Skip to main content

Advances on Metabolism and Disposition of Benzimidazoles Anthelmintic in Fasciola hepatica: Its Contribution to the Phenomenon of Anthelmintic Resistance

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

The fascioliasis is an important zoonotic disease, particularly in underdeveloped countries. In fascioliasis, the anthelmintic control has been done mainly by the use of triclabendazole (TCBZ), which is metabolized into the anti-helmintic metabolite, sulphoxide in the host liver and targeted to the subcellular fractions of the parasite, Fasciola hepatica (Liver Fluke). The existence of genetically different populations of liver fluke could allow, against any selection pressure, natural or artificial (for use fasciolicides products and/or control measures), one or more populations of F. hepatica to be able to survive and create resistance or adaptability to such selective pressure. It is known that the uptake and effects of TCBZ and the sulfoxide metabolite is significantly greater in TCBZ-susceptible isolates in comparison to the TCBZ-resistant flukes. This result are analyzed in the present contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mas-Coma S (2004) Human fascioliasis. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun R, Fayer R, Gannon VPJ (eds) Waterborne Zoonoses: identification, causes, and control. World Health Organisation/IWA Publishing, London, pp 305–322

    Google Scholar 

  2. Cwiklinski K, Dalton JP, Dufresne PJ et al (2015) The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol 16:71

    Article  Google Scholar 

  3. Boray JC, McMichael DF (1961) The identity of the Australian Lymnaeid snail host of Fasciola hepatica L. and its response to environment. Mar Freshw Res [Internet] 12:150–163. Available from: http://www.publish.csiro.au/mf/MF9610150

  4. Mas-Coma S, Valero MA (2009) BM. Climate change effects on trematodiases, with emphasis on zoonótica fascioliasis and schistosomiasis. Vet. Parasitology 163:264–366

    Google Scholar 

  5. Boray JC, De Bono D (1989) Drug resistance in Fasciola hepatica. In: Outteridge PM (ed) Advances in veterinary science. R. D. Richards, Artarmon, p 166

    Google Scholar 

  6. World Health Organization (2007) Report of the WHO informal meeting on use of triclabendazole in fascioliasis control. World Health Organization. http://www.who.int/neglected_diseases/preventive_chemotherapy/WHO_CDS_NTD_PCT_2007.1.pdf

  7. Lacey E (1988) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 18:885–936

    Article  CAS  Google Scholar 

  8. Virkel G, Lifschitz A, Sallovitz J, Pis A, Lanusse C (2006) Assessment of the main metabolism pathways for the flukicidal compound triclabendazole in sheep. J Vet Pharmacol Ther 29(3):213–223

    Article  CAS  Google Scholar 

  9. Mottier L, Virkel G, Solana H, Alvarez L, Salles J, Lanusse C (2004) Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidized metabolites into Fasciola hepatica. Xenobiotica 34(11–12):1043–1057

    Article  CAS  Google Scholar 

  10. Solana HD, Rodriquez JA, Lanusse CE (2001) Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Parasitol Res 87:275–280

    Article  CAS  Google Scholar 

  11. Brennan GP, Fairweather I, Trudgett A, Hoey E, McCoy, McConville M, Meaney M et al (2007) Understanding triclabendazole resistance. Exp Mol 82:104–109

    Article  CAS  Google Scholar 

  12. Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. Chapter 14 Bioinforma. Genet:290e316

    Google Scholar 

  13. Alvarez L, Solana HD, Mottier ML, Virkel GL, Fairweather I, Lanusse CE (2005) Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes. Parasitology 131:1–10. https://doi.org/10.1017/S0031182005007997

    Article  CAS  Google Scholar 

  14. Mas-Coma S, Valero MA, Bargues MD (2009) Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, 236 molecular epidemiology and control. Adv Parasitol 69:41–147

    Article  Google Scholar 

  15. Bargues MD, Artigas P, Khoubbane M, Ortiz P, Naquira C, Mas-Coma S (2012) Molecular characterization of Galba truncatula, Lymnaea neotropica and L. schirazensis from Cajamarca, Peru and their potential role in transmission of human and animal fascioliasis. Parasites & Vectors 5:174

    Article  CAS  Google Scholar 

  16. Mas-Coma S, Valero MA, Bargues MD (2009) Climate change effects on trematodiases, with emphasis on zoonótica fascioliasis and schistosomiasis. Vet Parasitol 163:264–280

    Article  Google Scholar 

  17. Overend DJ, Bowen FL (1995) Resistance of Fasciola hepatica to triclabendazole. Austral Vet J 72:275–276. https://doi.org/10.1111/j.1751–0813.1995.tb03546.x

    Article  CAS  PubMed  Google Scholar 

  18. O’Brien DJ 1998) Fasciolosis: a threat to livestock. Irish Vet J 51:539–541. Overend DJ, Bowen FL (1995) Resistance of Fasciola hepatica to triclabendazole. Austral Vet J 72:275–276. https://doi.org/10.1111/j.1751–0813.1995.tb03546.x

  19. Mitchell GB, Maris L, Bonniwell MA (1998) Triclabendazole resistant liver fluke in Scottish sheep. Vet Rec 143:399

    CAS  PubMed  Google Scholar 

  20. Thomas I, Coles GC, Duffus K (2000) Triclabendazole-resistant Fasciola hepatica in south-West Wales. Vet Rec 146:200

    CAS  PubMed  Google Scholar 

  21. Moll L, Gaasenbeek CP, Vellema P, Borgsteede FH, (2000) Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in The Netherlands. Vet Parasitol 91:153–158. https://doi.org/10.1016/S0304-4017(00)00267-3

  22. Gaasenbeek CP, Moll L, Cornelissen JB, Vellema P, Borgsteede FH (2001) An experimental study on triclabendazole resistance of Fasciola hepatica in sheep. Vet Parasitol 95:37–43. https://doi.org/10.1016/S0304–4017(00)00413–1

    Article  CAS  PubMed  Google Scholar 

  23. Alvarez-Sánchez MA, Mainar-Jaime RC, Pérez-García J, Rojo-Vázquez FA (2006) Resistance of Fasciola hepatica to triclabendazole and albendazole in sheep in Spain. Vet Rec 159:424–425

    Article  Google Scholar 

  24. Olaechea F, Lovera V, Larroza M, Raffo F, Cabrera R (2011) Resistance of Fasciola hepatica against triclabendazole in cattle in Patagonia (Argentina). Vet Parasitol 178:364–366

    Article  CAS  Google Scholar 

  25. Ortiz P, Scarcella S, Cerna C, Rosales C, Cabrera M, Guzmán M, Lamenza P, Solana H (2013) Resistance of Fasciola hepatica against Triclabendazole in cattle in Cajamarca (Peru): a clinical trial and an in vivo efficacy test in sheep. Vet Parasitol 195(1–2):118–121

    Article  CAS  Google Scholar 

  26. Robinson MW, Trudgett A, Hoey EM, Fairweather I (2002) Triclabendazole-resistant Fasciola hepatica: ß-tubulin and response to in vitro treatment with triclabendazole. Parasitology 124:325–338. https://doi.org/10.1017/S003118200100124X

    Article  CAS  PubMed  Google Scholar 

  27. Ryan LA, Hoey E, Trudgett A, Fairweather I, Fuchs M, Robinson MW, Chambers E, Timson DJ, Ryan E, Feltwell T, Ivens A, Bentley G, Johnston D (2008) Fasciola hepatica expresses multiple a- and ß- tubulin isotypes. Mol Biochem Parasitol 159(1):73–78

    Article  CAS  Google Scholar 

  28. Solana HD, Rodriguez JA, Lanusse CE (2001) Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Parasitol Res 87:275–280

    Article  CAS  Google Scholar 

  29. Solana H, Scarcella S, Virkel G, Ceriani C, Rodríguez J, Lanusse C (2009) Albendazole enantiomeric metabolism and binding to cytosolic proteins in the liver fluke Fasciola hepatica. Vet Res Commun 33:163–173

    Article  CAS  Google Scholar 

  30. Scarcella S, Fiel C, Guzman M, Alzola R, Felipe A, Hanna R, Fairweather I, Mcconnell S, Solana H (2011) Reproductive disruption in Fasciola hepatica associated with incomplete efficacy of a new experimental formulation of Triclabendazole. Veterinary parasitology, vol 176. Elsevier Science BV, Amsterdam, pp 157–164

    Google Scholar 

  31. Virkel G, Lifschitz A, Sallovitz J, Pis A, Lanusse C (2006) Assessment of the main metabolism pathways for the flukicidal compound triclabendazole in sheep. J Vet Pharmacol Ther 29(3):213–223. https://doi.org/10.1111/j.1365–2885.2006.00735.x

  32. Solana HD, Sallovitz JM, Lanusse CE, Rodríguez JA (2002) Enantioselective binding of albendazole sulphoxide to cytosolic proteins from helminth parasites. Methods Find Exp Clin Pharmacol 24(1):7–13. https://doi.org/10.1358/mf.2002.24.1.677121

    Article  CAS  PubMed  Google Scholar 

  33. Solana H, Rodríguez J, Lanusse C (2002) Triclabendazole interaction with Fasciola hepatica cytosolic protein. Biocell 26(3):402

    Google Scholar 

  34. Mottier L, Alvarez L, Fairweather I, Lanusse C (2006) Resistance-induced changes in triclabendazole transport in Fasciola hepatica: ivermectin reversal effect. J Parasitol 92(6):1355–1360

    Article  CAS  Google Scholar 

  35. Cvilink V, Lamka J, Skálová L (2009) Xenobiotic metabolizing enzymes and metabolism of anthelmintics in helminths. Drug Metabol Rev 41:8–26. https://doi.org/10.1080/03602530802602880

  36. Scarcella S, Lamenza P, Virkel G, Solana H (2012) Expression differential of microsomal and cytosolic glutathione-S-transferases in Fasciola hepatica resistant at triclabendazole. Mol Biochem Parasitol 181(1):37–39

    Article  CAS  Google Scholar 

  37. Solana H, Najle R, Lanusse C, Rodríguez J (2000) Mode of action of Benzimidazole Anthelmintics: characterization of tubulin from different helminth parasites. Biocell 24:144–144

    Google Scholar 

  38. Solana H, Virkel G, Rodriguez J, Lanusse C (2003) Triclabendazole oxidation by the liver fluke Fasciola hepatica: identification of the metabolic pathways. Biocell 27(3):389

    Google Scholar 

  39. Delatour P, Benoit E, Caude I, Tambute A (1990) Species differences in the generation of the chiral sulphoxide metabolite of albendazole in sheep and rats. Chirality 2:156–160. https://doi.org/10.1002/chir.530020306

    Article  CAS  PubMed  Google Scholar 

  40. Solana HD, Sallovitz JM, Najle R, Rodriguez J, Lanusse C (2000) Liver sulphoxidative metabolism of albendazole in rat: enantioselectivity and effect of methimazole. Methods Find Exp Clin Pharmacol 22(2):83–88

    Google Scholar 

  41. Lamenza P, Ortiz Oblitas P, Ceriani C, Solana H (2013) Identification and characterization of phase I detoxification enzymes in isolates of Fasciola hepatica susceptible and resistant to triclabendazole. WAAVP 2013, Australia

    Google Scholar 

  42. Fernández V, Ortiz P, Solana MV, Solana H (2014) Differential activities of glutathione S-transferase isoenzymes in strains of Fasciola Hepatica susceptible and resistant to Triclabendazole. Am J Anim Vet Sci 9:177–181

    Article  Google Scholar 

  43. Fernández V, Acevedo M, Solana H (2015) A multienzyme response is involved in the phenomenon of resistance to triclabendazole on Fasciola. J Bacteriol Parasitol 6:4

    Google Scholar 

  44. Scarcella S, Solana MV, Fernandez V, Lamenza P, Ceballos L, Solana H (2013) Increase of glutathione S-transferase, carboxyl esterase and carbonyl reductase in Fasciola hepatica recovered from triclabendazole treated sheep. Mol Biochem Parasitol 191:63–65

    Article  CAS  Google Scholar 

  45. Fernández V, Estein S, Ortiz P, Luchessi P, Solana MV, Solana H (2015) A single amino acid substitution in isozyme GST mu in Triclabendazole resistant Fasciola hepatica (Sligo strain) can substantially influence the manifestation of anthelmintic resistance. Exp Parasitol 159:274–279

    Article  Google Scholar 

  46. Solana M. Fernández V, Solana H (2017) Genetic-metabolic advances in the study of the anthelmintic resistance in Fasciola hepatica. J Bacteriol Parasitol 8(Suppl):4

    Google Scholar 

  47. Scarcella S, Miranda-Miranda E, Cossío-Bayúgar R, Ceballos L, Fernandez V, Solana H (2012) Increase of carboxylesterase activity in Fasciola hepatica recovered from Triclabendazole treated sheep. Mol Biochem Parasitol 181:37–39

    Article  CAS  Google Scholar 

  48. Radio S, Fontenla S, Solana V, Matos Salim AC, Araújo FMG, Ortiz P, Hoban C, Miranda E, Gayo V, Pais FS, Solana H, Oliveira G, Smircich P, Tort JF (2018) Pleiotropic alterations in gene expression in Latin American Fasciola hepatica isolates with different susceptibility to drugs. Parasit Vectors 11(1):56. https://doi.org/10.1186/s13071-017-2553-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Savage J, Meaney M, Brennan GP, Hoey E, Trudgett A, Fairweather I (2013) Effect of the P-glycoprotein inhibitor, R(+)-verapamil on the drug susceptibility of a triclabendazole-resistant isolate of Fasciola hepatica. Vet Parasitol 195:72–86

    Article  CAS  Google Scholar 

  50. Devine C, Brennan G, Lanusse C, Alvarez L, Trudgett A, Hoey E et al (2009) Effect of the metabolic inhibitor, methimazole on the drug susceptibility of a triclabendazole-resistant isolate of Fasciola hepatica. Parasitology 136:183–192

    Article  CAS  Google Scholar 

  51. Devine C, Brennan GP, Lanusse CE, Alvarez LI, Trudgett A, Hoey E et al (2011) Enhancement of triclabendazole action in vivo against a triclabendazole resistant isolate of Fasciola hepatica by co-treatment with ketoconazole. Vet Parasitol 177:305–315

    Article  CAS  Google Scholar 

  52. Chemale G, Perally S, LaCourse E, Prescott M, Jones L, Ward D et al (2010) Comparative proteomic analysis of triclabendazole response in the liver fluke Fasciola hepatica. J Proteome Res 9:4940–4951

    Article  CAS  Google Scholar 

  53. Matoušková P, Vokrál I, Lamka J, Skálová L (2016) The role of xenobiotic metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol 32:481–491

    Article  Google Scholar 

  54. Valentim CLL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP et al (2013) Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 342:1385–1389

    Article  CAS  Google Scholar 

  55. Chevalier FD, Valentim CL, LoVerde PT, Anderson TJ (2014) Efficient linkagemapping using exome capture and extreme QTL in schistosome parasites. BMC Genomics 15:617–629

    Article  Google Scholar 

  56. You H, McManus DP, Hu W, Smout MJ, Brindley PJ, Gobert GN (2013) Transcriptional responses of in vivo praziquantel exposure in schistosomes identifies a functional role for calcium signaling pathway member CamKII. PLoS Pathog 9:e1003254

    Article  CAS  Google Scholar 

  57. Kasinathan RS, Morgan WM, Greenberg RM (2010) Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMRP1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol 173:25–31

    Article  CAS  Google Scholar 

  58. Hines-Kay J, Cupit PM, Sanchez MC, Rosenberg GH, Hanelt B, Cunningham C (2012) Transcriptional analysis of Schistosoma mansoni treated with praziquantel in vitro. Mol Biochem Parasitol 186:87–94

    Article  CAS  Google Scholar 

  59. Hodgkinson J, Cwiklinski K, Beesley N, Paterson S, Williams D (2013) Identification of putative markers of triclabendazole resistance by a genome-wide analysis of genetically recombinant Fasciola hepatica. Parasitology 140:1523–1533

    Google Scholar 

  60. McNulty S, Tort J, Rinaldi G, Fischer K, Rosa B, Smircich P et al (2017) Genomes of Fasciola hepatica from the Americas reveal colonization with Neorickettsia endobacteria related to the agents of potomac horse and human sennetsu fevers. PLoS Genet 13:e1006537

    Article  Google Scholar 

  61. Scarcella S, Miranda-Miranda E, Solana MV, Solana H (2015) Approach to molecular characterization of different strains of Fasciola hepatica using random amplified polymorphic DNA polymerase chain reaction. Parasitol Res 114(4):1341–1345

    Google Scholar 

  62. Brennan GP, Fairweather I, Trudgett A, Hoey E, McCoy M, McConville M, Meaney M, Robinson N, McFerran L, Ryan C, Lanusse C, Mottier L, Alvarez L, Solana H, Virkel G, Brophy PM (2007) Understanding triclabendazole resistance. Exp Mol Pathol 82:104–109. https://doi.org/10.1016/j.yexmp.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  63. Kelley JM, Elliott TP, Beddoe T, Anderson G, Skuce P, Spithill TW (2016) Current threat of triclabendazole resistance in Fasciola hepatica. Trends Parasitol 32:458–469. https://doi.org/10.1016/j.pt.2016.03.002

  64. Hodgkinson J, Cwiklinski K, Beesley NJ, Paterson S, Williams DJL (2013) Identification of putative markers of triclabendazole resistance by a genome-wide analysis of genetically recombinant Fasciola hepatica. Parasitology 140:1523–1533. https://doi.org/10.1017/S0031182013000528

    Article  CAS  PubMed  Google Scholar 

  65. Meaney M, Savage J, Brennan GP, Hoey E, Trudgett A, Fairweather I (2013) Increased susceptibility of a triclabendazole (TCBZ)-resistant isolate of to Fasciola hepatica TCBZ following co-incubation in vitro with the P-glycoprotein inhibitor, R (+)-verapamil. Parasitology 140:1287–1303. https://doi.org/10.1017/S0031182013000759

    Article  CAS  PubMed  Google Scholar 

  66. Wilkinson R., Law CJ, Hoey EM, Fairweather I, Brennan GP, Trudgett A (2012) An amino acid substitution in P-glycoprotein from triclabendazole-Fasciola hepatica resistant and triclabendazole-susceptible populations. Mol Biochem Parasitol 186:69–72. https://doi.org/10.1016/j.molbiopara.2012.08.008

  67. Elliott TP, Spithill TW (2014) The T687G SNP in a P-glycoprotein gene of Fasciola hepatica is not associated with resistance to triclabendazole in two resistant Australian populations. Mol Biochem Parasitol 198:45–47. https://doi.org/10.1016/j.molbiopara.2014.11.006

  68. Solana MV, Domínguez MF, Scarcella S, Radio S, Smircich P, Fernández S, Solana H, Tort JF (2018) Different SNPs in Fasciola hepatica P-glycoprotein from diverse Latin American populations are not associated with Triclabendazole resistance. Mol Biochem Parasitol 224:57–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Solana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solana, H., Scarcella, S., Solana, M.V. (2019). Advances on Metabolism and Disposition of Benzimidazoles Anthelmintic in Fasciola hepatica: Its Contribution to the Phenomenon of Anthelmintic Resistance. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_22

Download citation

Publish with us

Policies and ethics