Skip to main content

Mechanistic and Structural Insights into Oxidative Stress in Malaria and Anti-malarial Drug Metabolism

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases
  • 453 Accesses

Abstract

Malaria is a devastating infectious disease affecting mostly tropical and sub-tropical regions. Owning to the emergence of resistance to the existing chemotherapy, the development of anti-malarial drugs as novel chemotherapeutics remains unavoidable. Malaria parasite, Plasmodium, experiences oxidative stress throughout its life cycle upon infection, and underlying redox metabolism is quite complex. Alterations in the redox homeostasis occur during host-pathogen interactions. Parasite is highly vulnerable to such alterations in redox homeostasis. To circumvent this, the parasites engage in an efficient redox system having protective roles towards the turbulence faced by the parasite. Targeting the redox system of malaria parasite is tempting in developing novel antimalarial drugs. On the other hand, oxidative stress, generated during anti-malarial drug metabolism, acts as a source of inhibition against progression of this outrageous parasite. This review aims to provide updated knowledge on redox networks of parasite and structural insights of redox system enzymes, underpinning the balance between antioxidant and pro-oxidant candidates throughout the host-parasite interactions. Furthermore, it also highlights the importance of reactive oxygen species generation during anti-malarial drug metabolism. This review summarises on the vulnerabilities of the malaria parasite due to oxidative stress and the potential cues towards development of the novel antimalarial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO malaria report 2016

    Google Scholar 

  2. Ball P (2001) Roll up for the revolution. Nature 414:42–144. (2008) Roll back malaria: the global malaria action plan: for a malaria-free world. Roll back Malaria Partnership, Geneva

    Google Scholar 

  3. Visser BJ, Vugt M, Grobusch MP (2014) Expert Opin Pharmacother 15:2219–2254

    Article  CAS  Google Scholar 

  4. Dondorp AM, Nosten F, Yi P et al (2009) N Engl J Med 361:455–467

    Article  CAS  Google Scholar 

  5. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host–parasite inter- actions. Int J Parasitol 34:163–189

    Article  CAS  Google Scholar 

  6. Francis SE, Sullivan DJ Jr, Goldberg DE (1997) Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97–123

    Article  CAS  Google Scholar 

  7. Muller S (2004) Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol 53:1291–1305

    Article  Google Scholar 

  8. Gretes MC, Poole LB, Karplus PA (2012) Peroxiredoxins in parasites. Antioxid Redox Signal https://doi.org/10.1089/ars.2011.4404

  9. Sztajer H, Gamain B, Aumann K-D, Slomianny C, Becker K, Brigelius-Flohé R, Flohé L (2001) The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276(10):7397–7403

    Article  CAS  Google Scholar 

  10. Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K (2010) Compartmentation of redox metabolism in malaria parasites. PLoS Pathog 6:e1001242

    Article  CAS  Google Scholar 

  11. Rahlfs S, Becker K (2001) Thioredoxin peroxidases of the malarial parasite Plas- modium falciparum. Eur J Biochem 268:1404–1409

    Article  CAS  Google Scholar 

  12. Nickel C, Trujillo M, Rahlfs S, Deponte M, Radi R, Becker K (2005) Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Biol Chem 386(11):1129–1136

    Article  CAS  Google Scholar 

  13. Yano K, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, Kawazu S (2006) 2-Cys peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium berghei. Mol Biochem Parasitol 148:44–51

    Article  CAS  Google Scholar 

  14. Yano K, Otsuki H, Arai M, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, Kawazu S (2008) Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the sporozoite development in the vector mosquito. Mol Biochem Parasitol 159:142–145

    Article  CAS  Google Scholar 

  15. Becker K, Rahlfs S, Nickel C, Schirmer RH (2003b) Glutathione – functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem 384:551–566

    CAS  PubMed  Google Scholar 

  16. Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA (2003) Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. J Mol Biol 328:893–907

    Article  CAS  Google Scholar 

  17. Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K (2006) Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8(7–8):1227–1239

    Article  CAS  Google Scholar 

  18. Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K (2000) The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 275:40180–40186

    Article  CAS  Google Scholar 

  19. Tamura T, Stadtman TC (2002) Mammalian thioredoxin reductases. Methods Enzymol 347:297–306

    Article  CAS  Google Scholar 

  20. Gilberger T-W, Bergmann B, Walter RD, Müller S (1998) The role of the C-terminus for catalysis of the large thioredoxin reductase from Plasmodium falciparum. FEBS Lett 425(3):407–410

    Article  CAS  Google Scholar 

  21. Kanzok SM, Rahlfs S, Becker K, Schirmer RH (2002) Thioredoxin, thioredoxin reductase, and thioredoxin peroxidase of malaria parasite Plasmodium falciparum. Methods Enzymol 347:370–381

    Article  CAS  Google Scholar 

  22. Fritz-Wolf K, Jortzik E, Stumpf M, Preuss J, Iozef R, Rahlfs S, Becker K (2013) Crystal structure of the Plasmodium falciparum Thioredoxin reductase–Thioredoxin complex. J Mol Biol 425(18):3446–3460

    Article  CAS  Google Scholar 

  23. Gladyshev VN, Jeang K-T, Stadtman TC (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci 93(12):6146–6151

    Article  CAS  Google Scholar 

  24. Gilberger T-W, Walter RD, Müller S (1997) Identification and characterization of the functional amino acids at the active site of the large Thioredoxin reductase from Plasmodium falciparum. J Biol Chem 272(47):29584–29589

    Article  CAS  Google Scholar 

  25. Kanzok SM, Schirmer RH, Türbachova I, Iozef R, Becker K (2000) The thioredoxin system of the malaria parasite Plasmodium falciparum glutathione reduction revisited. J Biol Chem 275(51):40180–40186

    Article  CAS  Google Scholar 

  26. Krnajski Z, Gilberger T-W, Walter RD, Cowman AF, Müller S (2002) Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 277(29):25970–25975

    Article  CAS  Google Scholar 

  27. Munigunti R, Calderón AI (2012) Development of liquid chromatography/mass spectrometry based screening assay for PfTrxR inhibitors using relative quantitation of intact thioredoxin. Rapid Commun Mass Spectrom 26(17):2051–2056

    Google Scholar 

  28. Munigunti R, Gathiaka S, Acevedo O, Sahu R, Tekwani B, Calderón AI (2014) Determination of antiplasmodial activity and binding affinity of curcumin and demethoxycurcumin towards PfTrxR. Nat Prod Res 28(6):359–364

    Google Scholar 

  29. Tiwari NK, Reynolds PJ, Calderón AI (2016) Preliminary LC-MS based screening for inhibitors of Plasmodium falciparum thioredoxin Reductase (PfTrxR) among a set of antimalarials from the Malaria Box. Molecules 21(4):424

    Google Scholar 

  30. Zhang YA, Hempelmann E, Schirmer RH (1988) Glutathione reductase inhibitors as potential antimalarial drugs. Effects of nitrosoureas on Plasmodium falciparum in vitro. Biochem Pharmacol 37(5):855–860

    Google Scholar 

  31. Davioud-Charvet E, Delarue S, Biot C, Schwöbel B, Boehme CC, Müssigbrodt A, Maes L, Sergheraert C, Grellier P, Schirmer RH, Becker K (2001) A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J Med Chem 44(24):4268–4276

    Google Scholar 

  32. Färber PM, Arscott LD, Williams CH Jr, Becker K, Schirmer RH (1998) Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett 422(3):311–314

    Google Scholar 

  33. Andricopulo AD, Akoachere MB, Krogh R, Nickel C, McLeish MJ, Kenyon GL, Arscott LD, Williams CH Jr, Davioud-Charvet E, Becker K (2006) Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents. Bioorg Med Chem Lett 16(8):2283–2292

    Article  CAS  Google Scholar 

  34. Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, Arnér ES, Williams DL (2007) Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med 4(6):e206

    Article  Google Scholar 

  35. Sharma A, Sharma A, Dixit S, Sharma A (2011) Structural insights into thioredoxin-2: a component of malaria parasite protein secretion machinery. Sci Rep 1:179

    Article  Google Scholar 

  36. Munigunti R, Gathiaka S, Acevedo O, Sahu R, Tekwani B, Calderón AI (2013) Characterization of Pf TrxR inhibitors using antimalarial assays and in silico techniques. Chem Cent J 7(1):175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, V., Singh, S. (2019). Mechanistic and Structural Insights into Oxidative Stress in Malaria and Anti-malarial Drug Metabolism. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_28

Download citation

Publish with us

Policies and ethics