.org/10.1126/science.1123809

    Article  CAS  PubMed  Google Scholar 

  111. Hinkle PC, Butow RA, Racker E, Chance B (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem 242(22):5169–5173

    CAS  PubMed  Google Scholar 

  112. Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180(2):248–257

    Article  CAS  PubMed  Google Scholar 

  113. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103(20):7607–7612. https://doi.org/10.1073/pnas.0510977103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hirst J, King MS, Pryde KR (2008) The production of reactive oxygen species by complex I. Biochem Soc Trans 36(Pt 5):976–980. https://doi.org/10.1042/bst0360976

    Article  CAS  PubMed  Google Scholar 

  115. Seo BB, Marella M, Yagi T, Matsuno-Yagi A (2006) The single subunit NADH dehydrogenase reduces generation of reactive oxygen species from complex I. FEBS Lett 580(26):6105–6108. https://doi.org/10.1016/j.febslet.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  116. Bleier L, Dröse S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827(11–12):1320–1331. https://doi.org/10.1016/j.bbabio.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  117. Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2018.05.019

  118. Rolfe DF, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol 271(4 Pt 1):C1380–C1389. https://doi.org/10.1152/ajpcell.1996.271.4.C1380

    Article  CAS  PubMed  Google Scholar 

  119. Stuart JA, Cadenas S, Jekabsons MB, Roussel D, Brand MD (2001) Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta 1504(1):144–158

    Article  CAS  PubMed  Google Scholar 

  120. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  CAS  PubMed  Google Scholar 

  122. Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010) Mitochondrial proton and electron leaks. Essays Biochem 47:53–67. https://doi.org/10.1042/bse0470053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Woyda-Ploszczyca AM, Jarmuszkiewicz W (2017) The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. Biochim Biophys Acta 1858(1):21–33. https://doi.org/10.1016/j.bbabio.2016.10.003

    Article  CAS  Google Scholar 

  124. Nicholls DG, Bernson VS, Heaton GM (1978) The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Experientia Suppl 32:89–93

    Article  CAS  PubMed  Google Scholar 

  125. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15(3):269–272. https://doi.org/10.1038/ng0397-269

    Article  CAS  PubMed  Google Scholar 

  126. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408(1):39–42

    Article  CAS  PubMed  Google Scholar 

  127. Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SH, Pan G (1999) UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 443(3):326–330

    Article  CAS  PubMed  Google Scholar 

  128. Klingenberg M (1990) Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends Biochem Sci 15(3):108–112

    Article  CAS  PubMed  Google Scholar 

  129. Sluse FE (2012) Uncoupling proteins: molecular, functional, regulatory, physiological and pathological aspects. Adv Exp Med Biol 942:137–156. https://doi.org/10.1007/978-94-007-2869-1_6

    Article  CAS  PubMed  Google Scholar 

  130. Nègre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Pénicaud L, Casteilla L (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11(10):809–815

    Article  PubMed  Google Scholar 

  131. Azzu V, Jastroch M, Divakaruni AS, Brand MD (2010) The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta 1797(6-7):785–791. https://doi.org/10.1016/j.bbabio.2010.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51(6):1106–1115. https://doi.org/10.1016/j.freeradbiomed.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  133. MacLellan JD, Gerrits MF, Gowing A, Smith PJ, Wheeler MB, Harper ME (2005) Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes 54(8):2343–2350

    Article  CAS  PubMed  Google Scholar 

  134. Tahara EB, Navarete FD, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46(9):1283–1297. https://doi.org/10.1016/j.freeradbiomed.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  135. Toime LJ, Brand MD (2010) Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med 49(4):606–611. https://doi.org/10.1016/j.freeradbiomed.2010.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brigelius-Flohé R, Flohé L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15(8):2335–2381. https://doi.org/10.1089/ars.2010.3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38 (7):995–1014. doi:S0100-879x2005000700003

    Google Scholar 

  138. Babior BM, Curnutte JT, Kipnes RS (1975) Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J Lab Clin Med 85(2):235–244

    CAS  PubMed  Google Scholar 

  139. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212

    Article  CAS  PubMed  Google Scholar 

  140. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227(4693):1485–1487

    Article  CAS  PubMed  Google Scholar 

  141. Shames SL, Fairlamb AH, Cerami A, Walsh CT (1986) Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases. Biochemistry 25(12):3519–3526

    Article  CAS  PubMed  Google Scholar 

  142. Krauth-Siegel RL, Enders B, Henderson GB, Fairlamb AH, Schirmer RH (1987) Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur J Biochem 164(1):123–128

    Article  CAS  PubMed  Google Scholar 

  143. Sullivan FX, Walsh CT (1991) Cloning, sequencing, overproduction and purification of trypanothione reductase from Trypanosoma cruzi. Mol Biochem Parasitol 44(1):145–147

    Article  CAS  PubMed  Google Scholar 

  144. Aboagye-Kwarteng T, Smith K, Fairlamb AH (1992) Molecular characterization of the trypanothione reductase gene from Crithidia fasciculata and Trypanosoma brucei: comparison with other flavoprotein disulphide oxidoreductases with respect to substrate specificity and catalytic mechanism. Mol Microbiol 6(21):3089–3099

    Article  CAS  PubMed  Google Scholar 

  145. Manta B, Comini M, Medeiros A, Hugo M, Trujillo M, Radi R (2013) Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta 1830(5):3199–3216. https://doi.org/10.1016/j.bbagen.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  146. Lueder DV, Phillips MA (1996) Characterization of Trypanosoma brucei gamma-glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionylspermidine). J Biol Chem 271(29):17485–17490

    Article  CAS  PubMed  Google Scholar 

  147. Grondin K, Haimeur A, Mukhopadhyay R, Rosen BP, Ouellette M (1997) Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J 16(11):3057–3065. https://doi.org/10.1093/emboj/16.11.3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Olin-Sandoval V, González-Chávez Z, Berzunza-Cruz M, Martínez I, Jasso-Chávez R, Becker I, Espinoza B, Moreno-Sánchez R, Saavedra E (2012) Drug target validation of the trypanothione pathway enzymes through metabolic modelling. FEBS J 279(10):1811–1833. https://doi.org/10.1111/j.1742-4658.2012.08557.x

    Article  CAS  PubMed  Google Scholar 

  149. Mukherjee P, Majee SB, Ghosh S, Hazra B (2009) Apoptosis-like death in Leishmania donovani promastigotes induced by diospyrin and its ethanolamine derivative. Int J Antimicrob Agents 34(6):596–601. https://doi.org/10.1016/j.ijantimicag.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  150. Huynh TT, Huynh VT, Harmon MA, Phillips MA (2003) Gene knockdown of gamma-glutamylcysteine synthetase by RNAi in the parasitic protozoa Trypanosoma brucei demonstrates that it is an essential enzyme. J Biol Chem 278(41):39794–39800. https://doi.org/10.1074/jbc.M306306200

    Article  CAS  PubMed  Google Scholar 

  151. Jones DP, Carlson JL, Samiec PS, Sternberg P, Mody VC, Reed RL, Brown LA (1998) Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC. Clin Chim Acta 275(2):175–184

    Article  CAS  PubMed  Google Scholar 

  152. Duszenko M, Ferguson MA, Lamont GS, Rifkin MR, Cross GA (1985) Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro. J Exp Med 162(4):1256–1263

    Article  CAS  PubMed  Google Scholar 

  153. Duszenko M, Mühlstädt K, Broder A (1992) Cysteine is an essential growth factor for Trypanosoma brucei bloodstream forms. Mol Biochem Parasitol 50(2):269–273

    Article  CAS  PubMed  Google Scholar 

  154. Hesse F, Selzer PM, Mühlstädt K, Duszenko M (1995) A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro. Mol Biochem Parasitol 70(1-2):157–166

    Article  CAS  PubMed  Google Scholar 

  155. Williams RA, Westrop GD, Coombs GH (2009) Two pathways for cysteine biosynthesis in Leishmania major. Biochem J 420(3):451–462. https://doi.org/10.1042/bj20082441

    Article  CAS  PubMed  Google Scholar 

  156. Romero I, Téllez J, Romanha AJ, Steindel M, Grisard EC (2015) Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrob Agents Chemother 59(8):4770–4781. https://doi.org/10.1128/aac.04880-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Romero I, Téllez J, Yamanaka LE, Steindel M, Romanha AJ, Grisard EC (2014) Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasit Vectors 7:197. https://doi.org/10.1186/1756-3305-7-197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Marciano D, Santana M, Nowicki C (2012) Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi. Mol Biochem Parasitol 185(2):114–120. https://doi.org/10.1016/j.molbiopara.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  159. Okalang U, Nanteza A, Matovu E, Lubega GW (2013) Identification of coding sequences from a freshly prepared Trypanosoma brucei brucei expression library by polymerase chain reaction. Int J Biochem Mol Biol 4(2):73–82

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Colotti G, Ilari A (2011) Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 40(2):269–285. https://doi.org/10.1007/s00726-010-0630-3

    Article  CAS  PubMed  Google Scholar 

  161. Hasne MP, Ullman B (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280(15):15188–15194. https://doi.org/10.1074/jbc.M411331200

    Article  CAS  PubMed  Google Scholar 

  162. Hasne MP, Ullman B (2011) Genetic and biochemical analysis of protozoal polyamine transporters. Methods Mol Biol 720:309–326. https://doi.org/10.1007/978-1-61779-034-8_19

    Article  CAS  PubMed  Google Scholar 

  163. Carrillo C, Cejas S, González NS, Algranati ID (1999) Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreign gene encoding this enzyme. FEBS Lett 454(3):192–196

    Article  CAS  PubMed  Google Scholar 

  164. Carrillo C, Cejas S, Huber A, González NS, Algranati ID (2003) Lack of arginine decarboxylase in Trypanosoma cruzi epimastigotes. J Eukaryot Microbiol 50(5):312–316

    Article  CAS  PubMed  Google Scholar 

  165. Reigada C, Sayé M, Vera EV, Balcazar D, Fraccaroli L, Carrillo C, Miranda MR, Pereira CA (2016) Trypanosoma cruzi Polyamine Transporter: Its Role on Parasite Growth and Survival Under Stress Conditions. J Membr Biol 249(4):475–481. https://doi.org/10.1007/s00232-016-9888-z

    Article  CAS  PubMed  Google Scholar 

  166. Smith K, Nadeau K, Bradley M, Walsh C, Fairlamb AH (1992) Purification of glutathionylspermidine and trypanothione synthetases from Crithidia fasciculata. Protein Sci 1(7):874–883. https://doi.org/10.1002/pro.5560010705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Oza SL, Tetaud E, Ariyanayagam MR, Warnon SS, Fairlamb AH (2002) A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi. J Biol Chem 277(39):35853–35861. https://doi.org/10.1074/jbc.M204403200

    Article  CAS  PubMed  Google Scholar 

  168. Oza SL, Ariyanayagam MR, Aitcheson N, Fairlamb AH (2003) Properties of trypanothione synthetase from Trypanosoma brucei. Mol Biochem Parasitol 131(1):25–33

    Article  CAS  PubMed  Google Scholar 

  169. Comini M, Menge U, Wissing J, Flohé L (2005) Trypanothione synthesis in crithidia revisited. J Biol Chem 280(8):6850–6860. https://doi.org/10.1074/jbc.M404486200

    Article  CAS  PubMed  Google Scholar 

  170. Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172

    CAS  PubMed  Google Scholar 

  171. Moutiez M, Aumercier M, Schöneck R, Meziane-Cherif D, Lucas V, Aumercier P, Ouaissi A, Sergheraert C, Tartar A (1995) Purification and characterization of a trypanothione-glutathione thioltransferase from Trypanosoma cruzi. Biochem J 310(Pt 2):433–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fraser-L’Hostis C, Defrise-Quertain F, Coral D, Deshusses J (1997) Regulation of the intracellular pH in the protozoan parasite Trypanosoma brucei brucei. Biol Chem 378(9):1039–1046

    Article  PubMed  Google Scholar 

  173. Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R (2008) Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 45(6):733–742. https://doi.org/10.1016/j.freeradbiomed.2008.05.028

    Article  CAS  PubMed  Google Scholar 

  174. Ariyanayagam MR, Oza SL, Mehlert A, Fairlamb AH (2003) Bis(glutathionyl)spermine and other novel trypanothione analogues in Trypanosoma cruzi. J Biol Chem 278(30):27612–27619. https://doi.org/10.1074/jbc.M302750200

    Article  CAS  PubMed  Google Scholar 

  175. Stoll VS, Simpson SJ, Krauth-Siegel RL, Walsh CT, Pai EF (1997) Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity. Biochemistry 36(21):6437–6447. https://doi.org/10.1021/bi963074p

    Article  CAS  PubMed  Google Scholar 

  176. Meziane-Cherif D, Aumercier M, Kora I, Sergheraert C, Tartar A, Dubremetz JF, Ouaissi MA (1994) Trypanosoma cruzi: immunolocalization of trypanothione reductase. Exp Parasitol 79(4):536–541

    Article  CAS  PubMed  Google Scholar 

  177. Wilkinson SR, Meyer DJ, Taylor MC, Bromley EV, Miles MA, Kelly JM (2002) The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem 277(19):17062–17071. https://doi.org/10.1074/jbc.M111126200

    Article  CAS  PubMed  Google Scholar 

  178. Wilkinson SR, Prathalingam SR, Taylor MC, Ahmed A, Horn D, Kelly JM (2006) Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radic Biol Med 40(2):198–209. https://doi.org/10.1016/j.freeradbiomed.2005.06.022

    Article  CAS  PubMed  Google Scholar 

  179. Smith K, Opperdoes FR, Fairlamb AH (1991) Subcellular distribution of trypanothione reductase in bloodstream and procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol 48(1):109–112

    Article  CAS  PubMed  Google Scholar 

  180. Sommer JM, Wang CC (1994) Targeting proteins to the glycosomes of African trypanosomes. Annu Rev Microbiol 48:105–138. https://doi.org/10.1146/annurev.mi.48.100194.000541

    Article  CAS  PubMed  Google Scholar 

  181. Schlecker T, Schmidt A, Dirdjaja N, Voncken F, Clayton C, Krauth-Siegel RL (2005) Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei. J Biol Chem 280(15):14385–14394. https://doi.org/10.1074/jbc.M413338200

    Article  CAS  PubMed  Google Scholar 

  182. Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH (1998) Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci U S A 95(9):5311–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Krieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C (2000) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 35(3):542–552

    Article  CAS  PubMed  Google Scholar 

  184. Leroux AE, Krauth-Siegel RL (2016) Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol Biochem Parasitol 206(1–2):67–74. https://doi.org/10.1016/j.molbiopara.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  185. Boveris A, Sies H, Martino EE, Docampo R, Turrens JF, Stoppani AO (1980) Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J 188(3):643–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kraeva N, Horáková E, Kostygov AY, Kořený L, Butenko A, Yurchenko V, Lukeš J (2017) Catalase in Leishmaniinae: With me or against me? Infect Genet Evol 50:121–127. https://doi.org/10.1016/j.meegid.2016.06.054

    Article  CAS  PubMed  Google Scholar 

  187. Penketh PG, Kennedy WP, Patton CL, Sartorelli AC (1987) Trypanosomatid hydrogen peroxide [corrected] metabolism. FEBS Lett 221(2):427–431

    Article  CAS  PubMed  Google Scholar 

  188. Carnieri EG, Moreno SN, Docampo R (1993) Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol Biochem Parasitol 61(1):79–86

    Article  CAS  PubMed  Google Scholar 

  189. Nogoceke E, Gommel DU, Kiess M, Kalisz HM, Flohé L (1997) A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem 378(8):827–836

    Article  CAS  PubMed  Google Scholar 

  190. Castro H, Tomás AM (2008) Peroxidases of trypanosomatids. Antioxid Redox Signal 10(9):1593–1606. https://doi.org/10.1089/ars.2008.2050

    Article  CAS  PubMed  Google Scholar 

  191. Castro H, Sousa C, Novais M, Santos M, Budde H, Cordeiro-da-Silva A, Flohé L, Tomás AM (2004) Two linked genes of Leishmania infantum encode tryparedoxins localised to cytosol and mitochondrion. Mol Biochem Parasitol 136(2):137–147

    Article  CAS  PubMed  Google Scholar 

  192. Castro H, Romao S, Gadelha FR, Tomás AM (2008) Leishmania infantum: provision of reducing equivalents to the mitochondrial tryparedoxin/tryparedoxin peroxidase system. Exp Parasitol 120(4):421–423. https://doi.org/10.1016/j.exppara.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  193. Castro H, Romao S, Carvalho S, Teixeira F, Sousa C, Tomás AM (2010) Mitochondrial redox metabolism in trypanosomatids is independent of tryparedoxin activity. PLoS One 5(9):e12607. https://doi.org/10.1371/journal.pone.0012607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309(5733):404–409. https://doi.org/10.1126/science.1112181

    Article  CAS  PubMed  Google Scholar 

  195. Romao S, Castro H, Sousa C, Carvalho S, Tomás AM (2009) The cytosolic tryparedoxin of Leishmania infantum is essential for parasite survival. Int J Parasitol 39(6):703–711. https://doi.org/10.1016/j.ijpara.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  196. Comini MA, Krauth-Siegel RL, Flohé L (2007) Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes. Biochem J 402(1):43–49. https://doi.org/10.1042/bj20061341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Suman SS, Equbal A, Zaidi A, Ansari MY, Singh KP, Singh K, Purkait B, Sahoo GC, Bimal S, Das P, Ali V (2016) Up-regulation of cytosolic tryparedoxin in Amp B resistant isolates of Leishmania donovani and its interaction with cytosolic tryparedoxin peroxidase. Biochimie 121:312–325. https://doi.org/10.1016/j.biochi.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  198. Suman SS, Amit A, Singh KP, Gupta P, Equbal A, Kumari A, Topno RK, Ravidas V, Pandey K, Bimal S, Das P, Ali V (2018) Cytosolic tryparedoxin of Leishmania donovani modulates host immune response in visceral leishmaniasis. Cytokine 108:1–8. https://doi.org/10.1016/j.cyto.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  199. Gommel DU, Nogoceke E, Morr M, Kiess M, Kalisz HM, Flohé L (1997) Catalytic characteristics of tryparedoxin. Eur J Biochem 248(3):913–918

    Article  CAS  PubMed  Google Scholar 

  200. Barr SD, Gedamu L (2001) Cloning and characterization of three differentially expressed peroxidoxin genes from Leishmania chagasi. Evidence for an enzymatic detoxification of hydroxyl radicals. J Biol Chem 276(36):34279–34287. https://doi.org/10.1074/jbc.M104406200

    Article  CAS  PubMed  Google Scholar 

  201. Poole LB (2007) The catalytic mechanism of peroxiredoxins. Subcell Biochem 44:61–81

    Article  PubMed  Google Scholar 

  202. Levick MP, Tetaud E, Fairlamb AH, Blackwell JM (1998) Identification and characterisation of a functional peroxidoxin from Leishmania major. Mol Biochem Parasitol 96(1-2):125–137

    Article  CAS  PubMed  Google Scholar 

  203. Castro H, Budde H, Flohé L, Hofmann B, Lünsdorf H, Wissing J, Tomás AM (2002) Specificity and kinetics of a mitochondrial peroxiredoxin of Leishmania infantum. Free Radic Biol Med 33(11):1563–1574

    Article  CAS  PubMed  Google Scholar 

  204. Flohé L, Budde H, Bruns K, Castro H, Clos J, Hofmann B, Kansal-Kalavar S, Krumme D, Menge U, Plank-Schumacher K, Sztajer H, Wissing J, Wylegalla C, Hecht HJ (2002) Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch Biochem Biophys 397(2):324–335. https://doi.org/10.1006/abbi.2001.2688

    Article  CAS  PubMed  Google Scholar 

  205. Budde H, Flohé L, Hecht HJ, Hofmann B, Stehr M, Wissing J, Lünsdorf H (2003) Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei. Biol Chem 384(4):619–633. https://doi.org/10.1515/bc.2003.069

    Article  CAS  PubMed  Google Scholar 

  206. Wilkinson SR, Meyer DJ, Kelly JM (2000) Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity. Biochem J 352(Pt 3):755–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wilkinson SR, Taylor MC, Touitha S, Mauricio IL, Meyer DJ, Kelly JM (2002) TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum. Biochem J 364(Pt 3):787–794. https://doi.org/10.1042/bj20020038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Colasante C, Ellis M, Ruppert T, Voncken F (2006) Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics 6(11):3275–3293. https://doi.org/10.1002/pmic.200500668

    Article  CAS  PubMed  Google Scholar 

  209. Herbette S, Roeckel-Drevet P, Drevet JR (2007) Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS J 274(9):2163–2180. https://doi.org/10.1111/j.1742-4658.2007.05774.x

    Article  CAS  PubMed  Google Scholar 

  210. Hillebrand H, Schmidt A, Krauth-Siegel RL (2003) A second class of peroxidases linked to the trypanothione metabolism. J Biol Chem 278(9):6809–6815. https://doi.org/10.1074/jbc.M210392200

    Article  CAS  PubMed  Google Scholar 

  211. Clark D, Albrecht M, Arévalo J (1994) Ascorbate variations and dehydroascorbate reductase activity in Trypanosoma cruzi epimastigotes and trypomastigotes. Mol Biochem Parasitol 66(1):143–145

    Article  CAS  PubMed  Google Scholar 

  212. Wilkinson SR, Obado SO, Mauricio IL, Kelly JM (2002) Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proc Natl Acad Sci U S A 99(21):13453–13458. https://doi.org/10.1073/pnas.202422899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Halliwell B (2001) Vitamin C and genomic stability. Mutat Res 475(1-2):29–35

    Article  CAS  PubMed  Google Scholar 

  214. Docampo R, de Boiso JF, Boveris A, Stoppani AO (1976) Localization of peroxidase activity in Trypanosoma cruzi microbodies. Experientia 32(8):972–975

    Article  CAS  PubMed  Google Scholar 

  215. Adak S, Datta AK (2005) Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J 390(Pt 2):465–474. https://doi.org/10.1042/bj20050311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Krauth-Siegel RL, Lüdemann H (1996) Reduction of dehydroascorbate by trypanothione. Mol Biochem Parasitol 80(2):203–208

    Article  CAS  PubMed  Google Scholar 

  217. Reckenfelderbäumer N, Krauth-Siegel RL (2002) Catalytic properties, thiol pK value, and redox potential of Trypanosoma brucei tryparedoxin. J Biol Chem 277(20):17548–17555. https://doi.org/10.1074/jbc.M112115200

    Article  CAS  PubMed  Google Scholar 

  218. Taylor MC, Lewis MD, Fortes Francisco A, Wilkinson SR, Kelly JM (2015) The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence. PLoS Negl Trop Dis 9(4):e0003707. https://doi.org/10.1371/journal.pntd.0003707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244(22):6056–6063

    CAS  PubMed  Google Scholar 

  220. Dufernez F, Yernaux C, Gerbod D, Noël C, Chauvenet M, Wintjens R, Edgcomb VP, Capron M, Opperdoes FR, Viscogliosi E (2006) The presence of four iron-containing superoxide dismutase isozymes in trypanosomatidae: characterization, subcellular localization, and phylogenetic origin in Trypanosoma brucei. Free Radic Biol Med 40(2):210–225. https://doi.org/10.1016/j.freeradbiomed.2005.06.021

    Article  CAS  PubMed  Google Scholar 

  221. Ismail SO, Paramchuk W, Skeiky YA, Reed SG, Bhatia A, Gedamu L (1997) Molecular cloning and characterization of two iron superoxide dismutase cDNAs from Trypanosoma cruzi. Mol Biochem Parasitol 86(2):187–197

    Article  CAS  PubMed  Google Scholar 

  222. Temperton NJ, Wilkinson SR, Meyer DJ, Kelly JM (1998) Overexpression of superoxide dismutase in Trypanosoma cruzi results in increased sensitivity to the trypanocidal agents gentian violet and benznidazole. Mol Biochem Parasitol 96(1–2):167–176

    Article  CAS  PubMed  Google Scholar 

  223. Taylor MC, Kelly JM (2006) pTcINDEX: a stable tetracycline-regulated expression vector for Trypanosoma cruzi. BMC Biotechnol 6:32. https://doi.org/10.1186/1472-6750-6-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Piacenza L, Irigoín F, Alvarez MN, Peluffo G, Taylor MC, Kelly JM, Wilkinson SR, Radi R (2007) Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J 403(2):323–334. https://doi.org/10.1042/bj20061281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Getachew F, Gedamu L (2012) Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death. Mol Biochem Parasitol 183(1):42–51. https://doi.org/10.1016/j.molbiopara.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  226. Alzate JF, Arias AA, Moreno-Mateos D, Alvarez-Barrientos A, Jiménez-Ruiz A (2007) Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum. Mol Biochem Parasitol 152(2):192–202. https://doi.org/10.1016/j.molbiopara.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  227. Mittra B, Laranjeira-Silva MF, Miguel DC, Perrone Bezerra de Menezes J, Andrews NW (2017) The iron-dependent mitochondrial superoxide dismutase SODA promotes. J Biol Chem 292(29):12324–12338. https://doi.org/10.1074/jbc.M116.772624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Filomeni G, Rotilio G, Ciriolo MR (2002) Cell signalling and the glutathione redox system. Biochem Pharmacol 64(5-6):1057–1064

    Article  CAS  PubMed  Google Scholar 

  229. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  231. Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 95:27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  232. Chiang HS, Maric M (2011) Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic Biol Med 51(3):688–699. https://doi.org/10.1016/j.freeradbiomed.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  233. Bindoli A, Fukuto JM, Forman HJ (2008) Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 10(9):1549–1564. https://doi.org/10.1089/ars.2008.2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Flohé L (2010) Changing paradigms in thiology from antioxidant defense toward redox regulation. Methods Enzymol 473:1–39. https://doi.org/10.1016/s0076-6879(10)73001-9

    Article  PubMed  Google Scholar 

  235. Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci U S A 95(6):2956–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Markovic J, Borrás C, Ortega A, Sastre J, Viña J, Pallardó FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282(28):20416–20424. https://doi.org/10.1074/jbc.M609582200

    Article  CAS  PubMed  Google Scholar 

  237. Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7(3):271–275. https://doi.org/10.1038/sj.embor.7400645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Jessop CE, Bulleid NJ (2004) Glutathione directly reduces an oxidoreductase in the endoplasmic reticulum of mammalian cells. J Biol Chem 279(53):55341–55347. https://doi.org/10.1074/jbc.M411409200

    Article  CAS  PubMed  Google Scholar 

  239. Jocelyn PC, Kamminga A (1974) The non-protein thiol of rat liver mitochondria. Biochim Biophys Acta 343(2):356–362

    Article  CAS  PubMed  Google Scholar 

  240. Schnellmann RG (1991) Renal mitochondrial glutathione transport. Life Sci 49(5):393–398

    Article  CAS  PubMed  Google Scholar 

  241. Holmgren A, Björnstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208

    Article  CAS  PubMed  Google Scholar 

  242. Lee S, Kim SM, Lee RT (2013) Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 18(10):1165–1207. https://doi.org/10.1089/ars.2011.4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40(8):435–445. https://doi.org/10.1016/j.tibs.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263(10):4704–4711

    CAS  PubMed  Google Scholar 

  245. Knoops B, Argyropoulou V, Becker S, Ferté L, Kuznetsova O (2016) Multiple roles of peroxiredoxins in inflammation. Mol Cells 39(1):60–64. https://doi.org/10.14348/molcells.2016.2341

  246. Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell 140(4):517–528. https://doi.org/10.1016/j.cell.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  247. Rhee SG, Woo HA (2011) Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid Redox Signal 15(3):781–794. https://doi.org/10.1089/ars.2010.3393

    Article  CAS  PubMed  Google Scholar 

  248. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O’Neill JS, Reddy AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485(7399):459–464. https://doi.org/10.1038/nature11088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH (2013) Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 19(13):1539–1605. https://doi.org/10.1089/ars.2012.4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Knoops B, Clippe A, Bogard C, Arsalane K, Wattiez R, Hermans C, Duconseille E, Falmagne P, Bernard A (1999) Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem 274(43):30451–30458

    Article  CAS  PubMed  Google Scholar 

  251. Song JJ, Rhee JG, Suntharalingam M, Walsh SA, Spitz DR, Lee YJ (2002) Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem 277(48):46566–46575. https://doi.org/10.1074/jbc.M206826200

    Article  CAS  PubMed  Google Scholar 

  252. Lu J, Holmgren A (2012) Thioredoxin system in cell death progression. Antioxid Redox Signal 17(12):1738–1747. https://doi.org/10.1089/ars.2012.4650

    Article  CAS  PubMed  Google Scholar 

  253. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  254. Nightingale H, Kemp K, Gray E, Hares K, Mallam E, Scolding N, Wilkins A (2012) Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev 21(11):2026–2035. https://doi.org/10.1089/scd.2011.0516

    Article  CAS  PubMed  Google Scholar 

  255. Ye ZW, Zhang J, Townsend DM, Tew KD (2015) Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta 1850(8):1607–1621. https://doi.org/10.1016/j.bbagen.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  256. Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296(1):295–309. https://doi.org/10.1006/jmbi.1999.3458

    Article  CAS  PubMed  Google Scholar 

  257. Nicholls P (2012) Classical catalase: ancient and modern. Arch Biochem Biophys 525(2):95–101. https://doi.org/10.1016/j.abb.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  258. Liao AC, Craver BM, Tseng BP, Tran KK, Parihar VK, Acharya MM, Limoli CL (2013) Mitochondrial-targeted human catalase affords neuroprotection from proton irradiation. Radiat Res 180(1):1–6. https://doi.org/10.1667/rr3339.1

    Article  CAS  PubMed  Google Scholar 

  259. Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA, Ladiges WC, Rabinovitch PS (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119(21):2789–2797. https://doi.org/10.1161/circulationaha.108.822403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Nogueira NP, Saraiva FM, Sultano PE, Cunha PR, Laranja GA, Justo GA, Sabino KC, Coelho MG, Rossini A, Atella GC, Paes MC (2015) Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. PLoS One 10(2):e0116712. https://doi.org/10.1371/journal.pone.0116712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL (2017) The dose makes the poison: nutritional overload determines the life traits of blood-feeding arthropods. Trends Parasitol 33(8):633–644. https://doi.org/10.1016/j.pt.2017.04.008

    Article  PubMed  Google Scholar 

  262. Carneiro PP, Conceição J, Macedo M, Magalhães V, Carvalho EM, Bacellar O (2016) The role of nitric oxide and reactive oxygen species in the killing of Leishmania braziliensis by monocytes from patients with Cutaneous Leishmaniasis. PLoS One 11(2):e0148084. https://doi.org/10.1371/journal.pone.0148084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Kierszenbaum F, Knecht E, Budzko DB, Pizzimenti MC (1974) Phagocytosis: a defense mechanism against infection with Trypanosoma cruzi. J Immunol 112(5):1839–1844

    CAS  PubMed  Google Scholar 

  264. Alvarez MN, Peluffo G, Piacenza L, Radi R (2011) Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity. J Biol Chem 286(8):6627–6640. https://doi.org/10.1074/jbc.M110.167247

    Article  CAS  PubMed  Google Scholar 

  265. Guiñazú N, Carrera-Silva EA, Becerra MC, Pellegrini A, Albesa I, Gea S (2010) Induction of NADPH oxidase activity and reactive oxygen species production by a single Trypanosoma cruzi antigen. Int J Parasitol 40(13):1531–1538. https://doi.org/10.1016/j.ijpara.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  266. Alvarez MN, Piacenza L, Irigoín F, Peluffo G, Radi R (2004) Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch Biochem Biophys 432(2):222–232. https://doi.org/10.1016/j.abb.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  267. Fridovich I (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517

    Article  CAS  PubMed  Google Scholar 

  268. Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73(3):599–601. https://doi.org/10.1172/jci111249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  270. de Carvalho TU, de Souza W (1987) Cytochemical localization of NADH and NADPH oxidases during interaction of Trypanosoma cruzi with activated macrophages. Parasitol Res 73(3):213–217

    Article  PubMed  Google Scholar 

  271. Brandes RP, Weissmann N, Schröder K (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76:208–226. https://doi.org/10.1016/j.freeradbiomed.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  272. Van Assche T, Deschacht M, da Luz RA, Maes L, Cos P (2011) Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 51(2):337–351. https://doi.org/10.1016/j.freeradbiomed.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  273. Peluffo G, Piacenza L, Irigoín F, Alvarez MN, Radi R (2004) L-arginine metabolism during interaction of Trypanosoma cruzi with host cells. Trends Parasitol 20(8):363–369. https://doi.org/10.1016/j.pt.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  274. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288(37):26464–26472. https://doi.org/10.1074/jbc.R113.472936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328(2):309–316. https://doi.org/10.1006/abbi.1996.0178

    Article  CAS  PubMed  Google Scholar 

  276. Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4(3):161–177. https://doi.org/10.1021/cb800279q

    Article  CAS  PubMed  Google Scholar 

  277. Piacenza L, Peluffo G, Alvarez MN, Martínez A, Radi R (2013) Trypanosoma cruzi antioxidant enzymes as virulence factors in Chagas disease. Antioxid Redox Signal 19(7):723–734. https://doi.org/10.1089/ars.2012.4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Piacenza L, Alvarez MN, Peluffo G, Radi R (2009) Fighting the oxidative assault: the Trypanosoma cruzi journey to infection. Curr Opin Microbiol 12(4):415–421. https://doi.org/10.1016/j.mib.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  279. Mattner J, Wandersee-Steinhäuser A, Pahl A, Röllinghoff M, Majeau GR, Hochman PS, Bogdan C (2004) Protection against progressive leishmaniasis by IFN-beta. J Immunol 172(12):7574–7582

    Article  CAS  PubMed  Google Scholar 

  280. Costa VM, Torres KC, Mendonça RZ, Gresser I, Gollob KJ, Abrahamsohn IA (2006) Type I IFNs stimulate nitric oxide production and resistance to Trypanosoma cruzi infection. J Immunol 177(5):3193–3200

    Article  CAS  PubMed  Google Scholar 

  281. Kinkade JM, Pember SO, Barnes KC, Shapira R, Spitznagel JK, Martin LE (1983) Differential distribution of distinct forms of myeloperoxidase in different azurophilic granule subpopulations from human neutrophils. Biochem Biophys Res Commun 114(1):296–303

    Article  CAS  PubMed  Google Scholar 

  282. Anand U, Anand CV (2012) Myeloperoxidase: a new twist to an old tale. Indian J Clin Biochem 27(2):107–109. https://doi.org/10.1007/s12291-012-0220-0

    Article  PubMed  PubMed Central  Google Scholar 

  283. Lazarević-Pasti T, Leskovac A, Vasić V (2015) Myeloperoxidase Inhibitors as Potential Drugs. Curr Drug Metab 16(3):168–190

    Article  CAS  PubMed  Google Scholar 

  284. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Piacenza L, Peluffo G, Alvarez MN, Kelly JM, Wilkinson SR, Radi R (2008) Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite. Biochem J 410(2):359–368. https://doi.org/10.1042/bj20071138

    Article  CAS  PubMed  Google Scholar 

  286. Chandrasekar B, Melby PC, Troyer DA, Colston JT, Freeman GL (1998) Temporal expression of pro-inflammatory cytokines and inducible nitric oxide synthase in experimental acute Chagasic cardiomyopathy. Am J Pathol 152(4):925–934

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Machado FS, Martins GA, Aliberti JC, Mestriner FL, Cunha FQ, Silva JS (2000) Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Circulation 102(24):3003–3008

    Article  CAS  PubMed  Google Scholar 

  288. Luquetti AO, Miles MA, Rassi A, de Rezende JM, de Souza AA, Póvoa MM, Rodrigues I (1986) Trypanosoma cruzi: zymodemes associated with acute and chronic Chagas’ disease in central Brazil. Trans R Soc Trop Med Hyg 80(3):462–470

    Article  CAS  PubMed  Google Scholar 

  289. Piacenza L, Zago MP, Peluffo G, Alvarez MN, Basombrio MA, Radi R (2009) Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. Int J Parasitol 39(13):1455–1464. https://doi.org/10.1016/j.ijpara.2009.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. McNeely TB, Turco SJ (1990) Requirement of lipophosphoglycan for intracellular survival of Leishmania donovani within human monocytes. J Immunol 144(7):2745–2750

    CAS  PubMed  Google Scholar 

  291. Lodge R, Diallo TO, Descoteaux A (2006) Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane. Cell Microbiol 8(12):1922–1931. https://doi.org/10.1111/j.1462-5822.2006.00758.x

    Article  CAS  PubMed  Google Scholar 

  292. Proudfoot L, Nikolaev AV, Feng GJ, Wei WQ, Ferguson MA, Brimacombe JS, Liew FY (1996) Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc Natl Acad Sci U S A 93(20):10984–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Kumar R, Pai K, Sundar S (2001) Reactive oxygen intermediates, nitrite and IFN-gamma in Indian visceral leishmaniasis. Clin Exp Immunol 124(2):262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Kumar P, Pai K, Pandey HP, Sundar S (2002) NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of visceral leishmaniasis patients. J Med Microbiol 51(10):832–836. https://doi.org/10.1099/0022-1317-51-10-832

    Article  CAS  PubMed  Google Scholar 

  295. DeLeo FR, Burritt JB, Yu L, Jesaitis AJ, Dinauer MC, Nauseef WM (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275(18):13986–13993

    Article  CAS  PubMed  Google Scholar 

  296. Pham NK, Mouriz J, Kima PE (2005) Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation. Infect Immun 73(12):8322–8333. https://doi.org/10.1128/iai.73.12.8322-8333.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. McNeely TB, Rosen G, Londner MV, Turco SJ (1989) Inhibitory effects on protein kinase C activity by lipophosphoglycan fragments and glycosylphosphatidylinositol antigens of the protozoan parasite Leishmania. Biochem J 259(2):601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Watson F, Robinson J, Edwards SW (1991) Protein kinase C-dependent and -independent activation of the NADPH oxidase of human neutrophils. J Biol Chem 266(12):7432–7439

    CAS  PubMed  Google Scholar 

  299. da Silva AL, Moretti NS, Ramos TC, de Jesus TC, Zhang M, Castilho BA, Schenkman S (2015) A membrane-bound eIF2 alpha kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathog 11(2):e1004618. https://doi.org/10.1371/journal.ppat.1004618

    Article  CAS  Google Scholar 

  300. Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 210(2):401–416. https://doi.org/10.1084/jem.20121368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Graça-Souza AV, Maya-Monteiro C, Paiva-Silva GO, Braz GR, Paes MC, Sorgine MH, Oliveira MF, Oliveira PL (2006) Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem Mol Biol 36(4):322–335. https://doi.org/10.1016/j.ibmb.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  302. Rodrigues JC, Bernardes CF, Visbal G, Urbina JA, Vercesi AE, de Souza W (2007) Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. Protist 158(4):447–456. https://doi.org/10.1016/j.protis.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  303. Rodrigues JC, de Souza W (2008) Ultrastructural alterations in organelles of parasitic protozoa induced by different classes of metabolic inhibitors. Curr Pharm Des 14(9):925–938

    Article  CAS  PubMed  Google Scholar 

  304. Sen N, Majumder HK (2008) Mitochondrion of protozoan parasite emerges as potent therapeutic target: exciting drugs are on the horizon. Curr Pharm Des 14(9):839–846

    Article  CAS  PubMed  Google Scholar 

  305. Cavalli A, Bolognesi ML (2009) Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J Med Chem 52(23):7339–7359. https://doi.org/10.1021/jm9004835

    Article  CAS  PubMed  Google Scholar 

  306. Menna-Barreto RF, Corrêa JR, Cascabulho CM, Fernandes MC, Pinto AV, Soares MJ, De Castro SL (2009) Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136(5):499–510. https://doi.org/10.1017/s0031182009005745

    Article  CAS  PubMed  Google Scholar 

  307. de Souza W, Attias M, Rodrigues JC (2009) Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 41(10):2069–2080. https://doi.org/10.1016/j.biocel.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  308. Vannier-Santos MA, De Castro SL (2009) Electron microscopy in antiparasitic chemotherapy: a (close) view to a kill. Curr Drug Targets 10(3):246–260

    Article  CAS  PubMed  Google Scholar 

  309. Fidalgo LM, Gille L (2011) Mitochondria and trypanosomatids: targets and drugs. Pharm Res 28(11):2758–2770. https://doi.org/10.1007/s11095-011-0586-3

    Article  CAS  PubMed  Google Scholar 

  310. Buckner FS, Urbina JA (2012) Recent developments in sterol 14-demethylase Inhibitors for Chagas disease. Int J Parasitol Drugs Drug Resist 2:236–242. https://doi.org/10.1016/j.ijpddr.2011.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  311. Sangenito LS, Menna-Barreto RFS, Oliveira ACS, d’Avila-Levy CM, Branquinha MH, ALS S (2018) Primary evidences of the mechanisms of action of HIV aspartyl peptidase inhibitors on Trypanosoma cruzi trypomastigote forms. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2018.03.021

  312. Menna-Barreto RF, de Castro SL (2014) The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. Biomed Res Int 2014:614014. https://doi.org/10.1155/2014/614014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Docampo R, Gadelha FR, Moreno SN, Benaim G, Hoffmann ME, Vercesi AE (1993) Disruption of Ca2+ homeostasis in Trypanosoma cruzi by crystal violet. J Eukaryot Microbiol 40(3):311–316

    Article  CAS  PubMed  Google Scholar 

  314. Affranchino JL, De Tarlovsky MN, Stoppani AO (1985) Respiratory control in mitochondria from Trypanosoma cruzi. Mol Biochem Parasitol 16(3):289–298

    Article  CAS  PubMed  Google Scholar 

  315. Peloso EF, Vitor SC, Ribeiro LH, Piñeyro MD, Robello C, Gadelha FR (2011) Role of Trypanosoma cruzi peroxiredoxins in mitochondrial bioenergetics. J Bioenerg Biomembr 43(4):419–424. https://doi.org/10.1007/s10863-011-9365-4

    Article  CAS  Google Scholar 

  316. Luque-Ortega JR, Reuther P, Rivas L, Dardonville C (2010) New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem 53(4):1788–1798. https://doi.org/10.1021/jm901677h

    Article  CAS  PubMed  Google Scholar 

  317. Carvalho L, Luque-Ortega JR, López-Martín C, Castanys S, Rivas L, Gamarro F (2011) The 8-aminoquinoline analogue sitamaquine causes oxidative stress in Leishmania donovani promastigotes by targeting succinate dehydrogenase. Antimicrob Agents Chemother 55(9):4204–4210. https://doi.org/10.1128/aac.00520-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Luque-Ortega JR, Rivas L (2007) Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51(4):1327–1332. https://doi.org/10.1128/aac.01415-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Carvalho L, Luque-Ortega JR, Manzano JI, Castanys S, Rivas L, Gamarro F (2010) Tafenoquine, an antiplasmodial 8-aminoquinoline, targets leishmania respiratory complex III and induces apoptosis. Antimicrob Agents Chemother 54(12):5344–5351. https://doi.org/10.1128/aac.00790-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Njogu RM, Whittaker CJ, Hill GC (1980) Evidence for a branched electron transport chain in Trypanosoma brucei. Mol Biochem Parasitol 1(1):13–29

    Article  CAS  PubMed  Google Scholar 

  321. Menna-Barreto RF, Goncalves RL, Costa EM, Silva RS, Pinto AV, Oliveira MF, de Castro SL (2009) The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 47(5):644–653. https://doi.org/10.1016/j.freeradbiomed.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  322. Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Annu Rev Plant Biol 64:637–663. https://doi.org/10.1146/annurev-arplant-042811-105432

    Article  CAS  PubMed  Google Scholar 

  323. Nihei C, Fukai Y, Kita K (2002) Trypanosome alternative oxidase as a target of chemotherapy. Biochim Biophys Acta 1587(2–3):234–239

    Article  CAS  PubMed  Google Scholar 

  324. Minagawa N, Yabu Y, Kita K, Nagai K, Ohta N, Meguro K, Sakajo S, Yoshimoto A (1996) An antibiotic, ascofuranone, specifically inhibits respiration and in vitro growth of long slender bloodstream forms of Trypanosoma brucei brucei. Mol Biochem Parasitol 81(2):127–136

    Article  CAS  PubMed  Google Scholar 

  325. Tsuda A, Witola WH, Ohashi K, Onuma M (2005) Expression of alternative oxidase inhibits programmed cell death-like phenomenon in bloodstream form of Trypanosoma brucei rhodesiense. Parasitol Int 54(4):243–251. https://doi.org/10.1016/j.parint.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  326. Yabu Y, Suzuki T, Nihei C, Minagawa N, Hosokawa T, Nagai K, Kita K, Ohta N (2006) Chemotherapeutic efficacy of ascofuranone in Trypanosoma vivax-infected mice without glycerol. Parasitol Int 55(1):39–43. https://doi.org/10.1016/j.parint.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  327. Villa-Pulgarín JA, Gajate C, Botet J, Jimenez A, Justies N, Varela-M RE, Cuesta-Marbán Á, Müller I, Modolell M, Revuelta JL, Mollinedo F (2017) Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl Trop Dis 11(8):e0005805. https://doi.org/10.1371/journal.pntd.0005805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Powis G (1987) Metabolism and reactions of quinoid anticancer agents. Pharmacol Ther 35(1–2):57–162

    Article  CAS  PubMed  Google Scholar 

  329. O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80(1):1–41

    Article  PubMed  Google Scholar 

  330. Monks TJ, Jones DC (2002) The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Curr Drug Metab 3(4):425–438

    Article  CAS  PubMed  Google Scholar 

  331. Lima NM, Correia CS, Leon LL, Machado GM, Madeira MeF, Santana AE, Goulart MO (2004) Antileishmanial activity of lapachol analogues. Mem Inst Oswaldo Cruz 99(7):757–761. doi:/S0074-02762004000700017

    Google Scholar 

  332. da Silva Júnior EN, de Melo IM, Diogo EB, Costa VA, de Souza Filho JD, Valença WO, Camara CA, de Oliveira RN, de Araujo AS, Emery FS, dos Santos MR, de Simone CA, Menna-Barreto RF, de Castro SL (2012) On the search for potential anti-Trypanosoma cruzi drugs: synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem 52:304–312. https://doi.org/10.1016/j.ejmech.2012.03.039

    Article  CAS  PubMed  Google Scholar 

  333. da Silva Júnior EN, Jardim GAM, Menna-Barreto RFS, de Castro SL (2014) Anti-Trypanosoma cruzi compounds: our contribution for the evaluation and insights on the mode of action of naphthoquinones and derivatives. J Braz Chem Soc 25(10):1780–1798. https://doi.org/10.5935/0103-5053.20140180

    Article  CAS  Google Scholar 

  334. Ramírez-Macías I, Marín C, Es-Samti H, Fernández A, Guardia JJ, Zentar H, Agil A, Chahboun R, Alvarez-Manzaneda E, Sánchez-Moreno M (2012) Taiwaniaquinoid and abietane quinone derivatives with trypanocidal activity against T. cruzi and Leishmania spp. Parasitol Int 61(3):405–413. https://doi.org/10.1016/j.parint.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  335. Diogo EB, Dias GG, Rodrigues BL, Guimarães TT, Valença WO, Camara CA, de Oliveira RN, da Silva MG, Ferreira VF, de Paiva YG, Goulart MO, Menna-Barreto RF, de Castro SL, da Silva Júnior EN (2013) Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg Med Chem 21(21):6337–6348. https://doi.org/10.1016/j.bmc.2013.08.055

    Article  CAS  PubMed  Google Scholar 

  336. Lam CF, Pearce AN, Tan SH, Kaiser M, Copp BR (2013) Discovery and evaluation of thiazinoquinones as anti-protozoal agents. Mar Drugs 11(9):3472–3499. https://doi.org/10.3390/md11093472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Pieretti S, Haanstra JR, Mazet M, Perozzo R, Bergamini C, Prati F, Fato R, Lenaz G, Capranico G, Brun R, Bakker BM, Michels PA, Scapozza L, Bolognesi ML, Cavalli A (2013) Naphthoquinone derivatives exert their antitrypanosomal activity via a multi-target mechanism. PLoS Negl Trop Dis 7(1):e2012. https://doi.org/10.1371/journal.pntd.0002012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Hata Y, Ebrahimi SN, De Mieri M, Zimmermann S, Mokoka T, Naidoo D, Fouche G, Maharaj V, Kaiser M, Brun R, Potterat O, Hamburger M (2014) Antitrypanosomal isoflavan quinones from Abrus precatorius. Fitoterapia 93:81–87. https://doi.org/10.1016/j.fitote.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  339. Ellendorff T, Brun R, Kaiser M, Sendker J, Schmidt TJ (2015) PLS-prediction and confirmation of hydrojuglone glucoside as the antitrypanosomal constituent of Juglans Spp. Molecules 20(6):10082–10094. https://doi.org/10.3390/molecules200610082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Boveris A, Docampo R, Turrens JF, Stoppani AO (1977) Effect of beta and alpha-lapachone on the production of H2O2 and on the growth of Trypanosoma cruzi. Rev Asoc Argent Microbiol 9(2):54–61

    CAS  PubMed  Google Scholar 

  341. Cruz FS, Docampo R, de Souza W (1978) Effect of beta-lapachone on hydrogen peroxide production in Trypanosoma cruzi. Acta Trop 35(1):35–40

    CAS  PubMed  Google Scholar 

  342. Molina Portela MP, Fernandez Villamil SH, Perissinotti LJ, Stoppani AO (1996) Redox cycling of o-naphthoquinones in trypanosomatids. Superoxide and hydrogen peroxide production. Biochem Pharmacol 52(12):1875–1882

    Article  CAS  PubMed  Google Scholar 

  343. Salomão K, De Santana NA, Molina MT, De Castro SL, Menna-Barreto RF (2013) Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiol 13:196. https://doi.org/10.1186/1471-2180-13-196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Lara LS, Moreira CS, Calvet CM, Lechuga GC, Souza RS, Bourguignon SC, Ferreira VF, Rocha D, Pereira MCS (2018) Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. Eur J Med Chem 144:572–581. https://doi.org/10.1016/j.ejmech.2017.12.052

    Article  CAS  PubMed  Google Scholar 

  345. Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2011) Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One 6(2):e14666. https://doi.org/10.1371/journal.pone.0014666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Fonseca-Silva F, Canto-Cavalheiro MM, Menna-Barreto RF, Almeida-Amaral EE (2015) Effect of Apigenin on Leishmania amazonensis is associated with reactive oxygen species production followed by mitochondrial dysfunction. J Nat Prod 78(4):880–884. https://doi.org/10.1021/acs.jnatprod.5b00011

    Article  CAS  PubMed  Google Scholar 

  347. Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, Menna-Barreto RF, Almeida-Amaral EE (2016) Oral efficacy of apigenin against cutaneous leishmaniasis: involvement of reactive oxygen species and autophagy as a mechanism of action. PLoS Negl Trop Dis 10(2):e0004442. https://doi.org/10.1371/journal.pntd.0004442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Inacio JD, Canto-Cavalheiro MM, Almeida-Amaral EE (2013) In vitro and in vivo effects of (-)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J Nat Prod 76(10):1993–1996. https://doi.org/10.1021/np400624d

    Article  CAS  PubMed  Google Scholar 

  349. Inacio JD, Gervazoni L, Canto-Cavalheiro MM, Almeida-Amaral EE (2014) The effect of (-)-epigallocatechin 3-O--gallate in vitro and in vivo in Leishmania braziliensis: involvement of reactive oxygen species as a mechanism of action. PLoS Negl Trop Dis 8(8):e3093. https://doi.org/10.1371/journal.pntd.0003093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Martins SC, Lazarin-Bidóia D, Desoti VC, Falzirolli H, da Silva CC, Ueda-Nakamura T, Silva SO, Nakamura CV (2016) 1,3,4-Thiadiazole derivatives of R-(+)-limonene benzaldehyde-thiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress. Microbes Infect 18(12):787–797. https://doi.org/10.1016/j.micinf.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  351. Soares RO, Echevarria A, Bellieny MS, Pinho RT, de Leo RM, Seguins WS, Machado GM, Canto-Cavalheiro MM, Leon LL (2011) Evaluation of thiosemicarbazones and semicarbazones as potential agents anti-Trypanosoma cruzi. Exp Parasitol 129(4):381–387. https://doi.org/10.1016/j.exppara.2011.08.019

    Article  CAS  PubMed  Google Scholar 

  352. Britta EA, Scariot DB, Falzirolli H, Ueda-Nakamura T, Silva CC, Filho BP, Borsali R, Nakamura CV (2014) Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol 14:236. https://doi.org/10.1186/s12866-014-0236-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Lapier M, Zuniga-Lopez MC, Aguilera-Venegas B, Adam R, Abarca B, Ballesteros R, Lopez-Munoz R, Maya JD, Olea-Azar C (2017) Evaluation of the Novel Antichagasic Activity of [1,2,3]Triazolo[1,5-a]pyridine Derivatives. Curr Top Med Chem 17(4):399–411

    Article  CAS  PubMed  Google Scholar 

  354. Ribeiro GA, Cunha-Júnior EF, Pinheiro RO, da Silva SA, Canto-Cavalheiro MM, da Silva AJ, Costa PR, Netto CD, Melo RC, Almeida-Amaral EE, Torres-Santos EC (2013) LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J Antimicrob Chemother 68(4):789–799. https://doi.org/10.1093/jac/dks498

    Article  CAS  PubMed  Google Scholar 

  355. Mendonça DVC, Lage DP, Calixto SL, Ottoni FM, Tavares GSV, Ludolf F, Chávez-Fumagalli MA, Schneider MS, Duarte MC, Tavares CAP, Alves RJ, Coimbra ES, Coelho EAF (2018) Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species. Parasitol Res 117(2):391–403. https://doi.org/10.1007/s00436-017-5713-6

    Article  PubMed  Google Scholar 

  356. Tavares GSV, Mendonça DVC, Lage DP, Granato JDT, Ottoni FM, Ludolf F, Chávez-Fumagalli MA, Duarte MC, Tavares CAP, Alves RJ, Coimbra ES, Coelho EAF (2018) Antileishmanial activity, cytotoxicity and mechanism of action of clioquinol against Leishmania infantum and Leishmania amazonensis species. Basic Clin Pharmacol Toxicol. https://doi.org/10.1111/bcpt.12990

  357. Cunha-Júnior EF, Andrade-Neto VV, Lima ML, da Costa-Silva TA, Galisteo Junior AJ, Abengózar MA, Barbas C, Rivas L, Almeida-Amaral EE, Tempone AG, Torres-Santos EC (2017) Cyclobenzaprine Raises ROS levels in Leishmania infantum and reduces parasite burden in infected mice. PLoS Negl Trop Dis 11(1):e0005281. https://doi.org/10.1371/journal.pntd.0005281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Polak A, Richle R (1978) Mode of action of the 2-nitroimidazole derivative benznidazole. Ann Trop Med Parasitol 72(1):45–54

    Article  CAS  PubMed  Google Scholar 

  359. Docampo R, Moreno SN (1984) Free radical metabolites in the mode of action of chemotherapeutic agents and phagocytic cells on Trypanosoma cruzi. Rev Infect Dis 6(2):223–238

    Article  CAS  PubMed  Google Scholar 

  360. Moreno SN, Docampo R, Mason RP, Leon W, Stoppani AO (1982) Different behaviors of benznidazole as free radical generator with mammalian and Trypanosoma cruzi microsomal preparations. Arch Biochem Biophys 218(2):585–591

    Article  CAS  PubMed  Google Scholar 

  361. Díaz de Toranzo EG, Castro JA, Franke de Cazzulo BM, Cazzulo JJ (1988) Interaction of benznidazole reactive metabolites with nuclear and kinetoplastic DNA, proteins and lipids from Trypanosoma cruzi. Experientia 44(10):880–881

    Article  PubMed  Google Scholar 

  362. Docampo R, Stoppani AO (1979) Generation of superoxide anion and hydrogen peroxide induced by nifurtimox in Trypanosoma cruzi. Arch Biochem Biophys 197(1):317–321

    Article  CAS  PubMed  Google Scholar 

  363. Moreno SN, Mason RP, Docampo R (1984) Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. Evidence of an outer membrane-located nitroreductase. J Biol Chem 259(10):6298–6305

    CAS  PubMed  Google Scholar 

  364. Boiani M, Piacenza L, Hernández P, Boiani L, Cerecetto H, González M, Denicola A (2010) Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochem Pharmacol 79(12):1736–1745. https://doi.org/10.1016/j.bcp.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  365. Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I (2008) A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci U S A 105(13):5022–5027. https://doi.org/10.1073/pnas.0711014105

    Article  PubMed  PubMed Central  Google Scholar 

  366. Wilkinson SR, Kelly JM (2009) Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med 11:e31. https://doi.org/10.1017/s1462399409001252

    Article  PubMed  Google Scholar 

  367. Hall BS, Wilkinson SR (2012) Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 56(1):115–123. https://doi.org/10.1128/aac.05135-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Hall BS, Bot C, Wilkinson SR (2011) Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem 286(15):13088–13095. https://doi.org/10.1074/jbc.M111.230847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Channon JY, Roberts MB, Blackwell JM (1984) A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 53(2):345–355

    CAS  PubMed  PubMed Central  Google Scholar 

  370. Cardoni RL, Antunez MI, Morales C, Nantes IR (1997) Release of reactive oxygen species by phagocytic cells in response to live parasites in mice infected with Trypanosoma cruzi. Am J Trop Med Hyg 56(3):329–334

    Article  CAS  PubMed  Google Scholar 

  371. Horta MF, Mendes BP, Roma EH, Noronha FS, Macêdo JP, Oliveira LS, Duarte MM, Vieira LQ (2012) Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. J Parasitol Res 2012:203818. https://doi.org/10.1155/2012/203818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Charmoy M, Megnekou R, Allenbach C, Zweifel C, Perez C, Monnat K, Breton M, Ronet C, Launois P, Tacchini-Cottier F (2007) Leishmania major induces distinct neutrophil phenotypes in mice that are resistant or susceptible to infection. J Leukoc Biol 82(2):288–299. https://doi.org/10.1189/jlb.0706440

    Article  CAS  PubMed  Google Scholar 

  373. Turrens JF (2004) Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med 25(1-2):211–220. https://doi.org/10.1016/j.mam.2004.02.021

    Article  CAS  PubMed  Google Scholar 

  374. Machado-Silva A, Cerqueira PG, Grazielle-Silva V, Gadelha FR, Peloso EF, Teixeira SM, Machado CR (2016) How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. Mutat Res Rev Mutat Res 767:8–22. https://doi.org/10.1016/j.mrrev.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  375. Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33(6):755–764

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dra. Claudia M. d´Ávila-Levy for her critical reading and English grammar corrections. The present study was supported by grants from Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Papes/Fundação Oswaldo Cruz (Fiocruz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubem Figueiredo Sadok Menna-Barreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bombaça, A.C.S., de Oliveira, L.G.F., Almeida-Amaral, E.E., Menna-Barreto, R.F.S. (2019). The Biological Impact of Oxidative Metabolism in Trypanosomatid Parasites: What Is the Perfect Balance Between Reactive Species Production and Antioxidant Defenses?. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_8

Download citation

Publish with us

Policies and ethics