Skip to main content

Photodynamic Therapy Against Bacterial Biofilm: Role of Reactive Oxygen Species

  • Chapter
  • First Online:
Book cover Oxidative Stress in Microbial Diseases

Abstract

Microbial infections remain to be one of the main causes of mortality and the culprits behind these infections are biofilm-forming multiple drug-resistant strains of bacteria. Biofilm are the surface attached, three-dimensional structure of heteromorphic microbial communities embedded in self-producing extracellular polymeric substances (EPSs). Biofilm-associated bacteria exhibit several antibiotic-resistance mechanisms; antibiotic penetration, efflux of the antibiotic, and EPS production are the main mechanisms of antibiotic resistance as they deny drug access to the cell interior. Due to the severity of biofilm-related infections, there is an urgent need to explore novel approaches like photodynamic therapy (PDT) to circumvent this increased resistance. PDT employs a nontoxic, light-sensitive dye called photosensitizer (PS), and harmless visible light of appropriate wavelength to match the absorption peak of the PS in presence of oxygen-rich environment produces a phototoxic response. PDT appears the most promising alternative methodology against multidrug resistance and biofilm-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  2. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wilkins M, Hall-Stoodley L, Allan RN, Faust SN (2014) New approaches to the treatment of biofilm-related infections. J Infect 69:S47–S52

    Article  PubMed  Google Scholar 

  5. Lang NP, Mombelli A, Attström R (2008) Oral biofilms and calculus. In: Clinical periodontology and implant dentistry. Blackwell Munksgaard, Oxford, UK, pp 197–205

    Google Scholar 

  6. Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  CAS  PubMed  Google Scholar 

  7. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease. Photochem Photobiol Sci 3:436–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spikes JD (1985) In: Berghausen RV, Jori G, Land EJ, Truscott TH (eds) Primary photoprocesses in biology and medicine. Plenum Press, New York, pp 209–227

    Chapter  Google Scholar 

  9. Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Article  CAS  PubMed  Google Scholar 

  10. Daniell MD, Hill JS (1991) A history of photodynamic therapy. ANZ J Surg 6:340–348

    Article  Google Scholar 

  11. Finsen NR (1901) Phototherapy. Edward Arnold, London

    Google Scholar 

  12. Raab O (1900) Uber die Wirkung fluoreszierender Stoffe auf Infusorien. Z Biol 39:524–546

    CAS  Google Scholar 

  13. von Tappeiner H (1900) Uber die Wirkung fluoreszierender Stoffe auf Infusorien nach Versuchen von O. Raab. Muench Med Wochenschr 47:5

    Google Scholar 

  14. von Tappeiner H, Jesionek A (1903) Therapeutische versuche mit fluoreszierenden stoffen. Muench Med Wochenschr 47:2042–2044

    Google Scholar 

  15. von Tappeiner H, Jodlbauer A (1904) Uber wirkung der photodynamischen (fluorieszierenden) stoffe auf protozoan und enzyme. Dtsch Arch Klin Med 80:427–487

    Google Scholar 

  16. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nature Rev Cancer 3(5):380

    Google Scholar 

  17. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28

    Article  CAS  PubMed  Google Scholar 

  18. Tegos G, Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St Denis TG, Ribeiro MS, Mylonakis E, Hamblin MR (2012) Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 3:120

    PubMed  PubMed Central  Google Scholar 

  19. Ochsner M (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 39:1–18

    Article  CAS  PubMed  Google Scholar 

  20. Athar M, Mukhtar H, Bickers DR (1988) Differential role of reactive oxygen intermediates in photofrin-I- and photofrin-II-mediated photoenhancement of lipid peroxidation in epidermal microsomal membranes. J Invest Dermatol 90:652–657

    Article  CAS  PubMed  Google Scholar 

  21. Valko M, Morris H, Cronin MT (2005) Metals toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson F, Helman WP, Ross AB (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 22(1):113–262

    Article  CAS  Google Scholar 

  23. Epe B (1991) Genotoxicity of singlet oxygen. Chem Biol Interact 80:239–260

    Article  CAS  PubMed  Google Scholar 

  24. Bensasson RV, Land EJ, Pariente R (1988) Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity. Photochem Photobiol 47(4):485–489

    Article  PubMed  Google Scholar 

  25. Buettner GR, Robert DH (1987) Superoxide, hydrogen peroxide and singlet oxygen in hematoporphyrin derivative-cysteine, -NADH and -light systems. Biochim Biophys Acta (BBA) Gen Subj 923(3):501–507

    Article  CAS  Google Scholar 

  26. Bors W, Erben-Russ M, Michel C, Saran M (1990) Radical mechanisms in fatty acid and lipid peroxidation. Free radicals, lipoproteins, and membrane lipids. Springer, Boston, pp 1–16

    Book  Google Scholar 

  27. Leach AG, Houk KN (2002) Diels-Alder and ene reactions of singlet oxygen, nitroso compounds and tri azolinediones: transition states and mechanisms from contemporary theory. Chem Commun (Camb) 21:1243–1255

    Article  CAS  Google Scholar 

  28. Singleton DA, Hang C, Szymanski MJ, Meyer MP, Leach AG, Kuwata KT, Chen JS, Greer A, Foote CS, Houk KN (2003) Mechanism of ene reactions of singlet oxygen. A two-step no-intermediate mechanism. J Am Chem Soc 125:1319–1328

    Article  CAS  PubMed  Google Scholar 

  29. Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP (2013) Antimicrobial strategies centered around reactive oxygen species–bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37:955–989

    Article  CAS  PubMed  Google Scholar 

  30. Mylonas C, Kouretas D (1999) Lipid peroxidation and tissue damage. In vivo (Athens) 13:295–309

    CAS  Google Scholar 

  31. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  32. Carpenter BL, Situ X, Scholle F, Bartelmess J, Weare WW, Ghiladi RA (2015) Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer. Molecules 20:10604–10621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR (2012) Type I and type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 44:490–499

    Article  PubMed  PubMed Central  Google Scholar 

  34. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (2000) Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother 44:522–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pereira MA, Faustino MAF, Tomé JPC, Neves MGPMS, Tome AC, Cavaleiro Â, Cunha JAS, Almeida A (2014) Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem Photobiol 13:680–690

    Article  CAS  Google Scholar 

  36. Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzie C, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54:3834–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nitzan Y, Gutterman M, Malik Z, Ehrenberg B (1992) Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem Photobiol 55:89–96

    Article  CAS  PubMed  Google Scholar 

  38. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T (2009) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci 24:259–268

    Article  CAS  PubMed  Google Scholar 

  39. Sharma K, Sulbha DT, Kharkwal GB, Huang YY, Huang L, Bil DAVJ, Tegos GP, Hamblin MR (2011) Drug discovery of antimicrobial photosensitizers using animal models. Curr Pharm Des 17:1303–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wainwright M, Crossley KB (2002) Methylene blue—a therapeutic dye for all seasons. J Chemother 14:431–443

    Article  CAS  PubMed  Google Scholar 

  41. Wood S, Nattress B, Kirkham J, Shore R, Brookes S, Griffiths J, Robinson C (1999) An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo. J Photochem Photobiol B 50:1–7

    Article  CAS  PubMed  Google Scholar 

  42. Zanin ICJ, Goncalves RB, Junior AB, Hope CK, Pratten J (2005) Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 56:324–330

    Article  CAS  PubMed  Google Scholar 

  43. Wood TK, Barrios AF, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72:361–367

    Article  CAS  PubMed  Google Scholar 

  44. Sharma M, Visai L, Bragheri F, Cristiani I, Gupta PK, Speziale P (2008) Toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob Agents Chemother 52:299–305

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad U. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misba, L., Khan, A.U. (2019). Photodynamic Therapy Against Bacterial Biofilm: Role of Reactive Oxygen Species. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_25

Download citation

Publish with us

Policies and ethics