Skip to main content

Modulation of the Host-Parasite Redox Metabolism to Potentiate Antimalarial Drug Efficiency

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

Artemisinin-based combination therapy (ACT) is nowadays the most effective treatment for P. falciparum malaria: artemisinin is the most active drug able to rapidly kill all erythrocyte stages of the malaria parasite. However, due to its short half-life, it requires the association with other long-acting drugs. Even if the exact mechanism of action of most antimalarial drugs is still unknown, many of these compounds are able to interact directly or indirectly with the redox metabolism of the parasite and/or the host, enhancing the effectiveness of the antimalarial therapy. This review focuses on many natural compounds, isolated mainly from plants, and used as traditional antimalarial treatments, known to possess a potent antimalarial activity (IC50 lower than 1 ug/mL). These compounds belong to some specific chemical family, mainly alkaloids, terpenoids, quassinoids, limonoids, and polyphenols, sharing some common chemical features. These natural molecules could offer new possibilities of combination therapies development as antimalarials when associated with artemisinin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui L, Su X (2007) Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti-infective Therapy 7(8):999–1013

    Article  Google Scholar 

  2. World Health Organization (2017) World malaria report. WHO, Geneva

    Google Scholar 

  3. Gassner C (2012) Aging and clearance of erythrocytes. Transfus Med Hemother 39(5):297–298

    Article  PubMed  PubMed Central  Google Scholar 

  4. Luzzatto L, Arese P (2018) Favism and Glucose-6-phosphate dehydrogenase deficiency. N Engl J Med 378(1):1067–1069

    Article  Google Scholar 

  5. AnabaF C, Ahiante BO, Pepple DJ (2012) In vitro hemolytic effect of sulfadoxine/pyrimethamine and artemether/lumefantrine on malaria parasitized erythrocytes of female patients. Pak J Pharm Sci 25(4):851–855

    Google Scholar 

  6. Chikezie PC, Monago CC, Uwakwe A (2009) Studies of methemoglobin concentrations of three human erythrocyte genotypes (Hb AA, HbAS, and Hb SS) in the presence of five antimalarial drugs. Iranian J Blood Cancer 4:151–157

    Google Scholar 

  7. Niles JC, DeRisi JL, Marletta MA (2009) Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers. Proc Natl Acad Sci U S A 106(32):13266–13271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abshire JR, Rowlands CJ, Ganesan SM, So PTC, Niles JC (2017) Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proc Natl Acad Sci U S A 114(11):E2068–E2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amri I, Mancini E, De Martino L, Marandino A, Lamia H, Bassem J, Scognamiglio M, Reverchon E, De Feo V (2012) Chemical composition and biological activities of the essential oils from three Melaleuca species grown in Tunisia. Int J Mol Sci 13(12):16346–16372

    Article  CAS  Google Scholar 

  10. Francis SE, Sullivan DJ, Goldberg DE (1997) Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97–123

    Article  CAS  PubMed  Google Scholar 

  11. World Health Organization (2015) Guidelines for treatment of malaria. WHO, Geneva

    Google Scholar 

  12. Gupta S, Thapar MM, Wernsdorfer WH, Björkman A (2002) In vitro interactions of artemisinin with Atovaquone, quinine, and Mefloquine against Plasmodium falciparum. Antimicrob Agents Chemother 46(5):1510–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ekong R, Warhurst DC (1990) Synergism between artemether and mefloquine or quinine in a multidrug-resistant strain of Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg 84(6):757–758

    Article  CAS  PubMed  Google Scholar 

  14. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host–parasite interactions. Int J Parasitol 34(2):163–189

    Article  CAS  PubMed  Google Scholar 

  15. Giribaldi G, Ulliers D, Mannu F, Arese P, Turrini F (2001) Growth of Plasmodium falciparum induces stage-dependent haemichrome formation, oxidative aggregation of band 3, membrane deposition of complement and antibodies, and phagocytosis of parasitized erythrocytes. Br J Haematol 113(2):492–499

    Article  CAS  PubMed  Google Scholar 

  16. Parker PD, Tilley L, Klonis N (2004) Plasmodium falciparum induces reorganization of host membrane proteinsduring intraerythrocytic growth. Blood 103(6):2404–2406

    Article  CAS  PubMed  Google Scholar 

  17. Lelliott PM, McMorran BJ, Foote SJ, Burgio G (2015) The influence of host geneticson erythrocytes and malaria infection: is there therapeutic potential? Malar J 14:289

    Article  PubMed  PubMed Central  Google Scholar 

  18. Williams TN (2011) How do Hemoglobins S and C result in malaria protection? J Infect Dis 204(11):1651–1653

    Article  PubMed  Google Scholar 

  19. Mohandas N, An X (2012) Malaria and human red blood cells. Med Microbiol Immunol 201(4):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Udeinya IJ, Schmidt JA, Aikawa M, Miller LH, GreenI (1981) Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science 213(4507): 555–557

    Google Scholar 

  21. Pantaleo A, Kesely KR, Pau MC, Tsamesidis I, Schwarzer E, Skorokhod OA, Chien HD, Ponzi M, Bertuccini L, Low PS, Turrini FM (2017) Syk inhibitors interfere with erythrocyte membrane modification during P falciparum growth and suppress parasite egress. Blood 130(8):1031–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nepveu F, Turrini F (2013) Targeting the redox metabolism of Plasmodium falciparum. Future Med Chem 5(16):1993–2006

    Article  CAS  PubMed  Google Scholar 

  23. Kirandeep K, Meenakshi J, Tarandeep K, Rahul J (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256

    Article  CAS  Google Scholar 

  24. Saxena S, Pant N, Jaic DC, Bhakuni RS (2003) Antimalarial agents from plant sources. Curr Sci 85:1314–1329

    CAS  Google Scholar 

  25. Onguéné A (2013) The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J 12:449

    Article  CAS  Google Scholar 

  26. Ibrahim SRM, Mohamed GA (2015) Naphthylisoquinoline alkaloids potential drug leads. Fitoterapia 106:194–225

    Article  CAS  PubMed  Google Scholar 

  27. World Health Organization (2018) Status report on artemisinin resistance and ACT efficacy. WHO, Geneva

    Google Scholar 

  28. Skorokhoda OA, Davalos-Schaflera D, Gallo V, Valente E, Ulliersa D, Notarpietro A, Mandili G, Novelli F, Persico M, Taglialatela-Scafati O, Arese P, Schwarzer E (2015) Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge Plakortis simplex. Free Radic Biol Med 89:624–637

    Article  CAS  Google Scholar 

  29. Mojab F (2012) Antimalarial natural products: a review. Avicenna journal of Phytomedicine 2(2):52–62

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Intl 44(5):1150–1160

    Article  CAS  Google Scholar 

  31. Dell’AgliM PS, Basilico N, Verotta L, Taramelli D, Berry C, Bosisio E (2003) In vitro studies on the mechanism of action of two compounds with antiplasmodial activity: ellagic acid and 3,4,5-trimethoxyphenyl(6’-O-aalloyl)-beta-D-glucopyranoside. Planta Med 69(2):162–164

    Article  Google Scholar 

  32. Frederich M, Hayette MP, Tits M, De Mol P, Angenot L (1999) In vitro activities of strychnos alkaloids and extracts against Plasmodium falciparum. Antimicrob Agents Chemother 43(9):2328–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wright CW, Bray DH, O’Neill MJ, Warhurst DC, Phillipson JD, Quetin-Leclercq J, Angenot L (1991) Antiamoebic and antiplasmodial activities of alkaloids isolated from Strychnos usambarensis. Planta Med 57(4):337–340

    Article  CAS  PubMed  Google Scholar 

  34. Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants: a review. J Ethnopharmacol 133(2):289–302

    Article  CAS  PubMed  Google Scholar 

  35. Gandhi M, Vinayak VK (1990) Preliminary evaluation of extracts of Alstoniascholaris bark for in vivo antimalarial activity in mice. J Ethnopharmacol 29(1):51–57

    Article  CAS  PubMed  Google Scholar 

  36. Elford BC (1986) L-glutamine influx in malaria-infected erythrocytes: a target for antimalarials? Parasitol Today 2(11):309–312

    Article  CAS  PubMed  Google Scholar 

  37. Vennerstrom JL, Klayman DL (1988) Protoberberine alkaloids as antimalarials. J Med Chem 31(6):1084–1087

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh AK, Bhattacharyya FK, Ghosh DK (1985) Leishmania donovani: amastigote inhibition and mode of action of berberine. Experim Parasitol 60(3):404–413

    Article  CAS  Google Scholar 

  39. Fata J, Rakhshandeh H, Berenji F, Jalalianfard A (2006) Treatment of cutaneous Leishmaniasis in murine model by alcoholic extract of Berberis vulgaris. Iran J Parasitol 1(1):39–42

    Google Scholar 

  40. Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of root extracts of Fagarazanthoxyloides on the in vitro growth and stage distribution of Plasmodium falciparum. Antimicrob Agents Chemother 49:264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bidla G, VPK T, Joko B, El-Ghazali G, Bolad A, Berzins K (2004) Antiplasmodial activity of seven plants used in African folk medicine. Indian J Pharmacol 36:245–246

    Google Scholar 

  42. Vennerstrom JL, Klayman DL (1988) Protoberberine alkaloids as antimalarials. J Med Chem 31:1084–1087

    Article  CAS  PubMed  Google Scholar 

  43. Jia F, Zou G, Fan J, Yuan Z (2010) Identification of palmatine as an inhibitor of West Nile virus. Arch Virol 155(8):1325–1329

    Article  CAS  PubMed  Google Scholar 

  44. Kim JH, Ryu YB, Lee WS, Kim YH (2014) Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from Corydalis turtschaninovii rhizome. Bioorg Med Chem 22:6047–6052

    Article  CAS  PubMed  Google Scholar 

  45. Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants: a review. J Ethnopharmacol 133:289–302

    Article  CAS  PubMed  Google Scholar 

  46. Khalid SA, Friedrichsen GM, Kharazmi A, Theander TG, Olsen CE, Christensen SB (1998) Limonoids from Khaya senegalensis. Phytochemistry 49:1769–1772

    Article  CAS  PubMed  Google Scholar 

  47. MacKinnon S, Durst T, Arnason JT (1997) Antimalarial activity of tropical Meliaceae extracts and Gedunin derivatives. J Nat Prod 60:336–341

    Article  CAS  PubMed  Google Scholar 

  48. Bickii J, NjifutieN FJA, Basco LK, Ringwald P (2000) In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae). J Ethnopharmacol 69:27–33

    Article  CAS  PubMed  Google Scholar 

  49. Omar S, Godard K, Ingham A, Hussain H, Wongpanich V, Pezzuto J, Durst T, Eklu C, Gbeassor M, Sanchez-Vindas P, Poveda L, Philogene BJR, Arnason JT (2005) Antimalarial activities of gedunin and 7-methoxygedunin and synergistic activity with dillapiol. Ann Appl Biol 143(2):135–141

    Article  Google Scholar 

  50. Suresh G, Gopalakrishnan G, Wesley SD, Singh NDP, Malathi R, Rajan SS (2002) Insect Antifeedant activity of Tetranortriterpenoids from the Rutales. A perusal of structural relations. J Agric Food Chem 50:4484–4490

    Article  CAS  PubMed  Google Scholar 

  51. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Stærk D, Jaroszewski JW, Ndangalasi H, Mbago F, Brun R, Christensen SB (2004) Ancistrotanzanine C and related 5,1′- and 7,3′-coupled Naphthylisoquinoline alkaloids from Ancistrocladustan zaniensis. J Nat Prod 67(5):743–748

    Article  CAS  PubMed  Google Scholar 

  52. François G, Bringmann G, Dochez C, Schneider C, Timperman G, Assi LA (1995) Activities of extracts and naphthylisoquinoline alkaloids from Triphyophyllumpeltatum, Ancistrocladus abbreviatus and Ancistrocladusbarteri against Plasmodium berghei (Anka strain) in vitro. J Ethnopharmacol 46(2):115–120

    Article  PubMed  Google Scholar 

  53. François G, Timperman G, Eling W, Assi LA, Holenz J, Bringmann G (1997) Naphthylisoquinoline alkaloids against malaria: evaluation of the curative potentials of dioncophylline C and dioncopeltine a against Plasmodium berghei in vivo. Antimicrob Agents Chemother 41(11):2533–2539

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ponte-Sucre A, Faber JH, Gulder T, Kajahn I, Pedersen SEH, Schultheis M, Bringmann G, Moll H (2007) Activities of Naphthylisoquinoline alkaloids and synthetic analogs against Leishmania major. Antimicrob Agents Chemother 51(1):188–194

    Article  CAS  PubMed  Google Scholar 

  55. Bringmann G, Messer K, Schwobel B, Brun R, Assi LA (2003) Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum. Phytochemistry 62:345–349

    Article  CAS  PubMed  Google Scholar 

  56. Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, Benoit-Vical F (2009) In vitro and in vivo properties of Ellagic acid in malaria treatment. Antimicrob Agents Chemother 53(3):1100–1106

    Article  CAS  PubMed  Google Scholar 

  57. Okunade AL, Bikoff RE, Casper SJ, Oksman A, Goldberg DE, Lewis WH (2003) Antiplasmodial activity of extracts and quassinoids isolated from seedlings of Ailanthus altissima (Simaroubaceae). Phytother Res 17(6):675–677

    Article  CAS  PubMed  Google Scholar 

  58. Muhammad I, Bedir E, Khan SI, Tekwani BL, Khan IA, Takamatsu S, Pelletier J, Walker LA (2004) A new antimalarial quassinoid from Simabaorinocensis. J Nat Prod 67(5):772–777

    Article  CAS  PubMed  Google Scholar 

  59. GoffinE ZE, De Mol P, Madureira M, Martins AP, Proença da Cunha A, Philippe G, Tits M, Angenot L, Frederich M (2002) In vitro Antiplasmodial activity of Tithoniadiversifolia and identification of its Main active constituent: Tagitinin C. Planta Med 68(6):543–545

    Article  Google Scholar 

  60. Jansen O, Tits M, Angenot L, Nicolas JP, De Mol P, PNikiema JB, Frédérich M (2012) Anti-plasmodial activity of Dicomatomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar J 11:289

    Article  PubMed  PubMed Central  Google Scholar 

  61. Labadie GR, Choi SR, Avery MA (2004) Diamine derivatives with antiparasitic activities. Bioorg Med Chem Lett 14:615–619

    Article  CAS  PubMed  Google Scholar 

  62. Hassan GM, Ali HZ (2017) In-vitro effect of artemisinin on L. tropica promastigotes. J Pharm Biol Sci 12(6):82–86

    Google Scholar 

  63. Fattorusso C, Persico M, Calcinai B, Cerrano C, Parapini S, Taramelli D, Novellino E, Romano A, Scala F, Fattorusso E, Taglialatela-Scafati O (2010) Manadoperoxides A-D from the Indonesian sponge Plakortis cfr. simplex. Further insights on the structure-activity relationships of simple 1,2-Dioxane Antimalarials. J Nat Prod 73:1138–1145

    Article  CAS  PubMed  Google Scholar 

  64. Skorokhod OA, Davalos-Schafler D, Gallo V, Valente E, Ulliers D, Notarpietro A, Mandili G, Novelli F, Persico M, Taglialatela-Scafati O, Arese P, Schwarzer E (2015) Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge plakortis simplex. Free Rad Biol Med 89:624–637

    Article  CAS  PubMed  Google Scholar 

  65. Kossuga MH, Nascimento AM, Reimão JQ, Tempone AG, Nosomi Taniwaki N, Veloso K, Ferreira AG, Cavalcanti BC, Pessoa C, Moraes MO, Mayer AMS, Hajdu E, Berlinck RGS (2008) Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortisangulospiculatus collected in Brazil. J Nat Prod 71(3):334–339

    Google Scholar 

  66. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DVS, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–312

    Article  CAS  PubMed  Google Scholar 

  67. Pantaleo A, Ferru E, Vono R, Giribaldi G, Lobina O, Nepveu F, Ibrahim H, Nallete JP, Carta F, Mannu F, Pippia P, Campanella E, Low PS, Turrini F (2012) New antimalarial indolone-N-oxides, generating radical species, destabilize the host cell membrane at early stages of Plasmodium falciparum growth: role of band 3 tyrosine phosphorylation. Free Rad Biol Med 52(2):527–536

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Turrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turrini, F., Boggia, R., Zunin, P., Turrini, F.M. (2019). Modulation of the Host-Parasite Redox Metabolism to Potentiate Antimalarial Drug Efficiency. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_27

Download citation

Publish with us

Policies and ethics