Skip to main content

Oxidative Stress and Antioxidant Supplementation on Immunity in Hansen’s Disease (Leprosy)

  • Chapter
  • First Online:
  • 462 Accesses

Abstract

Hanseniasis comprises one of the main causes of physical disabilities due to its potential to strike neural lesions, foot deformities, amputations, and mutilations. Since innate response is important in hanseniasis, this work reviewed and updated the role of reactive oxygen/nitrogen species in different clinical forms of hanseniasis, as well as their role in different phagocyte free radicals’ generator systems (NADPH-oxidase, mitochondrial pathways, myeloperoxidase, extracellular traps, iNOS). Since hanseniasis can induce antioxidant depletion, possible benefits of antioxidant nutritional supplementation are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Slim FJ, Keukenkamp R, van Schie CH, Faber WR, Nollet F (2011) Foot Impairments and limitations in walking activities in people affected by leprosy. J Rehabil Med 43(1):32–38

    Article  PubMed  Google Scholar 

  2. Nsagha DS, Bissek AZ, Nsagha SM et al (2011) Social stigma as an epidemiological determinant for leprosy elimination in Cameroon. J Public Health Afr 2(1):e10. https://doi.org/10.4081/jphia.2011.e10

    Article  PubMed  PubMed Central  Google Scholar 

  3. Faria L, Santos LAC (2015) A hanseníase e sua história no Brasil: a história de um “flagelo nacional”. Hist Cienc Saude-Manguinhos 22(4):1491–1495

    Article  Google Scholar 

  4. WHO (2016) Global leprosy update, 2016: accelerating reduction of disease burden. Weekly Epidemiol Rec 92(35):501–520

    Google Scholar 

  5. Worldometers (2018) India population. Available at: http://www.worldometers.info/world-population/india-population/ (06/03/2018)

  6. da Saúde M (2018) Secretaria de Vigilância Sanitária. Caracterização da situação epidemiológica da hanseníase e diferenças por sexo, Brasil, 2012–2016. Bol Epidemiol 49(4):1–10

    Google Scholar 

  7. Santos MJS, Ferrari CKB, de Toledo OR, de Moraes EV, David FL (2012) Leprosy among children and adolescents under 15 years-old in a city of Legal Amazon, Brazil. Indian J Leprosy 84:265–269

    CAS  Google Scholar 

  8. Fonseca GAA, Silva TC, Ferrari GSL, Ferrari CKB (2013) Epidemiological aspects of leprosy in a city of Legal Amazon, Brazil. Int J Sci Nat 4(4):576–578

    Google Scholar 

  9. Wiedau-Pazos M, Goto JJ, Rabizadeh S et al (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271(5248):515–518

    Article  CAS  PubMed  Google Scholar 

  10. Sandoval M, Zhang X-J, Liu X, Mannick EE, Clark DA, Miller MJS (1997) Peroxynitrite-induced apoptosis in T84 and RAW 264 cells: attenuation by L-ascorbic acid. Free Rad Biol Med 22(3):489–495

    Article  CAS  PubMed  Google Scholar 

  11. Ferrari CKB (2000) Free radicals, lipid peroxidation and antioxidants in apoptosis: implications in cancer, cardiovascular and neurological diseases. Biologia 55(6):581–590

    CAS  Google Scholar 

  12. da Silva WJM, Ferrari CKB (2011) Mitochondrial metabolism, free radicals and aging. Rev Bras Geriatr Gerontol 14(3):441–451

    Article  Google Scholar 

  13. Duthie GG (1993) Lipid peroxidation. Eur J Clin Nutr 47(11):759–764

    CAS  PubMed  Google Scholar 

  14. Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet 344(8924):721–724

    Article  CAS  PubMed  Google Scholar 

  15. Ferrari CK, França EL, Honorio-França AC (2009) Nitric oxide, health and disease. J Appl Biomed 7:163–173

    Article  CAS  Google Scholar 

  16. Ferrari CKB (1998) Lipid oxidation in food and biological systems: general mechanisms and nutritional and pathological implications. Rev Nutr 11(1):3–14

    Article  CAS  Google Scholar 

  17. Ferrari CKB (2001) Oxidative stress pathophysiology: searching for an effective antioxidant protection. Int Med J 8(3):175–184

    CAS  Google Scholar 

  18. Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antiox Redox Signal 12(3):323–325

    Article  CAS  Google Scholar 

  19. Rimoli LF, Godoy MF (2011) Efetividade da vitamina E sobre o estresse oxidativo, em hansenianos da forma multibacilar sob tratamento. Hansen Int 36(1):17–21

    Google Scholar 

  20. Schalcher TR, Borges RS, Coleman MD et al (2014) Clinical oxidative stress during leprosy multidrug therapy: impact of dapsone oxidation. PLoS One 9(1):e85712. https://doi.org/10.1371/journal.pone.0085712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Babior BM, Cumutte JT, Kipnes RS (1975) Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J Lab Clin Med 85(2):235–244

    CAS  PubMed  Google Scholar 

  22. Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73:599–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):S715–S725

    Article  Google Scholar 

  24. Kanner J (1994) Oxidative processes in meat and meat products: quality implications. Meat Sci 36(1/2):169–189

    Article  CAS  PubMed  Google Scholar 

  25. Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57(5):S779–S786

    Article  Google Scholar 

  26. Beers RF Jr, Sizër IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  27. Lee JN, Dutta RK, Maharjan Y et al (2018) Catalase inhibition induces pexophagy through ROS accumulation. Biochem Biophys Res Commun 501(3):696–702

    Article  CAS  PubMed  Google Scholar 

  28. Ferrari CKB, Souto PCS, França EL, Honorio-França AC (2011) Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms. Arch Immunol Ther Exp 59(6):441–448

    Article  CAS  Google Scholar 

  29. von Köckritz-Blickwede M, Nizet V (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 87:775–783

    Article  CAS  Google Scholar 

  30. Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M (2009) Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis 89:29–37

    Article  PubMed  Google Scholar 

  31. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from arginine. Nature 333:664–666

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad R, Rasheed Z, Ahsan H (2009) Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon. Immunopharmacol Immunotoxicol 31(3):388–396

    Article  CAS  PubMed  Google Scholar 

  33. Khan MA, Alam K, Zafaryab M, Rizvi MA (2017) Peroxynitrite-modified histone as a pathophysiological biomarker in autoimmune diseases. Biochimie 140:1–9

    Article  CAS  PubMed  Google Scholar 

  34. Visca P, Fabozzi G, Milani M, Bolognesi M, Ascenzi P (2002) Nitric oxide and Mycobacterium leprae pathogenicity. IUBMB Life 54(3):95–99

    Article  CAS  PubMed  Google Scholar 

  35. Boga P, Shety VP, Khan Y (2001) Nitric oxide metabolites in sera of patients across the spectrum of leprosy. Indian J Lepr 82(3):123–129

    Google Scholar 

  36. Adams LB, Scollard DM, Ray NA et al (2002) The study of Mycobacterium leprae infection in interferon-gamma gene-disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J Infect Dis 185(Suppl.1):S1–S8

    Article  CAS  PubMed  Google Scholar 

  37. Adams LB, Job CK, Krahenbuhl JL (2000) Role of inducible nitric oxide synthase in resistance to Mycobacterium leprae in mice. Infect Immun 68(9):5462–5465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vladimirov YA, Proskurnina EV (2009) Free radicals and cell chemiluminescence. Biochemistry 74:1545–1566

    CAS  PubMed  Google Scholar 

  39. Nauseef WM (2014) Myeloperoxidase in human neutrophil host defense. Cell Microbiol 16(8):1146–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nappi AJ, Vass E (2002) Interactions of iron with reactive intermediates of oxygen and nitrogen. Dev Neurosci 24:134–142

    Article  CAS  PubMed  Google Scholar 

  41. Schürmann N, Forrer P, Casse O et al (2017) Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature Microbiol 2:16268

    Article  CAS  Google Scholar 

  42. Klebanoff SJ (2005) (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  CAS  PubMed  Google Scholar 

  43. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brovkovych V, Gao X-P, Ong E et al (2008) Augmented inducible nitric oxide synthase expression and increased NO production reduce sepsis-induced lung injury and mortality in myeloperoxidase-null mice. Am J Physiol Lung Cell Mol Physiol 295:L96–L103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maslov AK (2000) Phagocytic myeloperoxidase in leprosy pathogenesis. Int J Lepr Other Mycobact Dis 68(1):71–73

    CAS  PubMed  Google Scholar 

  46. Maslov AK, Luzhnova AS (2000) Effects of peroxidase therapy on functional state of the liver and phagocytes and blood cell counts in mice with experimental leprosy. Bull Exp Biol Med 130(1):682–686

    Article  CAS  PubMed  Google Scholar 

  47. Escorza MAQ, Salinas JVC (2009) La capacidad antioxidante total. Bases y aplicaciones REB 28:89–101

    Google Scholar 

  48. França-Botelho AC, França EL, Honório-França AC et al (2006) (2006) Phagocytosis of Giardia lamblia trophozoites by human colostral leukocytes. Acta Paediatr 95:438–443

    Article  PubMed  Google Scholar 

  49. Hii CS (2007) Ferrante A (2007) Regulation of the NADPH oxidase activity and anti-microbial function of neutrophils by arachidonic acid. Arch Immunol Ther Exp 55:99–110

    Article  CAS  Google Scholar 

  50. Gozalo AS, Hofmann VJ, Brinster LR et al (2010) Spontaneous Staphylococcus xylosus infection in mice deficient in NADPH oxidase and comparison with other laboratory mouse strains. J Am Assoc Lab Anim Sci 49:480–486

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Holland SM (2010) (2010) Chronic granulomatous disease. Clin Rev Allerg Immunol 38:3–10

    Article  CAS  Google Scholar 

  52. Rojas-Espinosa (2009) Chapter 4: Murine leprosy revisited. In: Tomioka H (ed) Current topics on the profiles of host immunological response to Mycobacterial infections. Kerala, India, Research SignPost, pp 97–140

    Google Scholar 

  53. Chieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  Google Scholar 

  54. Yang Y, Bazhin AV, Werner J, Karakhanova S (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32(3):249–270

    Article  CAS  PubMed  Google Scholar 

  55. Dupnik KM, Bair TB, Maia AO et al (2015) Transcriptional changes that characterize the immune reactions of leprosy. J Infect Dis 211:1658–1676

    Article  CAS  PubMed  Google Scholar 

  56. Guerreiro LT, Robottom-Ferreira AB, Ribeiro-Alves M et al (2013) Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy. PLoS One 8(6):e64748. https://doi.org/10.1371/journal.pone.0064748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramos GB, Salomão H, Francio AS, Fava VM, Werneck RI, Mira MT (2016) Association analysis suggests SOD2 as a newly Identified candidate gene associated with leprosy susceptibility. J Infect Dis 214(3):475–478

    Article  CAS  PubMed  Google Scholar 

  58. Lastória JC, de Abreu MAMM (2014) Leprosy: review of the epidemiological, clinical and etiopathogenetic aspects- part 1. An Bras Dermatol 89(2):205–218

    Article  PubMed  PubMed Central  Google Scholar 

  59. Launois P, Blum L, Dieye A, Milan J, Sarthou JL, Bach MA (1989) Phenolic glycolipid-1 from M. leprae inhibits oxygen free radical production by human mononuclear cells. Res Immunol 140(9):847–855

    Article  CAS  PubMed  Google Scholar 

  60. Vachula M, Holzer TJ, Andersen BR (1989) Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J Immunol 142(5):1696–1701

    CAS  PubMed  Google Scholar 

  61. Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L (2017) Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47:552–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Madigan CA, Cambier CJ, Kelly-Scumpia KM, Sagasti A, Modin RL, Ramakrishnan L (2017) Phenolic glycolipid initiates nerve damage in leprosy. Cell 170:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mattos KA, Sarno EN, Pessolani MCV, Bozza PT (2012) Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis. Mem Inst Oswaldo Cruz 107(suppl.1):156–166

    Article  PubMed  Google Scholar 

  64. WHO (1994) Chemotherapy of leprosy. Technical report series 847. World Health Organization, Geneva

    Google Scholar 

  65. Jyothi P, Riyaz N, Nandakumar G, Binitha MP (2008) A study of oxidative stress in paucibacillary and multibacillary leprosy. Indian J Dermatol Venereol Leprol 74(1):80

    Article  CAS  PubMed  Google Scholar 

  66. Bhadwat VR, Borade VB (2000) Increased lipid peroxidation in lepromatous leprosy. Indian J Dermatol Venereol Leprol 66(3):121–125

    CAS  PubMed  Google Scholar 

  67. Reddy YN, Murthy SV, Krishna DR, Prabhakar MC (2003) Oxidative stress and anti-oxidant status in leprosy patients. Indian J Lepr 75(4):307–316

    CAS  PubMed  Google Scholar 

  68. Vijayaraghavan R, Suribabu CS, Sekar B et al (2005) Protective role of vitamin E on the oxidative stress in Hansen’s disease (leprosy) patients. Eur J Clin Nutr 59(10):1121–1128

    Article  CAS  PubMed  Google Scholar 

  69. Chhabra N, Bhattacharya SN, Singal A, Ahmed RS, Verma P (2015) Profile of oxidative stress in response to treatment for type 1 reaction. Lepr Ver 86:80–88

    Google Scholar 

  70. Schalcher TR, Borges RS, Coleman MD et al (2014) Clinical oxidative stress during leprosy multidrug therapy: impact of dapsone oxidation. PLoS One 9(1):e85712. https://doi.org/10.1371/journal.pone.0085712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Prasad CV, Kodiwadmath MV, Kodiwadmath GB (2007) Erythrocyte superoxide dismutase, catalase activities and hydrogen peroxide induced lipid peroxidation in leprosy. Lepr Rev 78(4):391–397

    PubMed  Google Scholar 

  72. Prasad CV, Kodiwadmath MV, Kodiwadmath GB (2008) Erythrocyte glutathione peroxidase, glutathione reductase activities and blood glutathione content in leprosy. J Infect 56(6):469–473

    Article  PubMed  Google Scholar 

  73. Abdel-Hafez HZ, Mohamed E-EM, Abd-Elghany AA (2010) Tissue and blood superoxide dismutase activity and malondialdehyde level in leprosy. J Eur Acad Dermatol Venereol 24(6):704–708

    Article  CAS  PubMed  Google Scholar 

  74. Patni V, Baliga S, Sawal S (2015) Saliva as a diagnostic tool for measurement of total antioxidant capacity in children with leprosy and Born to leprosy parent. Indian J Lepr 87(1):17–21

    CAS  PubMed  Google Scholar 

  75. Lima ES, Roland IA, Maroja MF, Marcon JL (2007) Vitamin A and lipid peroxidation in patients with different forms of leprosy. Rev Inst Med Trop S. Paulo 49(4):211–214

    Google Scholar 

  76. Osadolor HB, Ihongbe JC (2008) Effect of leprosy on non-enzymatic antioxidants (vitamin C, vitamin E and uric acid) in (Edo State) Nigerian leprosy patients. Cont J Biomed Sci 2:1–5

    Google Scholar 

  77. Asalkar A, Girish S, Naoley R (2011) Protein oxidation and antioxidant vitamins in leprosy. Int J Pharm Sci Res 2(11):2870–2873

    CAS  Google Scholar 

  78. Prabhakar MC, Santhikrupa D, Manasa N, Rao OU (2013) Status of free radicals and antioxidants in leprosy patients. Indian J Lepr 85(1):5–9

    CAS  PubMed  Google Scholar 

  79. Swathi M, Tagore R (2015) Study of oxidative stress in different forms of leprosy. Indian J Dermatol 60(3):321

    Article  PubMed  PubMed Central  Google Scholar 

  80. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  81. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26(9/10):1231–1237

    Article  CAS  PubMed  Google Scholar 

  82. Bowman GL, Shannon J, Frei B, Kaye JA, Quinn JF (2010) Uric acid as a CNS antioxidant. J Alzheim Dis 19(4):1331–1336

    Article  CAS  Google Scholar 

  83. El Ridi R, Tallima H (2017) Physiological functions and pathogenic potential of uric acid: a review. J Adv Res 8:487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Waring WS, Webb DJ, Maxwell SRJ (2001) Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharmacol 38:365–371

    Article  CAS  PubMed  Google Scholar 

  85. Barsoum R, El-Khatib M (2017) Uric acid and life on earth. J Adv Res 8:471–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ (2007) Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 293(2):C584–C596

    Article  CAS  PubMed  Google Scholar 

  87. Sautin YY, Johnson RJ (2008) Uric acid: the oxidant-antioxidant paradox. Nucleos Nucleot Nucleic Acid 27(6):608–619

    Article  CAS  Google Scholar 

  88. Morato-Conceiçao YT, Alves-junior ER, Arruda TA, Lopes JC, Fontes CJF (2016) Serum uric acid levels during leprosy reaction episodes. Peer J 4:4e1799. https://doi.org/10.7717/peerj.1799

    Article  CAS  Google Scholar 

  89. Schalcher TR, Vieira JLF, Salgado CG, Borges RS, Monteiro MC (2013) Antioxidant factors, nitric oxide levels, and cellular damage in leprosy patients. Rev Soc Bras Med Trop 46(5):645–649

    Article  PubMed  Google Scholar 

  90. Raka I, Rastogi MK, Gahalaut P, Kaur J, Mishra N (2018) Enzymatic oxidative stress indicators and oxidative stress índex in patients of leprosy. Nepal J Dermatol Venereol Leprol 16(1):35–40

    Article  Google Scholar 

  91. Elesawy FM, Mikhael NW, Sabry JH (2015) Serum nitric oxide metabolites in leprosy patients as a parameter of prognostic value. J Egypt Women Dermatol Soc 12:44–48

    Article  Google Scholar 

  92. Abd-Elmaged WM, Hassan MH, Mostafa MA, Ahmed NS, Samy ES (2017) Lesional levels of superoxide dismutase and malondialdehyde in paucibacillary and multibacillary leprosy patients. J Egypt Women Dermatol Soc 14:156–160

    Article  Google Scholar 

  93. Pradhan T, Kumari S (2015) Evaluation of oxidative status and zinc level in leprosy patients after zinc supplementation. Int J Biol Med Res 6(2):4984–4987

    Google Scholar 

  94. Oliveira FM, Barbosa Junior F, Jordão Junior AA, Foss NT, Navarro AM, Frade MAC (2015) Oxidative stress and micronutrients in leprosy. Rev Nutr 28(4):349–357

    Article  Google Scholar 

  95. Partogi D, Dalimunthe DA, Hazlianda CP (2018) A study of Selenium in leprosy. Macedonian J Med Sci 6(3):485–487

    Article  Google Scholar 

  96. Vázquez CMP, Mendes Netto RS, Barbosa KBF et al (2014) Micronutrients influencing the immune response in leprosy. Nutr Hosp 29(1):26–36

    Google Scholar 

  97. Ferrari CKB (2005) Minerals. From basic aspects to newly discovered physiological and nutritional actions. Evid Based Integrat Med 2(3):123–131

    Article  Google Scholar 

  98. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268

    Article  CAS  PubMed  Google Scholar 

  99. Ferrari CKB (2014) Nutrição, saúde e longevidade baseadas em evidências científicas. Plêiade 8(15):26–36

    Google Scholar 

  100. Arias ARL, Santos VG (2008) Metalotioneína: processos celulares e moleculares. Cad Saúde Col 16(4):701–716

    Google Scholar 

  101. Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-ĸB signaling. Inflammopharmacology 25(1):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wessels I, Maywald M, Rink L (2017) Zinc as a gatekeeper of immune function. Nutrients 9(12):1286. https://doi.org/10.3390/nu9121286

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Kusano Bucalen Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrari, C.K.B. (2019). Oxidative Stress and Antioxidant Supplementation on Immunity in Hansen’s Disease (Leprosy). In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_18

Download citation

Publish with us

Policies and ethics