Skip to main content

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 380 Accesses

Abstract

Parallel mechanisms have been widely investigated for several decades. Geometry of parallel manipulators, which includes number of kinematic links, types of joints and their sequence within each link, and geometrical conditions among joints, determines their functionality or output motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IFToMM (2003) IFToMM terminology/English 5.1. Mech Mach Theory 38(7–10):819–825

    Google Scholar 

  2. Gwinnett JE (1931) Amusement devices. The United States. US Patent 1789680, 1931

    Google Scholar 

  3. Gough VE (1962) Universal tyre test machine. In: Proceedings of the 9th international automobile technical congress FISITA, London

    Google Scholar 

  4. Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng 180(1):371–386

    Article  Google Scholar 

  5. Hunt KH (1978) Kinematic geometry of mechanisms. Oxford University Press, USA

    MATH  Google Scholar 

  6. Alizade R, Bayram C (2003) Kinematic and dynamic analysis of a new type of spatial 6-DOF parallel structure manipulator. In: Proceedings of the 11th world congress on mechanism and machine science

    Google Scholar 

  7. Mouly N, Merlet JP (1992) Singular configurations and direct kinematics of a new parallel manipulator. In: Proceedings 1992 IEEE international conference on robotics and automation. IEEE, pp 338–343

    Google Scholar 

  8. Alizade RI, Tagiyev NR, Duffy J (1994) A forward and reverse displacement analysis of a 6-DOF in-parallel manipulator. Mech Mach Theory 29(1):115–124

    Article  Google Scholar 

  9. Merlet JP (2002) Still a long way to go on the road for parallel mechanisms. In: ASME, biennial mechanisms and robotics conference 2002

    Google Scholar 

  10. Cravel R (1988) Delta, a fast robot with parallel geometry. Proc. ISIR, 91

    Google Scholar 

  11. Gosselin CM, Hamel JF (1994) The agile eye: a high-performance three-degree-of-freedom camera-orienting device. In: Proceedings 1994 IEEE conference on robotics and automation. IEEE, pp 781–786

    Google Scholar 

  12. Hunt KH (1983) Structural kinematics of in-parallel-actuated robot-arms. J Mech Trans Autom Des 105(4):705–712

    Article  Google Scholar 

  13. Pierrot F, Company O, Krut S et al (2006) Four-Dof PKM with articulated travelling-plate. Pks06 Parallel Kinemat Semin

    Google Scholar 

  14. Hervé JM (1978) Analyse structurelle des mécanismes par groupe des déplacements. Mech Mach Theory 13(4):437–450

    Article  Google Scholar 

  15. Hervé JM (1999) The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 34(5):719–730

    Article  MathSciNet  MATH  Google Scholar 

  16. Karouia M, Hervé JM. A three-dof tripod for generating spherical rotation. Adv Rob Kinemat, 395–402 (Springer Netherlands)

    Google Scholar 

  17. Li Q, Huang Z, Hervé JM (2004) Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements. IEEE Trans Rob Autom 20(2):173–180

    Article  Google Scholar 

  18. Li Q, Hervé JM (2010) 1T2R parallel mechanisms without parasitic motion. IEEE Trans Rob 26(3):401–410

    Article  Google Scholar 

  19. Li Q, Hervé JM (2014) Type synthesis of 3-DOF RPR-equivalent parallel mechanisms. IEEE Trans Rob 30(6):1333–1343

    Article  Google Scholar 

  20. Li Q, Xu L, Chen Q et al (2017) New family of RPR-equivalent parallel mechanisms: design and application. Chin J Mech Eng 2:001

    Google Scholar 

  21. Ye W, Li QC, Chai XX (2018) New family of 3-DOF UP-equivalent parallel mechanisms with high rotational capability. Chin J Mech Eng 31(1):12

    Article  Google Scholar 

  22. Lee CC, Herve JM (2010) Generators of the product of two Schoenflies motion groups. Eur J Mech-A/Solids 29(1):97–108

    Article  MathSciNet  Google Scholar 

  23. Hervé JM (2006) Uncoupled actuation of pan-tilt wrists. IEEE Trans Rob 22(1):56–64

    Article  Google Scholar 

  24. Fan C, Liu H, Zhang Y (2013) Type synthesis of 2T2R, 1T2R and 2R parallel mechanisms. Mech Mach Theory 61:184–190

    Article  Google Scholar 

  25. Ye W, He L, Li Q (2018) A new family of symmetrical 2T2R parallel mechanisms without parasitic motion. J Mech Rob 10(1):011006

    Article  Google Scholar 

  26. Angeles J (2004) The qualitative synthesis of parallel manipulators. J Mech Des 126(4):617–624

    Article  Google Scholar 

  27. Lee CC, Hervé JM (2009) Type synthesis of primitive Schoenflies-motion generators. Mech Mach Theory 44(10):1980–1997

    Article  MATH  Google Scholar 

  28. Lee CC, Hervé JM (2009) On some applications of primitive Schönflies-motion generators. Mech Mach Theory 44(12):2153–2163

    Article  MATH  Google Scholar 

  29. Meng J, Liu G, Li Z (2007) A geometric theory for analysis and synthesis of sub-6 DoF parallel manipulators. IEEE Trans Rob 23(4):625–649

    Article  Google Scholar 

  30. Gao F, Li W, Zhao X et al (2002) New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs. Mech Mach Theory 37(11):1395–1411

    Article  MATH  Google Scholar 

  31. Yang J, Gao F, Ge QJ et al (2011) Type synthesis of parallel mechanisms having the first class G F sets and one-dimensional rotation. Robotica 29(6):895–902

    Article  Google Scholar 

  32. Yang J, Gao F, Zhu K et al (2012) Type synthesis of parallel mechanisms with the first class GF sets and two-dimensional rotations. Int J Adv Rob Syst 9(3):61

    Article  Google Scholar 

  33. Gao F, Yang J, Ge QJ (2011) Type synthesis of parallel mechanisms having the second class GF sets and two dimensional rotations. J Mech Rob 3(1):011003

    Article  Google Scholar 

  34. He J, Gao F, Meng X et al (2015) Type synthesis for 4-DOF parallel press mechanism using G F set theory. Chin J Mech Eng 28(4):851–859

    Article  Google Scholar 

  35. Meng XD, Gao F (2015) The classification of GF sets for robotic mechanisms. In: Proceedings of the 14th IFToMM world congress, pp 25–30

    Google Scholar 

  36. Gogu G (2009) Structural synthesis of maximally regular T3R2-type parallel robots via theory of linear transformations and evolutionary morphology. Robotica 27(1):79–101

    Article  MathSciNet  Google Scholar 

  37. Gogu G (2007) Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear transformations and evolutionary morphology. Eur J Mech-A/Solids 26(2):242–269

    Article  MathSciNet  MATH  Google Scholar 

  38. Gogu G (2004) Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations. Eur J Mech-A/Solids 23(6):1021–1039

    Article  MATH  Google Scholar 

  39. Gogu G (2005) Fully-isotropic over-constrained parallel wrists with two degrees of freedom. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005. IEEE, pp 4014–4019

    Google Scholar 

  40. Gogu G (2007) Fully-isotropic three-degree-of-freedom parallel wrists. In: 2007 IEEE international conference on robotics and automation. IEEE, pp 895–900

    Google Scholar 

  41. Gogu G (2005) Singularity-free fully-isotropic parallel manipulators with Schonflies motions. In: Proceedings of 12th international conference on advanced robotics, ICAR’05. IEEE, pp 194–201

    Google Scholar 

  42. Gogu G (2004) Fully-isotropic over-constrained planar parallel manipulators. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS 2004), vol 4, pp 3519–3524

    Google Scholar 

  43. Gogu G (2005) Fully-isotropic T1R2-type parallel robots with three degrees of freedom. In: ASME 2005 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 757–764

    Google Scholar 

  44. Gogu G (2005) Fully-isotropic parallel robots with four degrees of freedom T2R2-type. In: 2005 IEEE/RSJ international conference on intelligent robots and systems (IROS 2005). IEEE, pp 960–965

    Google Scholar 

  45. Gogu G (2006) Fully-isotropic T3R2-type parallel robotic manipulators. In: 2006 IEEE conference on robotics, automation and mechatronics. IEEE, pp 1–6

    Google Scholar 

  46. Gogu G (2012) Kinematic criteria for structural synthesis of maximally regular parallel robots with planar motion of the moving platform. In: Interdisciplinary applications of kinematics. Springer, Dordrecht, pp 63–81

    Chapter  Google Scholar 

  47. Yang TL, Liu AX, Jin Q et al (2009) Position and orientation characteristic equation for topological design of robot mechanisms. J Mech Des 131(2):021001

    Article  Google Scholar 

  48. Jin Q, Yang TL (2004) Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators. J Mech Des 126(4):625–639

    Article  Google Scholar 

  49. Jin Q, Yang TL (2004) Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators. J Mech Des 126(2):301–306

    Article  Google Scholar 

  50. Yang T, Liu A, Shen H et al (2016) Topological structure synthesis of 3T1R parallel mechanism based on POC equations. In: International conference on intelligent robotics and applications. Springer, Cham, pp 147–161

    Chapter  Google Scholar 

  51. Yang TL (2004) Topology structure design of robot mechanisms. Machine Industry Press 3:208–220

    Google Scholar 

  52. Yang T, Liu A, Shen H et al (2017) Topol Des Rob Mech. Springer

    Google Scholar 

  53. Dai JS (2016) Geometrical foundations and screw algebra for mechanisms and robotics. Higher Education Press, Beijing, 2014, ISBN: 9787040334838 (trans: Dai JS Screw algebra and kinematic approaches for mechanisms and robotics. Springer, London, 2016)

    Google Scholar 

  54. Sun T, Yang S, Huang T et al (2017) A way of relating instantaneous and finite screws based on the screw triangle product. Mech Mach Theory 108:75–82

    Article  Google Scholar 

  55. Zarrouk D, Shoham M (2011) A note on the screw triangle. J Mech Rob 3(1):014502

    Article  Google Scholar 

  56. Yang S, Sun T, Huang T et al (2016) A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mech Mach Theory 104:405–419

    Article  Google Scholar 

  57. Yang S, Sun T, Huang T (2017) Type synthesis of parallel mechanisms having 3T1R motion with variable rotational axis. Mech Mach Theory 109:220–230

    Article  Google Scholar 

  58. Sun T, Yang SF, Huang T et al (2018) A finite and instantaneous screw based approach for topology design and kinematic analysis of 5-axis parallel kinematic machines. Chin J Mech Eng 31(2):44

    Article  Google Scholar 

  59. Dai JS (2014) Geometrical foundations and screw algebra for mechanisms and robotics. Higher Education Press, Beijing

    Google Scholar 

  60. Ball RS (1900) A treatise on the theory of screws. Cambridge University Press

    Google Scholar 

  61. Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Rob Res 21(2):131–145

    Article  Google Scholar 

  62. Huang Z, Qinchuan L (2002) Type synthesis principle of minor-mobility parallel manipulators. Sci China Ser E: Technol Sci 45(3):241–248

    Article  Google Scholar 

  63. Huang Z, Li Q (2003) Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. Int J Rob Res 22(1):59–79

    Google Scholar 

  64. Li Q, Huang Z (2003) Type synthesis of 4-DOF parallel manipulators. In: 2003 IEEE international conference on robotics and automation, ICRA’03. IEEE, vol 1, pp 755–760

    Google Scholar 

  65. Zeng DX, Huang Z (2011) Type synthesis of the rotational decoupled parallel mechanism based on screw theory. Sci China Technol Sci 54(4):998–1004

    Article  MATH  Google Scholar 

  66. Fang Y, Tsai LW (2002) Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures. Int J Rob Res 21(9):799–810

    Article  Google Scholar 

  67. Fang Y, Tsai LW (2004) Structure synthesis of a class of 3-DOF rotational parallel manipulators. IEEE Trans Robot Autom 20(1):117–121

    Article  Google Scholar 

  68. Fang Y, Tsai LW (2004) Analytical identification of limb structures for translational parallel manipulators. J Field Rob 21(5):209–218

    MATH  Google Scholar 

  69. Guo S, Fang Y, Qu H (2012) Type synthesis of 4-DOF nonoverconstrained parallel mechanisms based on screw theory. Robotica 30(1):31–37

    Article  Google Scholar 

  70. Kong X, Gosselin CM (2004) Type synthesis of 3-DOF spherical parallel manipulators based on screw theory. J Mech Des 126(1):101–108

    Article  Google Scholar 

  71. Kong X, Gosselin CM (2004) Type synthesis of 3-DOF translational parallel manipulators based on screw theory. J Mech Des 126(1):83–92

    Article  Google Scholar 

  72. Kong X, Gosselin CM (2004) Type synthesis of 3T1R 4-DOF parallel manipulators based on screw theory. IEEE Trans Robot Autom 20(2):181–190

    Article  Google Scholar 

  73. Kong X, Gosselin CM (2004) Type synthesis of three-degree-of-freedom spherical parallel manipulators. Int J Rob Res 23(3):237–245

    Article  Google Scholar 

  74. Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer

    Google Scholar 

  75. Kong X, Gosselin CM (2005) Type synthesis of 3-DOF PPR-equivalent parallel manipulators based on screw theory and the concept of virtual chain. J Mech Des 127(6):1113–1121

    Article  Google Scholar 

  76. Kong X, Gosselin CM (2005) Type synthesis of 5-DOF parallel manipulators based on screw theory. J Field Rob 22(10):535–547

    MATH  Google Scholar 

  77. Kong X, Gosselin CM (2006). Type synthesis of three-DOF UP-equivalent parallel manipulators using a virtual-chain approach. Adv Rob Kinemat, 123–132 (Springer, Dordrecht)

    Google Scholar 

  78. Kong X, Gosselin CM (2006) Type synthesis of 4-DOF SP-equivalent parallel manipulators: a virtual chain approach. Mech Mach Theory 41(11):1306–1319

    Article  MATH  Google Scholar 

  79. Ye W, Fang Y, Guo S et al (2014) Type synthesis of 2R2T parallel mechanisms based on motion equivalent chain method. Proc Inst Mech Eng, Part C: J Mech Eng Sci 228(17):3209–3217

    Article  Google Scholar 

  80. Xie F, Liu XJ, Li T (2013) Type synthesis and typical application of 1T2R-type parallel robotic mechanisms. Math Prob Eng

    Google Scholar 

  81. Xie F, Liu XJ, You Z et al (2014) Type synthesis of 2T1R-type parallel kinematic mechanisms and the application in manufacturing. Rob Comput Integr Manuf 30(1):1–10

    Article  Google Scholar 

  82. Xie F, Liu XJ, Wang C (2015) Design of a novel 3-DoF parallel kinematic mechanism: type synthesis and kinematic optimization. Robotica 33(3):622–637

    Article  Google Scholar 

  83. Xie F, Li T, Liu X (2013) Type synthesis of 4-DOF parallel kinematic mechanisms based on Grassmann line geometry and atlas method. Chin J Mech Eng 26(6):1073–1081

    Article  Google Scholar 

  84. Xie F, Liu XJ (2015) Design and development of a high-speed and high-rotation robot with four identical arms and a single platform. J Mech Rob 7(4):041015

    Article  Google Scholar 

  85. Kuo CH, Dai JS (2013) Task-oriented structure synthesis of a class of parallel manipulators using motion constraint generator. Mech Mach Theory 70:394–406

    Article  Google Scholar 

  86. Siciliano B (1999) The Tricept robot: inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm. Robotica 17(4):437–445

    Article  Google Scholar 

  87. Zhang D, Gosselin CM (2001) Kinetostatic modeling of N-DOF parallel mechanisms with a passive constraining leg and prismatic actuators. ASME J Mech Des 123(3):375–381

    Article  Google Scholar 

  88. Zhang D, Gosselin CM (2002) Kinetostatic modeling of parallel mechanisms with a passive constraining leg and revolute actuators. Mech Mach Theory 37(6):599–617

    Article  MATH  Google Scholar 

  89. Lu Y, Hu B (2007) Analyzing kinematics and solving active/constrained forces of a 3SPU + UPR parallel manipulator. Mech Mach Theory 42(10):1298–1313

    Article  MATH  Google Scholar 

  90. Tsai LW (1999) The enumeration of a class of three-DOF parallel manipulators. In: Proceedings of the 10th world congress on the theory of machine and mechanisms, Oulu, Finland, pp 1121–1126

    Google Scholar 

  91. Lu Y, Leinonen T (2005) Type synthesis of unified planar–spatial mechanisms by systematic linkage and topology matrix-graph technique. Mech Mach Theory 40(10):1145–1163

    Article  MathSciNet  MATH  Google Scholar 

  92. Lu Y, Ding L, Yu J (2010) Autoderivation of topological graphs for type synthesis of planar 3DOF parallel mechanisms. J Mech Rob 2(1):011002

    Article  Google Scholar 

  93. Lu Y, Wang Y, Ding L (2014) Type synthesis of four-degree-of-freedom parallel mechanisms using valid arrays and topological graphs with digits. Proc Inst Mech Eng, Part C: J Mech Eng Sci 228(16):3039–3053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinchuan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Q., Hervé, J.M., Ye, W. (2020). Introduction. In: Geometric Method for Type Synthesis of Parallel Manipulators. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-8755-5_1

Download citation

Publish with us

Policies and ethics