Skip to main content

Methods for Structural Studies of CPPs

  • Chapter
  • First Online:
Book cover CPP, Cell-Penetrating Peptides
  • 936 Accesses

Abstract

Additional biophysical studies of CPPs have a very high impact on the studies of their molecular mechanisms, i.e. in the understanding of how the CPPs internalize, alone or with a cargo , how they find their interaction partners or how they work per se.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Ghani, H., Henriques, S. T., Huang, Y. H., Swedberg, J. E., Schroeder, C. I., & Craik, D. J. (2017). Structural and functional characterization of chimeric cyclotides from the Mobius and trypsin inhibitor subfamilies. Biopolymers, 108, 22927.

    Google Scholar 

  • Ablan, F. D. O., Spaller, B. L., Abdo, K. I., & Almeida, P. F. (2016). Charge distribution fine-tunes the translocation of alpha-helical amphipathic peptides across membranes. Biophysical Journal, 111, 1738–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin, S., Frey, A., Bayerl, S., Fischer, D., Wadhwani, P., Weinkauf, S., et al. (2006). The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes. ChemPhysChem, 7, 2134–2142.

    Article  CAS  PubMed  Google Scholar 

  • Afonin, S., Kubyshkin, V., Mykhailiuk, P. K., Komarov, I. V., & Ulrich, A. S. (2017). Conformational plasticity of the cell-penetrating peptide sap as revealed by solid-state (19)F-NMR and circular dichroism spectroscopies. The Journal of Physical Chemistry B, 121, 6479–6491.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Nasrollahi, S., Taghibiglou, C., Fouladdel, S., Dinarvand, R., Moosavi Movahedi, A. A., Azizi, E., et al. (2013). Physicochemical and biological characterization of pep-1/elastin complexes. Chemical Biology & Drug Design, 82, 189–195.

    Article  CAS  Google Scholar 

  • Albrizio, S., Giusti, L., D’Errico, G., Esposito, C., Porchia, F., Caliendo, G., et al. (2007). Driving forces in the delivery of penetratin conjugated G protein fragment. Journal of Medicinal Chemistry, 50, 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  • Alhakamy, N. A., Kaviratna, A., Berkland, C. J., & Dhar, P. (2013). Dynamic measurements of membrane insertion potential of synthetic cell penetrating peptides. Langmuir, 29, 15336–15349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almarwani, B., Phambu, E. N., Alexander, C., Nguyen, H. A. T., Phambu, N., & Sunda-Meya, A. (2018). Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860, 1394–1402.

    Article  CAS  Google Scholar 

  • Almeida, C., Lamaziere, A., Filleau, A., Corvis, Y., Espeau, P., & Ayala-Sanmartin, J. (2016). Membrane re-arrangements and rippled phase stabilisation by the cell penetrating peptide penetratin. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858, 2584–2591.

    Article  CAS  Google Scholar 

  • Alves, I. D., Carre, M., Montero, M. P., Castano, S., Lecomte, S., Marquant, R., et al. (2014). A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838, 2087–2098.

    Article  CAS  Google Scholar 

  • Andersson, A., Almqvist, J., Hagn, F., & Maler, L. (2004). Diffusion and dynamics of penetratin in different membrane mimicking media. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1661, 18–25.

    Article  CAS  Google Scholar 

  • Andersson, A., Danielsson, J., Graslund, A., & Maler, L. (2007). Kinetic models for peptide-induced leakage from vesicles and cells. European Biophysics Journal, 36, 621–635.

    Article  CAS  PubMed  Google Scholar 

  • Anko, M., Majhenc, J., Kogej, K., Sillard, R., Langel, Ü., Anderluh, G., et al. (2012). Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818, 915–924.

    Article  CAS  Google Scholar 

  • Antunes, E., Azoia, N. G., Matama, T., Gomes, A. C., & Cavaco-Paulo, A. (2013). The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 106, 240–247.

    Article  CAS  PubMed  Google Scholar 

  • Arsov, Z., Nemec, M., Schara, M., Johansson, H., Langel, Ü., & Zorko, M. (2008). Cholesterol prevents interaction of the cell-penetrating peptide transportan with model lipid membranes. Journal of Peptide Science, 14, 1303–1308.

    Article  CAS  PubMed  Google Scholar 

  • Arukuusk, P., Pärnaste, L., Hällbrink, M., & Langel, Ü. (2015). PepFects and NickFects for the intracellular delivery of nucleic acids. Methods in Molecular Biology, 1324, 303–315.

    Article  PubMed  Google Scholar 

  • Arukuusk, P., Pärnaste, L., Margus, H., Eriksson, N. K., Vasconcelos, L., Padari, K., et al. (2013a). Differential endosomal pathways for radically modified peptide vectors. Bioconjugate Chemistry, 24, 1721–1732.

    Article  CAS  PubMed  Google Scholar 

  • Arukuusk, P., Pärnaste, L., Oskolkov, N., Copolovici, D. M., Margus, H., Padari, K., et al. (2013b). New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 1365–1373.

    Article  CAS  Google Scholar 

  • Balayssac, S., Burlina, F., Convert, O., Bolbach, G., Chassaing, G., & Lequin, O. (2006). Comparison of penetratin and other homeodomain-derived cell-penetrating peptides: Interaction in a membrane-mimicking environment and cellular uptake efficiency. Biochemistry, 45, 1408–1420.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, P., Pal, S., Kundu, N., Mondal, D., & Sarkar, N. (2018). A cell-penetrating peptide induces the self-reproduction of phospholipid vesicles: Understanding the role of the bilayer rigidity. Chemical Communications (Camb).

    Google Scholar 

  • Barany-Wallje, E., Andersson, A., Gräslund, A., & Mäler, L. (2004). NMR solution structure and position of transportan in neutral phospholipid bicelles. FEBS Letters, 567, 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Barany-Wallje, E., Andersson, A., Gräslund, A., & Mäler, L. (2006). Dynamics of transportan in bicelles is surface charge dependent. Journal of Biomolecular NMR, 35, 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Barany-Wallje, E., Gaur, J., Lundberg, P., Langel, Ü., & Gräslund, A. (2007). Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo. FEBS Letters, 581, 2389–2393.

    Article  CAS  PubMed  Google Scholar 

  • Barany-Wallje, E., Keller, S., Serowy, S., Geibel, S., Pohl, P., Bienert, M., et al. (2005). A critical reassessment of penetratin translocation across lipid membranes. Biophysical Journal, 89, 2513–2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechara, C., Pallerla, M., Zaltsman, Y., Burlina, F., Alves, I. D., Lequin, O., et al. (2013). Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. The FASEB Journal, 27, 738–749.

    Article  CAS  PubMed  Google Scholar 

  • Bera, S., Kar, R. K., Mondal, S., Pahan, K., & Bhunia, A. (2016). Structural elucidation of the cell-penetrating penetratin peptide in model membranes at the atomic level: Probing hydrophobic interactions in the blood-brain barrier. Biochemistry, 55, 4982–4996.

    Article  CAS  PubMed  Google Scholar 

  • Berges, R., Balzeau, J., Takahashi, M., Prevost, C., & Eyer, J. (2012). Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit. PLoS One, 7, e49436.

    Google Scholar 

  • Berlose, J. P., Convert, O., Derossi, D., Brunissen, A., & Chassaing, G. (1996). Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. European Journal of Biochemistry, 242, 372–386.

    Article  CAS  PubMed  Google Scholar 

  • Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D., & Verdine, G. L. (2007). Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. Journal of the American Chemical Society, 129, 2456–2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand, J. R., Malvy, C., Auguste, T., Toth, G. K., Kiss-Ivankovits, O., Illyes, E., et al. (2009). Synthesis and studies on cell-penetrating peptides. Bioconjugate Chemistry, 20, 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  • Biverståhl, H., Andersson, A., Gräslund, A., & Mäler, L. (2004). NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein. Biochemistry, 43, 14940–14947.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, J., Biverstahl, H., Graslund, A., Maler, L., & Brzezinski, P. (2006). Real-time transmembrane translocation of penetratin driven by light-generated proton pumping. Biophysical Journal, 91, 16.

    Article  CAS  Google Scholar 

  • Bode, S. A., Kruis, I. C., Adams, H. P., Boelens, W. C., Pruijn, G. J., van Hest, J. C., et al. (2017). Coiled-coil-mediated activation of oligoarginine cell-penetrating peptides. ChemBioChem, 18, 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Bodor, N., Toth-Sarudy, E., Holm, T., Pallagi, I., Vass, E., Buchwald, P., et al. (2007). Novel, cell-penetrating molecular transporters with flexible backbones and permanently charged side-chains. Journal of Pharmacy and Pharmacology, 59, 1065–1076.

    Article  CAS  PubMed  Google Scholar 

  • Burck, J., Roth, S., Wadhwani, P., Afonin, S., Kanithasen, N., Strandberg, E., et al. (2008). Conformation and membrane orientation of amphiphilic helical peptides by oriented circular dichroism. Biophysical Journal, 95, 3872–3881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caesar, C. E., Esbjorner, E. K., Lincoln, P., & Norden, B. (2006). Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: Correlations of structure to cellular uptake. Biochemistry, 45, 7682–7692.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y. S., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K. H., et al. (2013). Stapled alpha-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proceedings of the National Academy of Sciences USA, 110, 14.

    Google Scholar 

  • Chen, L., & Frankel, A. D. (1995). A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA. Proceedings of the National Academy of Sciences U S A, 92, 5077–5081.

    Article  CAS  Google Scholar 

  • Chen, L., Zhang, Q., Yuan, X., Cao, Y., Yuan, Y., Yin, H., et al. (2017). How charge distribution influences the function of membrane-active peptides: Lytic or cell-penetrating? The International Journal of Biochemistry & Cell Biology, 83, 71–75.

    Article  CAS  Google Scholar 

  • Chithrani, B. D., & Chan, W. C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7, 1542–1550.

    Article  CAS  PubMed  Google Scholar 

  • Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Ciobanasu, C., Siebrasse, J. P., & Kubitscheck, U. (2010). Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. Biophysical Journal, 99, 153–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Avrahami, M., Libster, D., Aserin, A., & Garti, N. (2012). Penetratin-induced transdermal delivery from H(II) mesophases of sodium diclofenac. Journal of Controlled Release, 159, 419–428.

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Avrahami, M., Shames, A. I., Ottaviani, M. F., Aserin, A., & Garti, N. (2014). HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases. The Journal of Physical Chemistry B, 118, 6277–6287.

    Article  CAS  PubMed  Google Scholar 

  • Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q. N., McMaster, G. K., Brasseur, R., et al. (2009). A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 17, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Czajlik, A., Mesko, E., Penke, B., & Perczel, A. (2002). Investigation of penetratin peptides. Part 1. The environment dependent conformational properties of penetratin and two of its derivatives. Journal of Peptide Science, 8, 151–171.

    Article  CAS  PubMed  Google Scholar 

  • D’Ursi, A. M., Giusti, L., Albrizio, S., Porchia, F., Esposito, C., Caliendo, G., et al. (2006). A membrane-permeable peptide containing the last 21 residues of the G alpha(s) carboxyl terminus inhibits G(s)-coupled receptor signaling in intact cells: Correlations between peptide structure and biological activity. Molecular Pharmacology, 69, 727–736.

    PubMed  Google Scholar 

  • Danielsson, J., Inomata, K., Murayama, S., Tochio, H., Lang, L., Shirakawa, M., et al. (2013). Pruning the ALS-associated protein SOD1 for in-cell NMR. Journal of the American Chemical Society, 135, 10266–10269.

    Article  CAS  PubMed  Google Scholar 

  • Delaroche, D., Cantrelle, F. X., Subra, F., van Heijenoort, C., Guittet, E., Jiao, C. Y., et al. (2010). Cell-penetrating peptides with intracellular actin-remodeling activity in malignant fibroblasts. Journal of Biological Chemistry, 285, 7712–7721.

    Article  CAS  PubMed  Google Scholar 

  • Dennison, S. R., Baker, R. D., Nicholl, I. D., & Phoenix, D. A. (2007). Interactions of cell penetrating peptide Tat with model membranes: A biophysical study. Biochemical and Biophysical Research Communications, 363, 178–182.

    Article  CAS  PubMed  Google Scholar 

  • Desai, P. R., Cormier, A. R., Shah, P. P., Patlolla, R. R., Paravastu, A. K., & Singh, M. (2014). (31)P solid-state NMR based monitoring of permeation of cell penetrating peptides into skin. European Journal of Pharmaceutics and Biopharmaceutics, 86, 190–199.

    Article  CAS  PubMed  Google Scholar 

  • Deshayes, S., Gerbal-Chaloin, S., Morris, M. C., Aldrian-Herrada, G., Charnet, P., Divita, G., et al. (2004a). On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1667, 141–147.

    Article  CAS  Google Scholar 

  • Deshayes, S., Heitz, A., Morris, M. C., Charnet, P., Divita, G., & Heitz, F. (2004b). Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry, 43, 1449–1457.

    Article  CAS  PubMed  Google Scholar 

  • Deshayes, S., Konate, K., Aldrian, G., Heitz, F., & Divita, G. (2011). Interactions of amphipathic CPPs with model membranes. Methods in Molecular Biology, 683, 41–56.

    Article  CAS  PubMed  Google Scholar 

  • Deshayes, S., Plenat, T., Aldrian-Herrada, G., Divita, G., le Grimellec, C., & Heitz, F. (2004c). Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry, 43, 7698–7706.

    Article  CAS  PubMed  Google Scholar 

  • Ding, B., & Chen, Z. (2012). Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes. The Journal of Physical Chemistry B, 116, 2545–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drin, G., Cottin, S., Blanc, E., Rees, A. R., & Temsamani, J. (2003). Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 278, 31192–31201.

    Article  CAS  PubMed  Google Scholar 

  • Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M., & Temsamani, J. (2001). Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. European Journal of Biochemistry, 268, 1304–1314.

    Article  CAS  PubMed  Google Scholar 

  • Duchardt, F., Ruttekolk, I. R., Verdurmen, W. P., Lortat-Jacob, H., Burck, J., Hufnagel, H., et al. (2009). A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. Journal of Biological Chemistry, 284, 36099–36108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggimann, G. A., Buschor, S., Darbre, T., & Reymond, J. L. (2013). Convergent synthesis and cellular uptake of multivalent cell penetrating peptides derived from Tat, Antp, pVEC, TP10 and SAP. Organic & Biomolecular Chemistry, 11, 6717–6733.

    Article  CAS  Google Scholar 

  • Eiriksdottir, E., Konate, K., Langel, Ü., Divita, G., & Deshayes, S. (2010). Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798, 1119–1128.

    Article  CAS  Google Scholar 

  • El-Andaloussi, S., Järver, P., Johansson, H. J., & Langel, Ü. (2007). Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochemical Journal, 407, 285–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzat, K., Helmfors, H., Tudoran, O., Juks, C., Lindberg, S., Padari, K., et al. (2012). Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. The FASEB Journal, 26, 1172–1180.

    Article  CAS  PubMed  Google Scholar 

  • Fanghanel, S., Wadhwani, P., Strandberg, E., Verdurmen, W. P., Burck, J., Ehni, S., et al. (2014). Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state. PLoS ONE, 9, e99653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B., et al. (1994). Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences USA, 91, 664–668.

    Article  CAS  Google Scholar 

  • Foged, C., Franzyk, H., Bahrami, S., Frokjaer, S., Jaroszewski, J. W., Nielsen, H. M., et al. (2008). Cellular uptake and membrane-destabilising properties of alpha-peptide/beta-peptoid chimeras: lessons for the design of new cell-penetrating peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778, 2487–2495.

    Article  CAS  Google Scholar 

  • Franz, J., Graham, D. J., Schmuser, L., Baio, J. E., Lelle, M., Peneva, K., et al. (2015). Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides. Biointerphases, 10, 019009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freire, J. M., Veiga, A. S., de la Torre, B. G., Andreu, D., & Castanho, M. A. (2013). Quantifying molecular partition of cell-penetrating peptide-cargo supramolecular complexes into lipid membranes: Optimizing peptide-based drug delivery systems. Journal of Peptide Science, 19, 182–189.

    Article  CAS  PubMed  Google Scholar 

  • Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., et al. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. Journal of Biological Chemistry, 276, 5836–5840.

    Article  CAS  PubMed  Google Scholar 

  • Garibotto, F. M., Garro, A. D., Rodriguez, A. M., Raimondi, M., Zacchino, S. A., Perczel, A., et al. (2011). Penetratin analogues acting as antifungal agents. European Journal of Medicinal Chemistry, 46, 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Monterrey, I., Sala, M., Rusciano, M. R., Monaco, S., Maione, A. S., Iaccarino, G., et al. (2013). Characterization of a selective CaMKII peptide inhibitor. European Journal of Medicinal Chemistry, 62, 425–434.

    Article  CAS  PubMed  Google Scholar 

  • Goncalves, E., Kitas, E., & Seelig, J. (2005). Binding of oligoarginine to membrane lipids and heparan sulfate: Structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry, 44, 2692–2702.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Z., Ikonomova, S. P., & Karlsson, A. J. (2017). Secondary structure of cell-penetrating peptides during interaction with fungal cells. Protein Science.

    Google Scholar 

  • Gongadze, E., van Rienen, U., & Iglic, A. (2011). Generalized stern models of the electric double layer considering the spatial variation of permittivity and finite size of ions in saturation regime. Cellular & Molecular Biology Letters, 16, 576–594.

    Article  Google Scholar 

  • Grage, S. L., Afonin, S., Kara, S., Buth, G., & Ulrich, A. S. (2016). Membrane thinning and thickening induced by membrane-active amphipathic peptides. Frontiers in Cell and Developmental Biology, 4.

    Google Scholar 

  • Grasso, G., Muscat, S., Rebella, M., Morbiducci, U., Audenino, A., Danani, A., et al. (2018). Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics. Journal of Biomechanics, 73, 137–144.

    Article  PubMed  Google Scholar 

  • Greenfield, N. J. (2006). Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nature Protocols, 1, 2891–2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gräslund, A., & Mäler, L. (2011). Testing membrane interactions of CPPs. Methods in Molecular Biology, 683, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Guidotti, G., Brambilla, L., & Rossi, D. (2017). Cell-penetrating peptides: From basic research to clinics. Trends in Pharmacological Sciences, 38, 406–424.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, A., Mandal, D., Ahmadibeni, Y., Parang, K., & Bothun, G. (2011). Hydrophobicity drives the cellular uptake of short cationic peptide ligands. European Biophysics Journal, 40, 727–736.

    Article  CAS  PubMed  Google Scholar 

  • Guterstam, P., Madani, F., Hirose, H., Takeuchi, T., Futaki, S., el Andaloussi, S., et al. (2009). Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788, 2509–2517.

    Article  CAS  Google Scholar 

  • Henriques, S. T., & Castanho, M. A. (2004). Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Biochemistry, 43, 9716–9724.

    Article  CAS  PubMed  Google Scholar 

  • Henriques, S. T., Costa, J., & Castanho, M. A. (2005). Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry, 44, 10189–10198.

    Article  PubMed  CAS  Google Scholar 

  • Henriques, S. T., Melo, M. N., & Castanho, M. A. (2007). How to address CPP and AMP translocation? Methods to detect and quantify peptide internalization in vitro and in vivo (Review). Molecular Membrane Biology, 24, 173–184.

    Article  CAS  PubMed  Google Scholar 

  • Herbig, M. E., Weller, K. M., & Merkle, H. P. (2007). Reviewing biophysical and cell biological methodologies in cell-penetrating peptide (CPP) research. Critical Reviews™ in Therapeutic Drug Carrier Systems, 24, 203–255.

    Article  CAS  Google Scholar 

  • Herce, H. D., Garcia, A. E., Litt, J., Kane, R. S., Martin, P., Enrique, N., et al. (2009). Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophysical Journal, 97, 1917–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilinski, G. J., Kim, Y. W., Hong, J., Kutchukian, P. S., Crenshaw, C. M., Berkovitch, S. S., et al. (2014). Stitched alpha-helical peptides via bis ring-closing metathesis. Journal of the American Chemical Society, 136, 12314–12322.

    Article  CAS  PubMed  Google Scholar 

  • Hong, M., & Su, Y. (2011). Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR. Protein Science, 20, 641–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hostachy, S., Swiecicki, J. M., Sandt, C., Delsuc, N., & Policar, C. (2016). Photophysical properties of single core multimodal probe for imaging (SCoMPI) in a membrane model and in cells. Dalton Transactions, 45, 2791–2795.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Liu, X., Sinha, S. K., & Patel, S. (2014). Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: Implications of pore formation and nonadditivity. The Journal of Physical Chemistry B, 118, 2670–2682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Ou, S., & Patel, S. (2013). Free energetics of arginine permeation into model DMPC lipid bilayers: coupling of effective counterion concentration and lateral bilayer dimensions. The Journal of Physical Chemistry B, 117, 11641–11653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., & Patel, S. (2015). Structural and thermodynamic insight into spontaneous membrane-translocating peptides across model PC/PG lipid bilayers. The Journal of Membrane Biology, 248, 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., & Patel, S. (2016). Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: The roles of cholesterol and anionic lipids. Soft Matter, 12, 6716–6727.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Sinha, S. K., & Patel, S. (2015). Investigating hydrophilic pores in model lipid bilayers using molecular simulations: Correlating bilayer properties with pore-formation thermodynamics. Langmuir, 31, 6615–6631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., & Kalodimos, C. G. (2017). Structures of large protein complexes determined by nuclear magnetic resonance spectroscopy. Annual Review of Biophysics, 17, 070816-033701.

    Google Scholar 

  • Imani, R., Emami, S. H., & Faghihi, S. (2015). Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Physical Chemistry Chemical Physics, 17, 6328–6339.

    Article  CAS  PubMed  Google Scholar 

  • Inomata, K., Ohno, A., Tochio, H., Isogai, S., Tenno, T., Nakase, I., et al. (2009). High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature, 458, 106–109.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M. Z., Alam, J. M., Tamba, Y., Karal, M. A., & Yamazaki, M. (2014). The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Physical Chemistry Chemical Physics, 16, 15752–15767.

    Article  CAS  PubMed  Google Scholar 

  • Jafari, M., Xu, W., Pan, R., Sweeting, C. M., Karunaratne, D. N., & Chen, P. (2014). Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS ONE, 9, e97797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, W., Kim, B. Y., Rutka, J. T., & Chan, W. C. (2008). Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 3(3), 145–150. https://doi.org/10.1038/nnano.2008.30 (Epub 2008 Mar 2).

    Article  CAS  PubMed  Google Scholar 

  • Jiao, C. Y., Sachon, E., Alves, I. D., Chassaing, G., Bolbach, G., & Sagan, S. (2017). Exploiting benzophenone photoreactivity to probe the phospholipid environment and insertion depth of the cell-penetrating peptide penetratin in model membranes. Angewandte Chemie International Edition, 9, 201703465.

    Google Scholar 

  • Jing, X., Yang, M., Kasimova, M. R., Malmsten, M., Franzyk, H., Jorgensen, L., et al. (2012). Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with alpha-peptide/beta-peptoid backbone: Effects of hydrogen bonding and alpha-chirality in the beta-peptoid residues. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818, 2660–2668.

    Article  CAS  Google Scholar 

  • Joanne, P., Galanth, C., Goasdoue, N., Nicolas, P., Sagan, S., Lavielle, S., et al. (2009). Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788, 1772–1781.

    Article  CAS  Google Scholar 

  • Jobin, M. L., Blanchet, M., Henry, S., Chaignepain, S., Manigand, C., Castano, S., et al. (2015). The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848, 593–602.

    Article  CAS  Google Scholar 

  • Jobin, M. L., Bonnafous, P., Temsamani, H., Dole, F., Grelard, A., Dufourc, E. J., et al. (2013). The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: Toward an understanding of its selectivity for cancer cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 1457–1470.

    Article  CAS  Google Scholar 

  • Juks, C., Lorents, A., Arukuusk, P., Langel, U., & Pooga, M. (2017). Cell-penetrating peptides recruit type A scavenger receptors to the plasma membrane for cellular delivery of nucleic acids. The FASEB Journal, 31, 975–988.

    Article  CAS  PubMed  Google Scholar 

  • Juks, C., Padari, K., Margus, H., Kriiska, A., Etverk, I., Arukuusk, P., et al. (2015). The role of endocytosis in the uptake and intracellular trafficking of PepFect14-nucleic acid nanocomplexes via class A scavenger receptors. Biochimica et Biophysica Acta (BBA)-Biomembranes, 12, 25.

    Google Scholar 

  • Katayama, S., Nakase, I., Yano, Y., Murayama, T., Nakata, Y., Matsuzaki, K., et al. (2013). Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: Recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 2134–2142.

    Article  CAS  Google Scholar 

  • Kim, Y. W., Grossmann, T. N., & Verdine, G. L. (2011). Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis. Nature Protocols, 6, 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Klostermeier, D., Bayer, P., Kraft, M., Frank, R. W., & Rosch, P. (1997). Spectroscopic investigations of HIV-1 trans-activator and related peptides in aqueous solutions. Biophysical Chemistry, 63, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Kolesinska, B., Podwysocka, D. J., Rueping, M. A., Seebach, D., Kamena, F., Walde, P., et al. (2013). Permeation through phospholipid bilayers, skin-cell penetration, plasma stability, and CD spectra of alpha- and beta-oligoproline derivatives. Chemistry & Biodiversity, 10, 1–38.

    Article  CAS  Google Scholar 

  • Koller, D., & Lohner, K. (2014). The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838, 2250–2259.

    Article  CAS  Google Scholar 

  • Konate, K., Lindberg, M. F., Vaissiere, A., Jourdan, C., Aldrian, G., Margeat, E., et al. (2016). Optimisation of vectorisation property: A comparative study for a secondary amphipathic peptide. International Journal of Pharmaceutics, 509, 71–84.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Kuhn, L. T., & Balbach, J. (2019). In-cell NMR: Analysis of protein-small molecule interactions, metabolic processes, and protein phosphorylation. International Journal of Molecular Sciences, 20.

    Google Scholar 

  • Kwon, B., Waring, A. J., & Hong, M. (2013). A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Biophysical Journal, 105, 2333–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamaziere, A., Wolf, C., Lambert, O., Chassaing, G., Trugnan, G., & Ayala-Sanmartin, J. (2008). The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains. PLoS ONE, 3, e1938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Law, M., Jafari, M., & Chen, P. (2008). Physicochemical characterization of siRNA-peptide complexes. Biotechnology Progress, 24, 957–963.

    Article  CAS  PubMed  Google Scholar 

  • Lea, E. J., Rich, G. T., & Segrest, J. P. (1975). The effects of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein on the permeability of model lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 382, 41–50.

    Article  CAS  Google Scholar 

  • Letoha, T., Gaal, S., Somlai, C., Czajlik, A., Perczel, A., & Penke, B. (2003). Membrane translocation of penetratin and its derivatives in different cell lines. Journal of Molecular Recognition, 16, 272–279.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Zhao, J., Cheng, K., Ge, Y., Wu, Q., Ye, Y., et al. (2017). Magnetic resonance spectroscopy as a tool for assessing macromolecular structure and function in living cells. Annual Review of Analytical Chemistry, 9, 061516-045237.

    Google Scholar 

  • Li, S., Su, Y., Luo, W., & Hong, M. (2010). Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy. The Journal of Physical Chemistry B, 114, 4063–4069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, Y. B., Lee, E., & Lee, M. (2007). Cell-penetrating-peptide-coated nanoribbons for intracellular nanocarriers. Angewandte Chemie International Edition, 46, 3475–3478.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J., & Alexander-Katz, A. (2013). Cell membranes open “doors” for cationic nanoparticles/biomolecules: Insights into uptake kinetics. ACS Nano, 7, 10799–10808.

    Article  CAS  PubMed  Google Scholar 

  • Lind, J., Gräslund, A., & Mäler, L. (2006). Membrane interactions of dynorphins. Biochemistry, 45, 15931–15940.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, M., Biverstahl, H., Graslund, A., & Maler, L. (2003). Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. European Journal of Biochemistry, 270, 3055–3063.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, M., & Gräslund, A. (2001). The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR. FEBS Letters, 497, 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, M., Jarvet, J., Langel, Ü., & Gräslund, A. (2001). Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR. Biochemistry, 40, 3141–3149.

    Article  CAS  PubMed  Google Scholar 

  • Lorents, A., Saalik, P., Langel, U., & Pooga, M. (2018). Arginine-rich cell-penetrating peptides require nucleolin and cholesterol-poor subdomains for translocation across membranes. Bioconjugate Chemistry.

    Google Scholar 

  • Loret, E. P., Vives, E., Ho, P. S., Rochat, H., van Rietschoten, J., & Johnson, W. C., Jr. (1991). Activating region of HIV-1 Tat protein: vacuum UV circular dichroism and energy minimization. Biochemistry, 30, 6013–6023.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg, P., Magzoub, M., Lindberg, M., Hällbrink, M., Jarvet, J., Eriksson, L. E., et al. (2002). Cell membrane translocation of the N-terminal (1-28) part of the prion protein. Biochemical and Biophysical Research Communications, 299, 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Ma, P., Yu, H., Zhang, X., Mu, H., Chu, Y., Ni, L., et al. (2017). Increased active tumor targeting by an alphavbeta3-targeting and cell-penetrating bifunctional peptide-mediated dendrimer-based conjugate. Pharmaceutical Research, 34, 121–135.

    Article  CAS  PubMed  Google Scholar 

  • Macchi, S., Nifosi, R., Signore, G., di Pietro, S., Boccardi, C., D’Autilia, F., et al. (2017). Self-aggregation propensity of the Tat peptide revealed by UV-Vis, NMR and MD analyses. Physical Chemistry Chemical Physics, 19, 23910–23914.

    Article  CAS  PubMed  Google Scholar 

  • Madani, F., Abdo, R., Lindberg, S., Hirose, H., Futaki, S., Langel, U., et al. (2013a). Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 1198–1204.

    Article  CAS  Google Scholar 

  • Madani, F., Abdo, R., Lindberg, S., Hirose, H., Futaki, S., Langel, Ü., et al. (2013b). Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 1198–1204.

    Article  CAS  Google Scholar 

  • Madani, F., & Gräslund, A. (2015). Investigating membrane interactions and structures of CPPs. Methods in Molecular Biology, 1324, 73–87.

    Article  PubMed  Google Scholar 

  • Madani, F., Lindberg, S., Langel, Ü., Futaki, S., & Gräslund, A. (2011a). Mechanisms of cellular uptake of cell-penetrating peptides. Journal of Biophysics, 2011, 414729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madani, F., Peralvarez-Marin, A., & Gräslund, A. (2011b). Liposome model systems to study the endosomal escape of cell-penetrating peptides: Transport across phospholipid membranes induced by a proton gradient. Journal of Drug Delivery, 2011, 897592.

    Article  PubMed  CAS  Google Scholar 

  • Magzoub, M., Eriksson, L. E., & Graslund, A. (2002). Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochimica Et Biophysica Acta (BBA)-Biomembranes, 1563, 53–63.

    Article  CAS  Google Scholar 

  • Magzoub, M., Eriksson, L. E., & Graslund, A. (2003). Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophysical Chemistry, 103, 271–288.

    Article  CAS  PubMed  Google Scholar 

  • Magzoub, M., Kilk, K., Eriksson, L. E., Langel, Ü., & Gräslund, A. (2001). Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1512, 77–89.

    Article  CAS  Google Scholar 

  • Magzoub, M., Pramanik, A., & Graslund, A. (2005). Modeling the endosomal escape of cell-penetrating peptides: Transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry, 44, 14890–14897.

    Article  CAS  PubMed  Google Scholar 

  • Maiolo, J. R., Ferrer, M., & Ottinger, E. A. (2005). Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1712, 161–172.

    Article  CAS  Google Scholar 

  • Maler, L. (2012). Solution NMR studies of peptide-lipid interactions in model membranes. Molecular Membrane Biology, 29, 155–176.

    Article  PubMed  CAS  Google Scholar 

  • Maler, L. (2013). Solution NMR studies of cell-penetrating peptides in model membrane systems. Advanced Drug Delivery Reviews, 65, 1002–1011.

    Article  PubMed  CAS  Google Scholar 

  • Marbella, L. E., Cho, H. S., & Spence, M. M. (2013). Observing the translocation of a mitochondria-penetrating peptide with solid-state NMR. Biochimica et Biophysica Acta (BBA)-Biomembranes, 8, 6.

    Google Scholar 

  • Margus, H., Arukuusk, P., Langel, U., & Pooga, M. (2016). Characteristics of cell-penetrating peptide/nucleic acid nanoparticles. Molecular Pharmaceutics, 13, 172–179.

    Article  CAS  PubMed  Google Scholar 

  • Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., et al. (2005). Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. Journal of Biological Chemistry, 280, 26360–26370.

    Article  CAS  PubMed  Google Scholar 

  • Marion, D. (2013). An introduction to biological NMR spectroscopy. Molecular and Cellular Proteomics, 12, 3006–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinek, T. A., & Fulop, F. (2012). Peptidic foldamers: Ramping up diversity. Chemical Society Reviews, 41, 687–702.

    Article  CAS  PubMed  Google Scholar 

  • McKeown, A. N., Naro, J. L., Huskins, L. J., & Almeida, P. F. (2011). A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes. Biochemistry, 50, 654–662.

    Article  CAS  PubMed  Google Scholar 

  • Metzger, A. U., Bayer, P., Willbold, D., Hoffmann, S., Frank, R. W., Goody, R. S., et al. (1997). The interaction of HIV-1 Tat(32-72) with its target RNA: A fluorescence and nuclear magnetic resonance study. Biochemical and Biophysical Research Communications, 241, 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Metzger, A. U., Schindler, T., Willbold, D., Kraft, M., Steegborn, C., Volkmann, A., et al. (1996). Structural rearrangements on HIV-1 Tat (32-72) TAR complex formation. FEBS Letters, 384, 255–259.

    Article  CAS  PubMed  Google Scholar 

  • Miles, A. J., & Wallace, B. A. (2016). Circular dichroism spectroscopy of membrane proteins. Chemical Society Reviews, 45, 4859–4872.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, A., Gordon, V. D., Yang, L., Coridan, R., & Wong, G. C. (2008). HIV TAT forms pores in membranes by inducing saddle-splay curvature: Potential role of bidentate hydrogen bonding. Angewandte Chemie International Edition, 47, 2986–2989.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, A., Lai, G. H., Schmidt, N. W., Sun, V. Z., Rodriguez, A. R., Tong, R., et al. (2011). Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proceedings of the National Academy of Sciences USA, 108, 16883–16888.

    Article  CAS  Google Scholar 

  • Misiewicz, J., Afonin, S., Grage, S. L., van den Berg, J., Strandberg, E., Wadhwani, P., et al. (2015). Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. Journal of Biomolecular NMR, 61, 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Moellering, R. E., Cornejo, M., Davis, T. N., del Bianco, C., Aster, J. C., Blacklow, S. C., et al. (2009). Direct inhibition of the NOTCH transcription factor complex. Nature, 462, 182–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghal, M. M. R., Islam, M. Z., Sharmin, S., Levadnyy, V., Moniruzzaman, M., & Yamazaki, M. (2018). Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles. Chemistry and Physics of Lipids, 212, 120–129.

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb, A., Bishop, K., Peterlin, B. M., Turck, C., Parslow, T. G., & James, T. L. (1994). NMR structure of a biologically active peptide containing the RNA-binding domain of human immunodeficiency virus type 1 Tat. Proceedings of the National Academy of Sciences USA, 91, 8248–8252.

    Article  CAS  Google Scholar 

  • Ohno, A., Inomata, K., Tochio, H., & Shirakawa, M. (2011). Application of NMR spectroscopy in medicinal chemistry and drug discovery. Current Topics in Medicinal Chemistry, 11, 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Orzaez, M., Mondragon, L., Marzo, I., Sanclimens, G., Messeguer, A., Perez-Paya, E., et al. (2007). Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters: Effective methods to improve inhibition of mitochondria-mediated apoptosis. Peptides, 28, 958–968.

    Article  CAS  PubMed  Google Scholar 

  • Ou, S., Lucas, T. R., Zhong, Y., Bauer, B. A., Hu, Y., & Patel, S. (2013). Free energetics and the role of water in the permeation of methyl guanidinium across the bilayer-water interface: Insights from molecular dynamics simulations using charge equilibration potentials. The Journal of Physical Chemistry B, 117, 3578–3592.

    Article  CAS  PubMed  Google Scholar 

  • Pae, J., Liivamagi, L., Lubenets, D., Arukuusk, P., Langel, U., & Pooga, M. (2016). Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 23, 30137-7.

    Google Scholar 

  • Pae, J., Saalik, P., Liivamagi, L., Lubenets, D., Arukuusk, P., Langel, Ü., et al. (2014). Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. Journal of Controlled Release, 192, 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Paneque, T., Ramírez, A., Casillas, D., Duarte, C., Chinea, G., Espinosa Viñals, C., et al. (2017). Cell penetration and secondary structure of a synthetic peptide with anti-HIV activity.

    Google Scholar 

  • Persson, D., Thoren, P. E., Esbjorner, E. K., Goksor, M., Lincoln, P., & Norden, B. (2004a). Vesicle size-dependent translocation of penetratin analogs across lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1665, 142–155.

    Article  CAS  Google Scholar 

  • Persson, D., Thoren, P. E., Lincoln, P., & Norden, B. (2004b). Vesicle membrane interactions of penetratin analogues. Biochemistry, 43, 11045–11055.

    Article  CAS  PubMed  Google Scholar 

  • Phambu, N., Almarwani, B., Alwadai, A., Phambu, E. N., Faciane, N., Marion, C., et al. (2017). Calorimetric and spectroscopic studies of the effects of the cell penetrating peptide Pep-1 and the antimicrobial peptide Combi-2 on vesicles mimicking Escherichia coli membrane. Langmuir, 33, 12908–12915.

    Article  CAS  PubMed  Google Scholar 

  • Phan, M. D., Kim, H., Lee, S., Yu, C. J., Moon, B., & Shin, K. (2017). HIV peptide-mediated binding behaviors of nanoparticles on a lipid membrane. Langmuir, 33, 2590–2595.

    Article  CAS  PubMed  Google Scholar 

  • Poillot, C., Dridi, K., Bichraoui, H., Pecher, J., Alphonse, S., Douzi, B., et al. (2010). D-Maurocalcine, a pharmacologically inert efficient cell-penetrating peptide analogue. Journal of Biological Chemistry, 285, 34168–34180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyansky, A. A., Volynsky, P. E., Arseniev, A. S., & Efremov, R. G. (2009). Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide. The Journal of Physical Chemistry B, 113, 1107–1119.

    Article  CAS  PubMed  Google Scholar 

  • Pujals, S., Fernandez-Carneado, J., Ludevid, M. D., & Giralt, E. (2008). D-SAP: A new, noncytotoxic, and fully protease resistant cell-penetrating peptide. ChemMedChem, 3, 296–301.

    Article  CAS  PubMed  Google Scholar 

  • Pujals, S., Miyamae, H., Afonin, S., Murayama, T., Hirose, H., Nakase, I., et al. (2013). Curvature engineering: Positive membrane curvature induced by epsin N-terminal peptide boosts internalization of octaarginine. ACS Chemical Biology, 8, 1894–1899.

    Article  CAS  PubMed  Google Scholar 

  • Pärnaste, L., Arukuusk, P., Zagato, E., Braeckmans, K., & Langel, Ü. (2016). Methods to follow intracellular trafficking of cell-penetrating peptides. Journal of Drug Targeting, 24, 508–519.

    Article  PubMed  CAS  Google Scholar 

  • Quebatte, G., Kitas, E., & Seelig, J. (2014). riDOM, a cell penetrating peptide. Interaction with phospholipid bilayers. Biochimica Et Biophysica Acta (BBA)-Biomembranes, 1838, 968–977.

    Article  CAS  Google Scholar 

  • Regberg, J., Srimanee, A., Erlandsson, M., Sillard, R., Dobchev, D. A., Karelson, M., et al. (2014). Rational design of a series of novel amphipathic cell-penetrating peptides. International Journal of Pharmaceutics, 464, 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Regberg, J., Vasconcelos, L., Madani, F., Langel, Ü., & Hällbrink, M. (2016). pH-responsive PepFect cell-penetrating peptides. International Journal of Pharmaceutics, 501, 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Rejman, J., Oberle, V., Zuhorn, I. S., & Hoekstra, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377, 159–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rennert, R., Wespe, C., Beck-Sickinger, A. G., & Neundorf, I. (2006). Developing novel hCT derived cell-penetrating peptides with improved metabolic stability. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758, 347–354.

    Article  CAS  Google Scholar 

  • Robison, A. D., Sun, S., Poyton, M. F., Johnson, G. A., Pellois, J. P., Jungwirth, P., et al. (2016). Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers. The Journal of Physical Chemistry B, 120, 9287–9296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzza, P., Calderan, A., Guiotto, A., Osler, A., & Borin, G. (2004). Tat cell-penetrating peptide has the characteristics of a poly(proline) II helix in aqueous solution and in SDS micelles. Journal of Peptide Science, 10, 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Rydberg, H. A., Carlsson, N., & Norden, B. (2012). Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function. Biochemical and Biophysical Research Communications, 427, 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Sani, M. A., & Separovic, F. (2016). How membrane-active peptides get into lipid membranes. Accounts of Chemical Research, 49, 1130–1138.

    Article  CAS  PubMed  Google Scholar 

  • Sauder, R., Seelig, J., & Ziegler, A. (2011). Thermodynamics of lipid interactions with cell-penetrating peptides. Methods in Molecular Biology, 683, 129–155.

    Article  CAS  PubMed  Google Scholar 

  • Schrank, E., Wagner, G. E., & Zangger, K. (2013). Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules, 18, 7407–7435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz, G., & Arbuzova, A. (1995). Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochimica et Biophysica Acta (BBA)-Biomembranes, 4, 51–57.

    Article  Google Scholar 

  • Sekhar, A., & Kay, L. E. (2019). An NMR view of protein dynamics in health and disease. Annual Review of Biophysics.

    Google Scholar 

  • Sharmin, S., Islam, M. Z., Karal, M. A., Alam Shibly, S. U., Dohra, H., & Yamazaki, M. (2016). Effects of lipid composition on the entry of cell-penetrating peptide oligoarginine into single vesicles. Biochemistry, 55, 4154–4165.

    Article  CAS  PubMed  Google Scholar 

  • Sharonov, A., & Hochstrasser, R. M. (2007). Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes. Biochemistry, 46, 7963–7972.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, J. E., Epand, R. F., Hsu, J. C., Mo, G. C., Epand, R. M., & Yip, C. M. (2008). Cationic peptide-induced remodelling of model membranes: Direct visualization by in situ atomic force microscopy. Journal of Structural Biology, 162, 121–138.

    Article  CAS  PubMed  Google Scholar 

  • Silhol, M., Tyagi, M., Giacca, M., Lebleu, B., & Vives, E. (2002). Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. European Journal of Biochemistry, 269, 494–501.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., Kai, M., Zhang, W., Zhang, J., Liu, L., Zhang, B., et al. (2011). Cellular uptake of transportan 10 and its analogs in live cells: Selectivity and structure-activity relationship studies. Peptides, 32, 1934–1941.

    Article  CAS  PubMed  Google Scholar 

  • Spinella, S. A., Nelson, R. B., & Elmore, D. E. (2012). Measuring peptide translocation into large unilamellar vesicles. Journal of Visualized Experiments, e3571.

    Google Scholar 

  • Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical Reviews, 8, 409–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y., Doherty, T., Waring, A. J., Ruchala, P., & Hong, M. (2009). Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR. Biochemistry, 48, 4587–4595.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y., & Hong, M. (2011). Conformational disorder of membrane peptides investigated from solid-state NMR line widths and line shapes. The Journal of Physical Chemistry B, 115, 10758–10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y., Li, S., & Hong, M. (2013). Cationic membrane peptides: Atomic-level insight of structure-activity relationships from solid-state NMR. Amino Acids, 44, 821–833.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y., Mani, R., Doherty, T., Waring, A. J., & Hong, M. (2008a). Reversible sheet-turn conformational change of a cell-penetrating peptide in lipid bilayers studied by solid-state NMR. Journal of Molecular Biology, 381, 1133–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y., Mani, R., & Hong, M. (2008b). Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: A cell-penetrating Peptide example. Journal of the American Chemical Society, 130, 8856–8864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Y., Waring, A. J., Ruchala, P., & Hong, M. (2010). Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR. Biochemistry, 49, 6009–6020.

    Article  CAS  PubMed  Google Scholar 

  • Sugawara, M., Resende, J. M., Moraes, C. M., Marquette, A., Chich, J. F., Metz-Boutigue, M. H., et al. (2010). Membrane structure and interactions of human catestatin by multidimensional solution and solid-state NMR spectroscopy. The FASEB Journal, 24, 1737–1746.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C., Shen, W. C., Tu, J., & Zaro, J. L. (2014a). Interaction between cell-penetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers. Molecular Pharmaceutics, 11, 1583–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, D., Forsman, J., Lund, M., & Woodward, C. E. (2014b). Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: A molecular simulation study. Physical Chemistry Chemical Physics, 16, 20785–20795.

    Article  CAS  PubMed  Google Scholar 

  • Sun, D., Forsman, J., & Woodward, C. E. (2015). Atomistic molecular simulations suggest a kinetic model for membrane translocation by arginine-rich peptides. The Journal of Physical Chemistry B, 119, 14413–14420.

    Article  CAS  PubMed  Google Scholar 

  • Swiecicki, J. M., Bartsch, A., Tailhades, J., di Pisa, M., Heller, B., Chassaing, G., et al. (2014). The efficacies of cell-penetrating peptides in accumulating in large unilamellar vesicles depend on their ability to form inverted micelles. ChemBioChem, 15, 884–891.

    Article  CAS  PubMed  Google Scholar 

  • Säälik, P., Niinep, A., Pae, J., Hansen, M., Lubenets, D., Langel, Ü., et al. (2011). Penetration without cells: Membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. Journal of Controlled Release, 153, 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Takechi-Haraya, Y., Aki, K., Tohyama, Y., Harano, Y., Kawakami, T., Saito, H., et al. (2017). Glycosaminoglycan binding and non-endocytic membrane translocation of cell-permeable octaarginine monitored by real-time in-cell NMR spectroscopy. Pharmaceuticals (Basel), 10.

    Google Scholar 

  • Takechi, Y., Tanaka, H., Kitayama, H., Yoshii, H., Tanaka, M., & Saito, H. (2012). Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Chemistry and Physics of Lipids, 165, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Takechi, Y., Yoshii, H., Tanaka, M., Kawakami, T., Aimoto, S., & Saito, H. (2011). Physicochemical mechanism for the enhanced ability of lipid membrane penetration of polyarginine. Langmuir, 27, 7099–7107.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Kanazawa, T., Shibata, Y., Suda, Y., Fukuda, T., Takashima, Y., et al. (2010). Development of cell-penetrating peptide-modified MPEG-PCL diblock copolymeric nanoparticles for systemic gene delivery. International Journal of Pharmaceutics, 396, 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Terrone, D., Sang, S. L., Roudaia, L., & Silvius, J. R. (2003). Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry, 42, 13787–13799.

    Article  CAS  PubMed  Google Scholar 

  • Tesei, G., Vazdar, M., Jensen, M. R., Cragnell, C., Mason, P. E., Heyda, J., et al. (2017). Self-association of a highly charged arginine-rich cell-penetrating peptide. Proceedings of the National Academy of Sciences USA, 114, 11428–11433.

    Article  CAS  Google Scholar 

  • Thoren, P. E., Persson, D., Esbjorner, E. K., Goksor, M., Lincoln, P., & Norden, B. (2004). Membrane binding and translocation of cell-penetrating peptides. Biochemistry, 43, 3471–3489.

    Article  CAS  PubMed  Google Scholar 

  • Thoren, P. E., Persson, D., Karlsson, M., & Norden, B. (2000). The antennapedia peptide penetratin translocates across lipid bilayers—The first direct observation. FEBS Letters, 482, 265–268.

    Article  CAS  PubMed  Google Scholar 

  • Ulmschneider, J. P., & Ulmschneider, M. B. (2018). Molecular dynamics simulations are redefining our view of peptides interacting with biological membranes. Accounts of Chemical Research.

    Google Scholar 

  • Vasconcelos, L., Madani, F., Arukuusk, P., Pärnaste, L., Gräslund, A., & Langel, Ü. (2014). Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838, 3118–3129.

    Article  CAS  Google Scholar 

  • Veiman, K. L., Mäger, I., Ezzat, K., Margus, H., Lehto, T., Langel, K., et al. (2013). PepFect14 peptide vector for efficient gene delivery in cell cultures. Molecular Pharmaceutics, 10, 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Via, M. A., Del Popolo, M. G., & Wilke, N. (2018). Negative dipole potentials and carboxylic polar head-groups foster the insertion of cell-penetrating-peptides into lipid monolayers. Langmuir.

    Google Scholar 

  • Wadhwani, P., Heidenreich, N., Podeyn, B., Burck, J., & Ulrich, A. S. (2017). Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomaterials Science, 5, 817–827.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani, P., Reichert, J., Burck, J., & Ulrich, A. S. (2012). Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. European Biophysics Journal, 41, 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani, P., Strandberg, E., van den Berg, J., Mink, C., Burck, J., Ciriello, R. A., et al. (2014). Dynamical structure of the short multifunctional peptide BP100 in membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838, 940–949.

    Article  CAS  Google Scholar 

  • Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R. D., et al. (2004). Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science, 305, 1466–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walrant, A., Correia, I., Jiao, C. Y., Lequin, O., Bent, E. H., Goasdoue, N., et al. (2011). Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1808, 382–393.

    Article  CAS  Google Scholar 

  • Weinberger, A., Walter, V., Macewan, S. R., Schmatko, T., Muller, P., Schroder, A. P., et al. (2017). Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes. Scientific Reports, 7.

    Google Scholar 

  • Weller, K., Lauber, S., Lerch, M., Renaud, A., Merkle, H. P., & Zerbe, O. (2005). Biophysical and biological studies of end-group-modified derivatives of Pep-1. Biochemistry, 44, 15799–15811.

    Article  CAS  PubMed  Google Scholar 

  • Wheaten, S. A., Lakshmanan, A., & Almeida, P. F. (2013). Statistical analysis of peptide-induced graded and all-or-none fluxes in giant vesicles. Biophysical Journal, 105, 432–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, S. H., & Wimley, W. C. (1998). Hydrophobic interactions of peptides with membrane interfaces. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 10, 339–352.

    Article  Google Scholar 

  • Willbold, D., Kruger, U., Frank, R., Rosin-Arbesfeld, R., Gazit, A., Yaniv, A., et al. (1993). Sequence-specific resonance assignments of the 1H-NMR spectra of a synthetic, biologically active EIAV Tat protein. Biochemistry, 32, 8439–8445.

    Article  CAS  PubMed  Google Scholar 

  • Wimley, W. C., & White, S. H. (2000). Determining the membrane topology of peptides by fluorescence quenching. Biochemistry, 39, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Witte, K., Olausson, B. E., Walrant, A., Alves, I. D., & Vogel, A. (2013). Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2, 824–833.

    Article  CAS  Google Scholar 

  • Wolf, J., Aisenbrey, C., Harmouche, N., Raya, J., Bertani, P., Voievoda, N., et al. (2017). pH-Dependent membrane interactions of the histidine-rich cell-penetrating peptide LAH4-L1. Biophysical Journal, 113, 1290–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, J., Thapa, R., Reverdatto, S., Burz, D. S., & Shekhtman, A. (2009). Screening of small molecule interactor library by using in-cell NMR spectroscopy (SMILI-NMR). Journal of Medicinal Chemistry, 52, 3516–3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, T., Signorelli, S., Cannistraro, S., Beattie, C. W., & Bizzarri, A. R. (2015). Chirality switching within an anionic cell-penetrating peptide inhibits translocation without affecting preferential entry. Molecular Pharmaceutics, 12, 140–149.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, H., Demizu, Y., Shoda, T., Sato, Y., Oba, M., Tanaka, M., et al. (2014). Amphipathic short helix-stabilized peptides with cell-membrane penetrating ability. Bioorganic & Medicinal Chemistry, 22, 2403–2408.

    Article  CAS  Google Scholar 

  • Yamashita, H., Oba, M., Misawa, T., Tanaka, M., Hattori, T., Naito, M., et al. (2016). A helix-stabilized cell-penetrating peptide as an intracellular delivery tool. ChemBioChem, 17, 137–140.

    Article  CAS  PubMed  Google Scholar 

  • Yandek, L. E., Pokorny, A., Floren, A., Knoelke, K., Langel, Ü., & Almeida, P. F. (2007). Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophysical Journal, 92, 2434–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Tsutsumi, H., Furuta, T., Sakurai, M., & Mihara, H. (2014). Interaction of amphiphilic alpha-helical cell-penetrating peptides with heparan sulfate. Organic & Biomolecular Chemistry, 12, 4673–4681.

    Article  CAS  Google Scholar 

  • Zamora-Carreras, H., Strandberg, E., Muhlhauser, P., Burck, J., Wadhwani, P., Jimenez, M. A., et al. (2016). Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. Biochimica et Biophysica Acta (BBA)-Biomembranes, 6, 11.

    Google Scholar 

  • Zamotaiev, O. M., Postupalenko, V. Y., Shvadchak, V. V., Pivovarenko, V. G., Klymchenko, A. S., & Mely, Y. (2014). Monitoring penetratin interactions with lipid membranes and cell internalization using a new hydration-sensitive fluorescent probe. Organic & Biomolecular Chemistry, 12, 7036–7044.

    Article  CAS  Google Scholar 

  • Zhang, H., Curreli, F., Waheed, A. A., Mercredi, P. Y., Mehta, M., Bhargava, P., et al. (2013). Dual-acting stapled peptides target both HIV-1 entry and assembly. Retrovirology, 10, 136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, H., Zhao, Q., Bhattacharya, S., Waheed, A. A., Tong, X., Hong, A., et al. (2008). A cell-penetrating helical peptide as a potential HIV-1 inhibitor. Journal of Molecular Biology, 378, 565–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, W. L., Hahm, K. S., & Shin, S. Y. (2009). Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. Journal of Peptide Science, 15, 569–575.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W. L., & Shin, S. Y. (2009). Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and its lys-linked two-stranded peptide. Chemical Biology & Drug Design, 73, 209–215.

    Article  CAS  Google Scholar 

  • Ziegler, A., Blatter, X. L., Seelig, A., & Seelig, J. (2003). Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry, 42, 9185–9194.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, A., & Seelig, J. (2011). Contributions of glycosaminoglycan binding and clustering to the biological uptake of the nonamphipathic cell-penetrating peptide WR9. Biochemistry, 50, 4650–4664.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Langel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langel, Ü. (2019). Methods for Structural Studies of CPPs. In: CPP, Cell-Penetrating Peptides. Springer, Singapore. https://doi.org/10.1007/978-981-13-8747-0_7

Download citation

Publish with us

Policies and ethics