Skip to main content

Kinetics of CPPs Cellular Uptake

  • Chapter
  • First Online:
  • 900 Accesses

Abstract

No doubt that careful characterization of kinetics of chemical reactions i.e. the study of rates of chemical processes has for a long time yielded valuable information about the mechanisms of these reactions. Such information is certainly more obvious for the well-defined chemical reactions where the number of reaction components as well and the reaction conditions are known.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al Soraj, M., He, L., Peynshaert, K., Cousaert, J., Vercauteren, D., Braeckmans, K., et al. (2012). siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat. Journal of Controlled Release, 161, 132–141.

    Article  CAS  Google Scholar 

  • Alves, I. D., Bechara, C., Walrant, A., Zaltsman, Y., Jiao, C. Y., & Sagan, S. (2011). Relationships between membrane binding, affinity and cell internalization efficacy of a cell-penetrating peptide: Penetratin as a case study. PLoS ONE, 6, e24096.

    Article  CAS  Google Scholar 

  • Barany-Wallje, E., Gaur, J., Lundberg, P., Langel, Ü., & Gräslund, A. (2007). Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo. FEBS Letters, 581, 2389–2393.

    Article  CAS  Google Scholar 

  • Cheung, J. C., Kim Chiaw, P., Deber, C. M., & Bear, C. E. (2009). A novel method for monitoring the cytosolic delivery of peptide cargo. Journal of Controlled Release, 137, 2–7.

    Article  CAS  Google Scholar 

  • Deshayes, S., Morris, M., Heitz, F., & Divita, G. (2008). Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Advanced Drug Delivery Reviews, 60, 537–547.

    Article  CAS  Google Scholar 

  • Drin, G., Cottin, S., Blanc, E., Rees, A. R., & Temsamani, J. (2003). Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 278, 31192–31201.

    Article  CAS  Google Scholar 

  • Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M., & Temsamani, J. (2001a). Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. European Journal of Biochemistry, 268, 1304–1314.

    Article  CAS  Google Scholar 

  • Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M., & Temsamani, J. (2001b). Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. European Journal of Biochemistry/FEBS, 268, 1304–1314.

    Article  CAS  Google Scholar 

  • Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R., & Brock, R. (2007). A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic, 8, 848–866.

    Article  CAS  Google Scholar 

  • Eiriksdottir, E., Mäger, I., Lehto, T., El Andaloussi, S., & Langel, Ü. (2010). Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjugate Chemistry, 21, 1662–1672.

    Article  CAS  Google Scholar 

  • Fang, S. L., Fan, T. C., Fu, H. W., Chen, C. J., Hwang, C. S., Hung, T. J., et al. (2013). A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS ONE, 8, e57318.

    Article  CAS  Google Scholar 

  • Freire, J. M., Veiga, A. S., Rego De Figueiredo, I., De La Torre, B. G., Santos, N. C., Andreu, D., et al. (2014). Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: Design and mechanism of action. FEBS Journal, 281, 191–215.

    Article  CAS  Google Scholar 

  • FUTAKI, S. (2005). Oligoarginine vectors for intracellular delivery: Design and cellular-uptake mechanisms. Biopolymers.

    Google Scholar 

  • Gullotti, E., & Yeo, Y. (2012). Beyond the imaging: Limitations of cellular uptake study in the evaluation of nanoparticles. Journal of Controlled Release, 164, 170–176.

    Article  CAS  Google Scholar 

  • Hällbrink, M., Floren, A., Elmquist, A., Pooga, M., Bartfai, T., & Langel, Ü. (2001). Cargo delivery kinetics of cell-penetrating peptides. Biochimica et Biophysica Acta, 1515, 101–109.

    Article  Google Scholar 

  • Henriques, S. T., & Castanho, M. A. (2008). Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity. Journal of Peptide Science, 14, 482–487.

    Article  CAS  Google Scholar 

  • Hirose, H., Takeuchi, T., Osakada, H., Pujals, S., Katayama, S., Nakase, I., et al. (2012). Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Molecular Therapy, 20, 984–993.

    Article  CAS  Google Scholar 

  • Islam, M. Z., Sharmin, S., Levadnyy, V., Alam Shibly, S. U., & Yamazaki, M. (2017). Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles. Langmuir, 33, 2433–2443.

    Article  CAS  Google Scholar 

  • Jiao, C. Y., Delaroche, D., Burlina, F., Alves, I. D., Chassaing, G., & Sagan, S. (2009). Translocation and endocytosis for cell-penetrating peptide internalization. Journal of Biological Chemistry, 284, 33957–33965.

    Article  CAS  Google Scholar 

  • Jones, L. R., Goun, E. A., Shinde, R., Rothbard, J. B., Contag, C. H., & Wender, P. A. (2006). Releasable luciferin-transporter conjugates: Tools for the real-time analysis of cellular uptake and release. Journal of the American Chemical Society, 128, 6526–6527.

    Article  CAS  Google Scholar 

  • Jones, A. T., & Sayers, E. J. (2012). Cell entry of cell penetrating peptides: Tales of tails wagging dogs. Journal of Controlled Release, 161, 582–591.

    Article  CAS  Google Scholar 

  • Lee, H. L., Dubikovskaya, E. A., Hwang, H., Semyonov, A. N., Wang, H., Jones, L. R., et al. (2008). Single-molecule motions of oligoarginine transporter conjugates on the plasma membrane of Chinese hamster ovary cells. Journal of the American Chemical Society, 130, 9364–9370.

    Article  CAS  Google Scholar 

  • Lin, J., & Alexander-Katz, A. (2013). Cell membranes open “doors” for cationic nanoparticles/biomolecules: Insights into uptake kinetics. ACS Nano, 7, 10799–10808.

    Article  CAS  Google Scholar 

  • Lindgren, M. E., Hällbrink, M. M., Elmquist, A. M., & Langel, Ü. (2004). Passage of cell-penetrating peptides across a human epithelial cell layer in vitro. Biochemical Journal, 377, 69–76.

    Article  CAS  Google Scholar 

  • Luque-Ortega, J. R., Van’T Hof, W., Veerman, E. C., Saugar, J. M., & Rivas, L. (2008). Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. The FASEB Journal, 22, 1817–1828.

    Article  CAS  Google Scholar 

  • Mäger, I., Eiriksdottir, E., Langel, K., El Andaloussi, S., & Langel, Ü. (2010). Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochimica et Biophysica Acta, 1798, 338–343.

    Article  Google Scholar 

  • Mäger, I., Langel, K., Lehto, T., Eiriksdottir, E., & Langel, Ü. (2012). The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica et Biophysica Acta, 1818, 502–511.

    Article  Google Scholar 

  • Moghal, M. M. R., Islam, M. Z., Sharmin, S., Levadnyy, V., Moniruzzaman, M., & Yamazaki, M. (2018). Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Chemistry and Physics of Lipids, 212, 120–129.

    Article  CAS  Google Scholar 

  • Mohammed, Y., Teixido, M., Namjoshi, S., Giralt, E. & Benson, H. (2016). Cyclic dipeptide shuttles as a novel skin penetration enhancement approach: Preliminary evaluation with diclofenac. PLoS One, 11.

    Google Scholar 

  • Nelson, A. R., Borland, L., Allbritton, N. L., & Sims, C. E. (2007). Myristoyl-based transport of peptides into living cells. Biochemistry, 46, 14771–14781.

    Article  CAS  Google Scholar 

  • Oskolkov, N., Arukuusk, P., Copolovici, D. M., Lindberg, S., Margus, H., Padari, K., et al. (2011). NickFects, Phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. International Journal of Peptide Research and Therapeutics, 17, 147–157.

    Article  CAS  Google Scholar 

  • Padari, K., Koppel, K., Lorents, A., Hällbrink, M., Mano, M., Pedroso De Lima, M. C., & Pooga M. (2010). S4(13)-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells. Bioconjugate Chemistry, 21, 774–783.

    Article  CAS  Google Scholar 

  • Palm, C., Jayamanne, M., Kjellander, M., & Hallbrink, M. (2007). Peptide degradation is a critical determinant for cell-penetrating peptide uptake. Biochimica et Biophysica Acta, 1768, 1769–1776.

    Article  CAS  Google Scholar 

  • Pazos, I. M., Ahmed, I. A., Berrios, M. I., & Gai, F. (2015). Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics. Analytical Biochemistry, 483, 21–26.

    Article  CAS  Google Scholar 

  • Polyakov, V., Sharma, V., Dahlheimer, J. L., Pica, C. M., Luker, G. D., & Piwnica-Worms, D. (2000). Novel Tat-peptide chelates for direct transduction of technetium-99 m and rhenium into human cells for imaging and radiotherapy. Bioconjugate Chemistry, 11, 762–771.

    Article  CAS  Google Scholar 

  • Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998a). Cell penetration by transportan. FASEB J., 12, 67–77.

    Article  CAS  Google Scholar 

  • Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998b). Cell penetration by transportan. FASEB Journal, 12, 67–77.

    Article  CAS  Google Scholar 

  • Regberg, J., Eriksson, J. N., & Langel, U. (2013). Cell-penetrating peptides: From cell cultures to in vivo applications. Frontiers in Bioscience, 5, 509–516.

    Article  Google Scholar 

  • Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., et al. (2003a). Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 278, 585–590.

    Article  CAS  Google Scholar 

  • Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., et al. (2003b). Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. The Journal of Biological Chemistry, 278, 585–590.

    Article  CAS  Google Scholar 

  • Rodrigues, M., Andreu, D., & Santos, N. C. (2015). Uptake and cellular distribution of nucleolar targeting peptides (NrTPs) in different cell types. Biopolymers, 104, 101–109.

    Article  CAS  Google Scholar 

  • Säälik, P., Elmquist, A., Hansen, M., Padari, K., Saar, K., Viht, K., et al. (2004). Protein cargo delivery properties of cell-penetrating peptides. A Comparative Study. Bioconjugate Chemistry, 15, 1246–1253.

    Article  Google Scholar 

  • Salerno, J. C., Ngwa, V. M., Nowak, S. J., Chrestensen, C. A., Healey, A. N., & McMurry, J. L. (2016). Novel cell-penetrating peptide-adaptors effect intracellular delivery and endosomal escape of protein cargos. Journal of Cell Science, 129, 893–897.

    Article  CAS  Google Scholar 

  • Sasaki, Y., Minamizawa, M., Ambo, A., Sugawara, S., Ogawa, Y., & Nitta, K. (2008). Cell-penetrating peptide-conjugated XIAP-inhibitory cyclic hexapeptides enter into Jurkat cells and inhibit cell proliferation. FEBS Journal, 275, 6011–6021.

    Article  CAS  Google Scholar 

  • Schach, D. K., Rock, W., Franz, J., Bonn, M., Parekh, S. H., & Weidner, T. (2015). Reversible Activation of a Cell-Penetrating Peptide in a Membrane Environment. Journal of the American Chemical Society, 137, 12199–12202.

    Article  CAS  Google Scholar 

  • Schroder, T., Niemeier, N., Afonin, S., Ulrich, A. S., Krug, H. F., & Brase, S. (2008). Peptoidic amino- and guanidinium-carrier systems: Targeted drug delivery into the cell cytosol or the nucleus. Journal of Medicinal Chemistry, 51, 376–379.

    Article  Google Scholar 

  • Sun, D., Forsman, J., & Woodward, C. E. (2015). Atomistic molecular simulations suggest a kinetic model for membrane translocation by arginine-rich peptides. The Journal of Physical Chemistry B, 119, 14413–14420.

    Article  CAS  Google Scholar 

  • Suzuki, T., Futaki, S., Niwa, M., Tanaka, S., Ueda, K., & Sugiura, Y. (2002a). Possible existence of common internalization mechanisms among arginine-rich peptides. The Journal of Biological Chemistry, 277, 2437–2443.

    Article  CAS  Google Scholar 

  • Suzuki, T., Futaki, S., Niwa, M., Tanaka, S., Ueda, K., & Sugiura, Y. (2002b). Possible Existence of Common Internalization Mechanisms among Arginine-rich Peptides. Journal of Biological Chemistry, 277, 2437–2443.

    Article  CAS  Google Scholar 

  • Tisseyre, C., Ahmadi, M., Bacot, S., Dardevet, L., Perret, P., Ronjat, M., et al. (2014). Quantitative evaluation of the cell penetrating properties of an iodinated Tyr-L-maurocalcine analog. Biochimica et Biophysica Acta, 1843, 2356–2364.

    Article  CAS  Google Scholar 

  • Walrant, A., Vogel, A., Correia, I., Lequin, O., Olausson, B. E., Desbat, B., et al. (2012). Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Biochimica et Biophysica Acta, 1818, 1755–1763.

    Article  CAS  Google Scholar 

  • Wang, Q., Hong, G., Johnson, G. R., Pachter, R., & Cheung, M. S. (2010). Biophysical properties of membrane-active peptides based on micelle modeling: A case study of cell-penetrating and antimicrobial peptides. The Journal of Physical Chemistry B, 114, 13726–13735.

    Article  CAS  Google Scholar 

  • Watkins, C. L., Schmaljohann, D., Futaki, S., & Jones, A. T. (2009). Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide. Biochemical Journal, 420, 179–189.

    Article  CAS  Google Scholar 

  • Yandek, L. E., Pokorny, A., & Almeida, P. F. (2008). Small changes in the primary structure of transportan 10 alter the thermodynamics and kinetics of its interaction with phospholipid vesicles. Biochemistry, 47, 3051–3060.

    Article  CAS  Google Scholar 

  • Yandek, L. E., Pokorny, A., Floren, A., Knoelke, K., Langel, Ü., & Almeida, P. F. (2007). Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophysical Journal, 92, 2434–2444.

    Article  CAS  Google Scholar 

  • Ziegler, A., Nervi, P., Durrenberger, M., & Seelig, J. (2005). The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: Optical, biophysical, and metabolic evidence. Biochemistry, 44, 138–148.

    Article  CAS  Google Scholar 

  • Zorko, M., & Langel, Ü. (2005). Cell-penetrating peptides: Mechanism and kinetics of cargo delivery. Advanced Drug Delivery Reviews, 57, 529–545.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Langel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langel, Ü. (2019). Kinetics of CPPs Cellular Uptake. In: CPP, Cell-Penetrating Peptides. Springer, Singapore. https://doi.org/10.1007/978-981-13-8747-0_8

Download citation

Publish with us

Policies and ethics